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11 Probability Modeling

Random configuration

Imagine a sequence of “configurations” x(1), ...,x(t) is drawn from some ran-
dom source:

x(1) = (x11 x12 . . . x1n)
x(2) = (x21 x22 . . . x2n)

...
x(t) = (xt1 xt2 . . . xtn)

Here we assume a fixed number (n) of components in each configuration, and
assume values xij are from a finite set; e.g., xij ∈ {1, 2, ...,m}.

Random variables

X = X1, X2, ..., Xn

11.1 Computational tasks

Representation

Simulation Generate random configurations

Evaluation Compute probability of a complete configuration

Marginalization Compute probability of a partial configuration

Conditioning Compute conditional probability of completion given a par-
tial observation

Completion Find most probable completion of partial observation

Learning Estimate parameters (will be covered later in the course)
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11.2 Joint probability distribution

A joint probability distribution P(X1 = x1, ..., Xn = xn) specifies the proba-
bility of each complete configuration x = (x1, ..., xn). In general it takes m

n

parameters (minus one constraint) to specify an arbitrary joint distribution
on n random variables with m values. One could represent this by a lookup
table θx(1) , θx(2) , ..., θx(V n) ; where θx(`) gives the probability that the random
variables jointly take on configuration x(`). That is, θx(`) = P(X = x(`)).
These numbers are positive and satisfy the constraint that

∑V n

`=1 θx(`) = 1.

Probability models are ways of representing/specifying specialized joint
distributions (more on this below)

11.3 Example: Spam detection

Imagine the problem of trying to automatically detect spam e-mail messages.
A simple approach to get started is to look only at the “Subject:” headers in
the e-mail messages and attempt to recognize spam by checking some simple
computable features. The two simple features we will consider are:

• Whether the subject header is entirely capitalized

• Whether the subject header contains the word ‘free’, either in upper
case or lower case

For example, a message with the subject header “NEWMORTGAGE RATE”
is likely to be spam. Simlarly, for “Money for Free”, “FREE lunch”, etc.
So our model is based on the following three random variables, Caps, Free

and Spam, each of which take on the values Y (for Yes) or N (for No)

Caps = Y if and only if the subject of the message does not contain
lowercase letters

Free = Y if and only if the word ‘free’ appears in the subject (letter
case is ignored)

Spam = Y if and only if the message is spam

To learn what happens in the real world, one could go into their mailbox,
select 100 random messages and count how many times each type of message
appears. We might obtain the following table
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Number of Estimated
Free Caps Spam messages probability
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.0

The simplest way to estimate the joint distribution from such a sample is
just to divide the number of messages of each type by the total number of
messages, as shown in the table.
Given a fully specified joint distribution table, we can then lookup the

probability of any configuration. For example

P(Free = Y,Caps = Y, Spam = Y ) = 0.2

P(Free = Y,Caps = N, Spam = N) = 0.0

etc.

Note that this example shows one drawback of the full joint distribution
model: the sparse data problem. That is, for any joint distribution there is
an exponential number of possible configurations, but any small sample will
necessarily only contain a subset of possible patterns. Should one conclude
then that every missing pattern has probability zero?
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11.4 Simulation

Draw a complete configuration x according to the joint distribution. Given
the lookup table representation, one could just compute the cumulative value
of the θx(`) ’s, draw a random number p between 0 and 1, and select the
configuration x(`) whose cumulative probability interval contains p.

11.5 Evaluation

Evaluate the probability of a complete configuration x = (x1, ..., xn). In the
table lookup representation, one can just look up the answer:

P(X1=x1, ..., Xn=xn) = θ(x1,x2,...,xn)

11.6 Marginalization

Compute the probability of an incomplete configuration.

P(X1=x1, ..., Xk=xk)

=
∑

yk+1

· · ·
∑

yn

P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

=
∑

yk+1

· · ·
∑

yn

θ(x1,...,xk,yk+1,...,yn)

Need to be able to evaluate complete configurations and then sum over mn−k

possible completions.

11.7 Conditioning

Compute the conditional probability of a possible completion (yk+1, ..., yn)
given an incomplete configuration (x1, ..., xk).

