
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

7 Planning Algorithms

Planning: Exploiting representation structure in problem solving search

7.1 Some approaches

Heuristics (examine representation)

E.g., ĥ(s) = Hamming distance from s to goal
ĝ(γ) = Hamming distance from subgoal γ to initial state s0

Approximate divide and conquer

If actions only affect small parts of state, we can solve subgoals independently
and merge sub-plans.

E.g.

Table

A B C D
→

Table

A
B

C
D

Solve subgoals ‘AonB’ and ‘ConD’ independently, merge resulting actions.

Problem: Sub-goals can interfere:

E.g.

Table

A B C
→

Table

A
B
C

Getting A on B interferes with getting B on C.

Problem: We might even have to undo satisfied sub-goals:

E.g.

Table

A
B C

→

Table

A
B
C

CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

Problem: We may even have to avoid satisfying subgoals
(“Sussman anomaly” due to Allen Brown):

Table

B A
C →

Table

A
B
C

7.2 Partial order planning

For example:

Table

A B C D
→

Table

A
B

C
D

We can represent the plan as:

Start
µ

R

put A on B

put C on D
µ
R End

Any total ordering of the partial plan is a valid plan.

Another example:

Table

A B C D E
→

Table

B
C

A
E
D

A backtracking algorithm may waste time back-tracking the action ‘putBonC’.

The partial ordering plan can be represented as

Start
µ

z

put E on D put A on E-

put B on C
:R End

Representing a partial order plan

• set of actions: {a1, . . . , ak}

• set of ordering constraints between actions: {aj ≺ ai}

CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

• set of reasons for actions (links, causal links): {ai
l
→ aj}

ai establishes l for aj:

– l is effect of ai

– l is precondition for aj

Partial order planning

• start with artificial start and goal actions a0 and a∞ with effect of a0

being s0, and precondition of a∞ being γ

• build a plan by adding actions where effects are desired preconditions:

ai
l
→ a∞, where l ∈ γ; but add preconditions of ai as new sub-goals.

• If action ai threatens a link a1

l
→ a2, i.e., ¬l is effect of ai, then ai must

be ordered before a1 or after a2.

• “Least commitment planning”
Do not commit to ordering until forced (avoids backtracking on bad
decisions)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

7.3 POP algorithm

Algorithm 1 POP main

1: Create start and end actions a0 and a∞:
effect(a0) = s0 and precond(a∞) = γ

2: Initialize plan (actions, ordering constraints, links):
plan← ({a0, a∞}, {a0 ≺ a∞}, {})

3: sub-goal list ← {γ}
4: return POP(subgoal list, plan)

Algorithm 2 POP (subgoal list, plan)

1: if subgoal list is empty then
2: return plan
3: end if
4: Pick sub-goal la1

from sub-goal list
5: for all actions a2 that establish la1

do

6: plan’ ← plan + ({a2}, {a0 ≺ a2, a2 ≺ a1, a2 ≺ a∞}, {a2

la1→ a1})
7: subgoal list’ ← subgoal list ∪ preconditions of a2

8: for all choices of additional order constraints in step 9 do

9: for each action a threatening link b
l
→ c choose a ≺ b or c ≺ a

10: plan” ← plan’ + additional order constraints
11: result ← POP(subgoal list’, plan”)
12: if POP successful then
13: return result
14: end if
15: end for
16: end for
17: return fail

• step 4 avoids backtracking (to some extent)

• with each sub-goal, have to keep track of the action requiring the sub-
goal as precondition

• in step 5 we can choose an action from plan, or introduce a new action

CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

• if there are no threats in steps 8–9, then loop 8–13 is iterated only once
with an empty set of additional constraints.

