7 Planning Algorithms

Planning: Exploiting representation structure in problem solving search

7.1 Some approaches

Heuristics (examine representation)

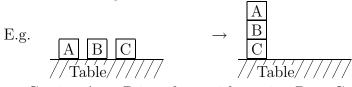
E.g., $\hat{h}(s) =$ Hamming distance from s to goal $\hat{g}(\gamma) =$ Hamming distance from subgoal γ to initial state s_0

Approximate divide and conquer

If actions only affect small parts of state, we can solve subgoals independently and merge sub-plans.

Solve subgoals 'AonB' and 'ConD' independently, merge resulting actions.

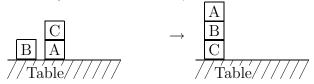
Problem: Sub-goals can interfere:



Getting A on B interferes with getting B on C.

Problem: We might even have to undo satisfied sub-goals:

Problem: We may even have to avoid satisfying subgoals ("Sussman anomaly" due to Allen Brown):



7.2 Partial order planning

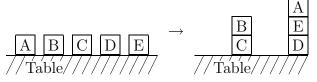
For example:

We can represent the plan as:

 $\operatorname{Start} \underbrace{\left\langle \begin{array}{c} \operatorname{put} A \text{ on } B \\ \operatorname{put} C \text{ on } D \end{array} \right\rangle}_{\operatorname{Put} C \text{ on } D} \operatorname{End}$

Any total ordering of the partial plan is a valid plan.

Another example:



A backtracking algorithm may waste time back-tracking the action 'putBonC'.

The partial ordering plan can be represented as

Start
$$\xrightarrow{put E \text{ on } D \rightarrow put A \text{ on } E}_{put B \text{ on } C} End$$

Representing a partial order plan

- set of actions: $\{a_1, \ldots, a_k\}$
- set of ordering constraints between actions: $\{a_j \prec a_i\}$

- set of reasons for actions (links, causal links): $\{a_i \xrightarrow{l} a_j\}$ a_i establishes l for a_j :
 - -l is effect of a_i
 - -l is precondition for a_j

Partial order planning

- start with artificial start and goal actions a_0 and a_∞ with effect of a_0 being s_0 , and precondition of a_∞ being γ
- build a plan by adding actions where effects are desired preconditions: $a_i \xrightarrow{l} a_{\infty}$, where $l \in \gamma$; but add preconditions of a_i as new sub-goals.
- If action a_i threatens a link $a_1 \xrightarrow{l} a_2$, i.e., $\neg l$ is effect of a_i , then a_i must be ordered before a_1 or after a_2 .
- "Least commitment planning" Do not commit to ordering until forced (avoids backtracking on bad decisions)

7.3 POP algorithm

Algorithm 1 POP_main

 Create start and end actions a₀ and a_∞: effect(a₀) = s₀ and precond(a_∞) = γ
 Initialize plan (actions, ordering constraints, links): plan ← ({a₀, a_∞}, {a₀ ≺ a_∞}, {})
 sub-goal list ← {γ}
 return POP(subgoal list, plan)

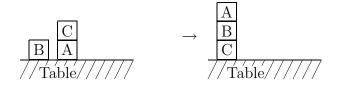
Algorithm 2 POP (subgoal list, plan)

1:	if subgoal list is empty then
2:	return plan
3:	end if
4:	Pick sub-goal l_{a_1} from sub-goal list
5:	for all actions a_2 that establish l_{a_1} do
6:	$\operatorname{plan}' \leftarrow \operatorname{plan} + (\{a_2\}, \{a_0 \prec a_2, a_2 \prec a_1, a_2 \prec a_\infty\}, \{a_2 \xrightarrow{l_{a_1}} a_1\})$
7:	subgoal list' \leftarrow subgoal list \cup preconditions of a_2
8:	for all choices of additional order constraints in step 9 do
9:	for each action a threatening link $b \xrightarrow{l} c$ choose $a \prec b$ or $c \prec a$
10:	$plan'' \leftarrow plan' + additional order constraints$
11:	result \leftarrow POP(subgoal list', plan")
12:	if POP successful then
13:	$\mathbf{return} \ \mathrm{result}$
14:	end if
15:	end for
16:	end for
17:	return fail

- step 4 avoids backtracking (to some extent)
- with each sub-goal, have to keep track of the action requiring the subgoal as precondition
- in step 5 we can choose an action from plan, or introduce a new action

• if there are no threats in steps 8–9, then loop 8–13 is iterated only once with an empty set of additional constraints.