P(Xk+1=yk+1, ..., Xn=yn|X1=x1, ..., Xk=xk)

=
P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

P(X1=x1, ..., Xk=xk)

=
θ(x1,...,xk,yk+1,...,yn)

∑

zk+1
· · ·
∑

zn
θ(x1,...,xk,zk+1,...,zn)

Need to evaluate a complete configuration and then divide by a marginal
sum.
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11.8 Completion

Find the most probable completion (y∗k+1, ..., y
∗

n) given an incomplete config-
uration (x1, ..., xk).

y∗k+1, ..., y
∗

n = arg max
yk+1,...,yn

P(Xk+1=yk+1, ..., Xn=yn|X1=x1, ..., Xk=xk)

= arg max
yk+1,...,yn

P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

P(X1=x1, ..., Xk=xk)

= arg max
yk+1,...,yn

P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

= arg max
yk+1,...,yn

θ(x1,...,xk,yk+1,...,yn)

Have to search through all mn−k possible completions and evaluate each
complete configuration to find the maximum.

11.9 Structured probability models

Structured probability models are ways of specifying specialized joint distri-
butions which permit

• more compact representations

• more efficient computation

That is, we will impose structure on joint distribution P(X1=x1, ..., Xn=xn).
One key tool for imposing structure is variable independence.

Definition Random variablesX1 andX2 are independent if P(X1=x1, X2=
x2) = P(X1 = x1)P(X2 = x2) for all x1, x2. Equivalently, if P(X1 = x1|X2 =
x2) = P(X1=x1) for all x1, x2.

Definition Random variables X1 and X2 are conditionally independent

given X3 if P(X1 = x1, X2 = x2|X3 = x3) = P(X1 = x1|X3 = x3)P(X2 =
x2|X3=x3) for all x1, x2, x3. Equivalently, if P(X1=x1|X2=x2, X3=x3) =
P(X1=x1|X3=x3) for all x1, x2, x3.
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11.10 Example: Fully independent model

Assume P(X1 = x1, ..., Xn = xn) = P(X1 = x1) · · ·P(Xn = xn). This yields a
very restricted form of joint distribution where we can represent each com-
ponent distribution separately. For a random variable Xj, one can represent
P(Xj=x) by a lookup table with m parameters (minus one constraint). Let
θj,x denote the probability Xj takes on value x. That is, θj,x = P(Xj = x).
These numbers are positive and satisfy the constraint

∑m

x=1 θj,x = 1 for each
j. Thus, the joint distribution over X1, ..., Xn can be represented by n ×m

positive numbers minus n constraints. The previous tasks (simulation, eval-
uation, and inference) now become almost trivial. Admittedly this is a silly
model as far as real applications go, but it clearly demonstrates the benefits
of structure (in its most extreme form).

11.10.1 Spam detection example again

The fully independent model is basically useless in our spam detection ex-
ample because it assumes that the three random variables, Caps, Free, and
Spam are completely independent. That is, knowing whether a subject header
is capitalized or contains the word ‘free’ is assumed to be independent of
whether the message is spam. Nevetheless, let us consider what happens in
this simple case. (We will consider a more useful model later.) From the
previous sample data, one could naively estimate each probability indepen-
dently:

P(Free = Y ) 20+1+5+0
100

= 0.26

P(Free = N) 20+3+2+49
100

= 0.74

P(Caps = Y ) 20+1+20+3
100

= 0.44

P(Caps = N) 5+0+2+49
100

= 0.56

P(Spam = Y ) 20+5+20+2
100

= 0.47

P(Spam = N) 1+0+3+49
100

= 0.53

For example, in this fully independent probability model, the probability
that any message is spam is 0.47, regardless of what the values of Caps and
Free are. The probability for a specific configuration, like 〈Caps = Y,Free =
N, Spam = N〉 for example, would now be given by

P(Free = Y,Caps = N, Spam = N) =

= P(Free = Y ) P(Caps = N) P(Spam = N)

= 0.26× 0.56× 0.53

= 0.077168
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11.10.2 Simulation

For j = 1, ..., n, independently draw xj according to P(Xj = xj) (using the
lookup table representation). Conjoin (x1, ..., xn) to form a complete config-
uration.