7.4 Example: Sussman anomaly

Table

B A
C →

Table

A
B
C

Actions:

start:
AonT¬AonB¬AonC BonT¬BonA¬BonC¬ConT ConA¬ConB

end: AonB BonC

putConT: ¬AonC¬BonC

ConT¬ConA¬ConB

putBonC: ¬AonB¬ConB¬AonC¬BonC

BonC¬BonA¬BonT

putAonB: ¬AonB¬ConB¬BonA¬ConA

AonB¬AonC¬AonT

Algorithm:

start

end

Sub-goal list: AonB (end), BonC (end)

Pick sub-goal: BonC (end)

start

putBonC

?BonC
end

Sub-goal list: AonB (end), ¬AonB (putBonC), ¬ConB
(putBonC), ¬AonC (putBonC), ¬BonC (putBonC)

For all sub-goals that are preconditions of putBonC, we can choose action
start, and obtain:

CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

start

?

¬AonB, ¬ConB,
¬AonC, ¬BonC

putBonC

?
BonC

end

Sub-goal list: AonB (end)

Sub-goal AonB is picked, and action putAonB is chosen:

?

?)

i
?

start

putBonC

end

putAonB

*

BonC
AonB

Threat Sub-goal list: ¬BonA (putAonB), ¬ConA
(putAonB), ¬AonB (putAonB), ¬ConB
(putAonB),

There is a threat: action putAonB threatens the link start
¬AonB
−→ putBonC.

We have to put additional ordering constraints:

?

?R

start

end

*

putAonB

putBonC

BonC
AonB

Sub-goal list: ¬BonA (putAonB), ¬ConA
(putAonB), ¬AonB (putAonB), ¬ConB
(putAonB),

All sub-goals except ¬ConA are post-conditions of the start action:

CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

?

?R

start

end

*

putAonB

putBonC

BonC
AonB

+

¬BonA¬ConB,¬AonB

Sub-goal list: ¬ConA (putAonB)

We pick the subgoal ¬ConA and choose action putConT that has this
post-condition:

?

?R

start

end

*

putAonB

putBonC

BonC
AonB

ª)

**

putConT

¬ConA

Sub-goal list: ¬AonC (putConT),
¬BonC (putConT)

The remaining sub-goals are post-conditions of the action start:

?

?R

start

end

*

~

¬AonC ¬BonC

putConT

putAonB

putBonC

BonC
AonB

ª)

**

¬ConA

Sub-goal list:

The action putBonC threatens the link start
¬BonC
−→ putConT, so we have

to reorder:

CMPUT 366 – Intelligent Systems: Dale Schuurmans 8

?

*
?***

?R

putBonC
+
¬ConA
9

start

end

**
putConT

putAonB

AonB
BonC Sub-goal list:

Done! No backtracking!

Plain goal regression (backward search)

Let us see how the same problem could be solved with backward search:

end AonB, BonC

putBonC
↓
end

AonB, ¬AonB¬ConB¬AonC¬BonC

Stuck! (AonB and ¬AonB)

end AonB, BonC

putAonB
↓
end

BonC, ¬BonA¬ConA¬ConB¬AonB

start
↓

putAonB
↓
end

BonC¬ConA

Stuck!

CMPUT 366 – Intelligent Systems: Dale Schuurmans 9

putAonB
↓
end

BonC, ¬BonA¬ConA¬ConB¬AonB

putBonC
↓

putAonB
↓
end

¬ConA¬ConB¬AonB

Pick start, stuck, backtrack

putConT
↓

putBonC
↓

putAonB
↓
end

¬AonB

start
↓

putConT
↓

putBonC
↓

putAonB
↓
end

CMPUT 366 – Intelligent Systems: Dale Schuurmans 10

Advantage of least commitment vs. plain backward search:

Smaller branching factor.
Backward search: branching factor = number of actions that can achieve

some sub-goal
Least commitment: branching factor = number of actions that satisfy

next sub-goal, does not backtrack through subgoal

7.5 Modern planning algorithms

• POP (1991)

• Graph Plan (1995)

• SAT plan (1996)

• Forward search with heuristics (2000)

Readings

Weld, AI Magazine 15(4)
ftp://ftp.cs.washington.edu/pub/ai/pi.ps

Also see: Recent advances in AI planning by Weld for a survey of more recent
developments.
ftp://ftp.cs.washington.edu/pub/ai/pi2.ps

http://www.cs.washington.edu/homes/weld/pubs.html