7.4 Example: Sussman anomaly



Actions:

start:	$\overrightarrow{\operatorname{AonT} \neg \operatorname{AonB} \neg \operatorname{AonC} \operatorname{BonT} \neg \operatorname{BonA} \neg \operatorname{BonC} \neg \operatorname{ConT} \operatorname{ConA} \neg \operatorname{ConB}}$
end:	<u>AonB BonC</u>
putConT:	$\frac{\neg AonC \neg BonC}{ConT \neg ConA \neg ConB}$

putBonC:	DOILC DOILY DOILY
putAonB:	$\frac{\neg \operatorname{AonB} \neg \operatorname{ConB} \neg \operatorname{BonA} \neg \operatorname{ConA}}{\operatorname{AonB} \neg \operatorname{AonC} \neg \operatorname{AonT}}$

Algorithm:

 start

Sub-goal list: AonB (end), BonC (end)

end

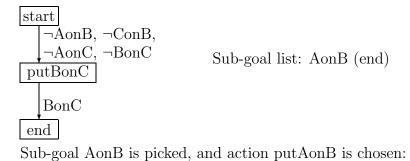
Pick sub-goal: BonC (end)

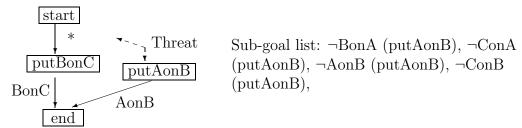
start putBonC BonC

end

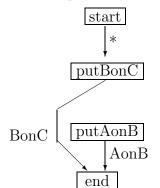
Sub-goal list: AonB (end), ¬AonB (putBonC), ¬ConB (putBonC), ¬AonC (putBonC), ¬BonC (putBonC)

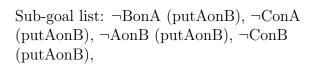
For all sub-goals that are preconditions of putBonC, we can choose action start, and obtain:



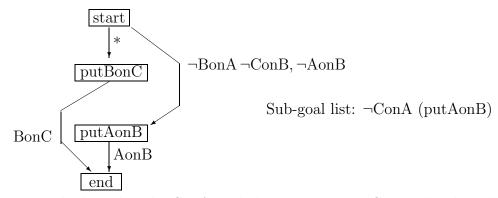


There is a threat: action putAonB threatens the link start $\xrightarrow{\neg AonB}$ putBonC. We have to put additional ordering constraints:

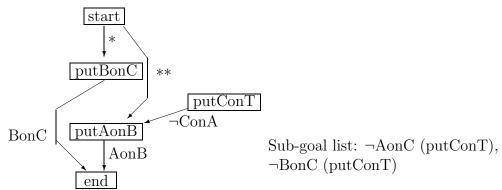




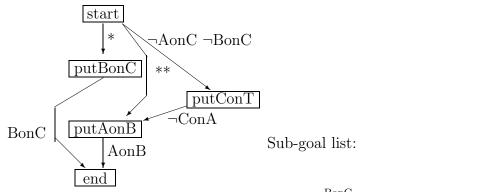
All sub-goals except ¬ConA are post-conditions of the start action:



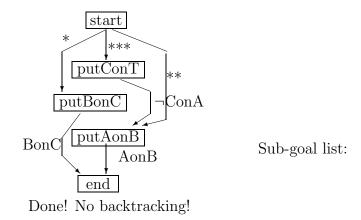
We pick the subgoal $\neg {\rm ConA}$ and choose action putConT that has this post-condition:



The remaining sub-goals are post-conditions of the action start:



The action putBonC threatens the link start $\xrightarrow{\neg BonC}$ putConT, so we have to reorder:



Plain goal regression (backward search)

Let us see how the same problem could be solved with backward search:

end	AonB, <u>BonC</u>
$\begin{array}{c} \mathrm{putBonC} \\ \downarrow \\ \mathrm{end} \end{array}$	AonB, ¬AonB ¬ConB ¬AonC ¬BonC
	Stuck! (AonB and \neg AonB)
end	$\underline{AonB}, BonC$
$\begin{array}{c} \mathrm{putAonB} \\ \downarrow \\ \mathrm{end} \end{array}$	BonC, \neg BonA \neg ConA \neg ConB $\underline{\neg$ AonB}
start \downarrow putAonB \downarrow end	BonC ¬ConA
	Stuck!

$putAonB \downarrow end$	<u>BonC</u> , \neg BonA \neg ConA \neg ConB \neg AonB
$putBonC \\ \downarrow \\ putAonB \\ \downarrow \\ end$	¬ConA ¬ConB ¬AonB
	Pick start, stuck, backtrack
$putConT \\ \downarrow \\ putBonC \\ \downarrow \\ putAonB \\ \downarrow \\ end$	¬AonB
start \downarrow putConT \downarrow putBonC \downarrow putAonB \downarrow end	

Advantage of least commitment vs. plain backward search:

Smaller branching factor.

Backward search: branching factor = number of actions that can achieve some sub-goal

Least commitment: branching factor = number of actions that satisfy next sub-goal, does not backtrack through subgoal

7.5 Modern planning algorithms

- POP (1991)
- Graph Plan (1995)
- SAT plan (1996)
- Forward search with heuristics (2000)

Readings

Weld, AI Magazine 15(4) ftp://ftp.cs.washington.edu/pub/ai/pi.ps

Also see: *Recent advances in AI planning* by Weld for a survey of more recent developments.

ftp://ftp.cs.washington.edu/pub/ai/pi2.ps
http://www.cs.washington.edu/homes/weld/pubs.html