11.10.3 Evaluation

Given a complete configuration x = (x1, ..., xn), look up the probability of
each component xj and then multiply the answers together.

P(X1=x1, ..., Xn=xn) = θ1,x1 × · · · × θn,xn

11.10.4 Marginalization

P(X1=x1, ..., Xk=xk)

=
∑

yk+1

· · ·
∑

yn

P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

=
∑

yk+1

· · ·
∑

yn

P(X1=x1) · · ·P(Xk=xk)P(Xk+1=yk+1) · · ·P(Xn=yn)

= P(X1=x1) · · ·P(Xk=xk)





∑

yk+1

P(Xk+1=yk+1)





∑

yk+2

· · ·

[

∑

yn

P(Xn=yn)

]









= P(X1=x1) · · ·P(Xk=xk)





∑

yk+1

P(Xk+1=yk+1)



 · · ·

[

∑

yn

P(Xn=yn)

]

= P(X1=x1) · · ·P(Xk=xk)

= θ1,x1 × · · · × θk,xk

Only have to lookup and multiply k numbers.
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11.10.5 Conditioning

P(Xk+1=yk+1, ..., Xn=yn|X1=x1, ..., Xk=xk)

=
P(X1=x1, ..., Xk=xk, Xk+1=yk+1, ..., Xn=yn)

P(X1=x1, . . . , Xk=xk)

=
P(X1=x1) · · ·P(Xk=xk)P(Xk+1=yk+1) · · ·P(Xn=yn)

P(X1=x1) · · ·P(Xk=xk)

= P(Xk+1=yk+1) · · ·P(Xn=yn)

= θk+1,yk+1
× · · · × θn,yn

Only have to lookup and multiply n− k numbers.

11.10.6 Completion

y∗k+1, ..., y
∗

n = arg max
yk+1,...,yn

P(Xk+1=yk+1, ..., Xn=yn|X1=x1, ..., Xk=xk)

= arg max
yk+1,...,yn

P(Xk+1=yk+1) · · ·P(Xn=yn)

= arg

[

max
yk+1

P(Xk+1=yk+1)

[

max
yk+2

· · ·

[

max
yn

P(Xn=yn)

]]]

(Since max distributes over product just like sum. That is,

maxi axi = amaxi xi (for a, xi ≥ 0) just like
∑

i axi = a
∑

i xi.)

= arg

[

max
yk+1

P(Xk+1=yk+1)

]

· · ·

[

max
yn

P(Xn=yn)

]

= arg

[

max
yk+1

θk+1,yk+1

]

· · ·

[

max
yn

θn,yn

]

Only have to search through m possible completions for each of the n − k

variables separately.

11.10.7 Note: Distributive/associative laws

It is important to note a general rule which we used to separate summations
in the above calculations: If a and b are two variables, and f(a) and g(b)
are two functions such that f(a) does not depend on b and g(b) does not
depend on a, then sum’s and max’s distribute over products in the following
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identical way.

∑

a

∑

b

f(a)g(b) =
∑

a

f(a)

(

∑

b

g(b)

)

since f(a) constant when summing over b

=

(

∑

b

g(b)

) (

∑

a

f(a)

)

since
∑

b

g(b) constant when summing over a

=

(

∑

a

f(a)

) (

∑

b

g(b)

)

If we assume that f(a) ≥ 0 and g(b) ≥ 0, then the same rules apply for max:

max
a
max

b
f(a)g(b) = = max

a
f(a)

(

max
b

g(b)
)

since f(a) constant when maximizing over b

=
(

max
b

g(b)
) (

max
a

f(a)
)

since max
b

g(b) constant when maximizing over a

=
(

max
a

f(a)
) (

max
b

g(b)
)

Readings

Russell and Norvig 2nd Ed.: Sect 13.2-13.6, Chap 14
Dean, Allen, Aloimonos: Sect 8.2


