
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

6 Automated Planning

A complex form of problem solving. Same as problem solving search, except

• we now assume the states and actions have exploitable structure

Specifically, we assume each action only affects a small part of the state.

6.1 Example: Sokoban (game)

Move boxes around in a grid world by pushing them from behind. The goal
is to get all of the boxes into containers, starting from the given initial state.

The actions are: move up, down, left, and right. However, there are
constraints on how the boxes can be moved:

• the boxes must be pushed directly from behind

• can only push one box at a time

Note that a state is a complex description. However, the actions affect only
a small portion of the state description at any one time.

How hard is Sokoban?

Really hard! In fact, it is PSPACE-complete (when problem size is measured
with respect to the size of the state description, not the size of the state
space).

It is currently believed that PSPACE-complete is much harder than NP-
complete, mainly because it encodes strictly more general problems. For
example, alternating quantified Boolean satisfiability is PSPACE-complete:

• Does ∀v1∃v2∀v3 · · · ∃vn CNF-formula(v1, ..., vn) evaluate to true?

This seems clearly harder than regular Boolean satisfiability:

• Does ∃v1∃v2∃v3 · · · ∃vn CNF-formula(v1, ..., vn) evaluate to true?



CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

6.2 Another example: Blocks world planning

Table

Start

B
A

C

Goal

A
B
C

• Actions: put box X on Y

– can only move one box at a time

– can only move top box from a stack

– can always put block on table

• Initial state: full configuration

• Goal: not necessarily full configuration, can be
just partial description. (E.g. get A on B and C
on D.)

Finding an arbitray solution is easy: just put every block on the table and
then stack them up again. However, finding the shortest solution is NP-hard.

6.3 General propositional planning

Planning is like a simple form of automated programming: find a sequence
of instructions that transforms a given initial machine state to a goal state.
However, it is the simplest possible form of automated programming: no
loops, conditionals, recursion, subroutine calls, etc. But even still, general
planning is hard: it is PSPACE-complete!

6.3.1 State

State: represented by an assignment of truth values to primitive propositions.

E.g. Blocks world

We can choose primitive propositions to be: AonT (A on table), AonB,
AonC, BonT, BonA, etc. If we use 1 to denote true, and 0 to denote false,
then the above initial state can be represented as vector of 0s and 1s:

A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

0 1 0 1 0 0 1 0 0



CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

6.3.2 Goal

Goal: a compound proposition γ. For example, AonB ∧ BonC

If γ is a conjunction of primitive propositions or negations of primitive propo-
sitions, it can be represented as a vector of 0s, 1s, and ’*’s (“don’t care”s).

E.g. The goal AonB ∧ BonC can be represented as

A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗

6.3.3 Action

Action a: defined by a precondition πa and a postcondition αa.
If we assume that πa and αa are conjunctions of primitive propositions or
their negations, then preconditions and postconditions can be represented as
vectors (patterns). So, an action can be represented as a pair of vectors.

E.g. The action “put A on the table” can be represented as

A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

pre-condition ∗ ∗ ∗ ∗ 0 ∗ ∗ 0 ∗

post-condition 1 0 0 ∗ ∗ ∗ ∗ ∗ ∗

To apply an action, the preconditions have to be satisfied. The result of
applying an action is determined by the postcondition and by the “frame
assumption” (propositions that are not specified in the postcondition do not
change their truth value).

6.4 Planning search

Any problem solving search algorithm from before can be applied to planning
problems (e.g., DFS, A∗, etc). Doing so requires the ability to determine
which actions are applicable at a given state, and the ability to calculate the
results of applying a particular action at a given state. Note however, that
the standard problem solving search algorithms do not necessarily exploit
any particular structure in the states, nor the fact that actions affect limited
portions of the state description (but we will address this later). First, let us
consider applying standard search techniques.



CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

6.4.1 Forward search

In forward search we start with the initial state and apply actions in a forward

direction. That is, we perform state progression: starting with a complete
state description that matches the action’s precondition, determine the re-
sulting state that satisfies the strongest postcondition. Since the previous
state is complete, the successor state is also guaranteed to be complete (and
unique).
For example, if we use the initial state given previously, and apply the

action “put A on table” (also illustrated above), we obtain



















y

A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

0 1 0 1 0 0 1 0 0 pre-state
∗ ∗ ∗ ∗ 0 ∗ ∗ 0 ∗ pre-condition
1 0 0 ∗ ∗ ∗ ∗ ∗ ∗ post-condition
1 0 0 1 0 0 1 0 0 post-state



















y

6.4.2 Backward search

However, one need not only search forward in these problems. One can
also search backwards! To conduct a backward search, one starts with the
final goal and applies actions in the reverse direction. The search concludes
successfully if a sub-goal is reached that matches the initial state.
The principle behind implementing a backward search is to determine the

sub-goal that, if satisfied, allows one to reach the target goal in one step by
applying the chosen action. That is, we perform goal regression: starting
with a target goal that matches the action’s postcondition, determine the
previous sub-goal that satisfies the weakest precondition. That is, determine
the most general sub-goal such that, if the action is applied in the forward
direction from any state that satisfies the sub-goal, the resulting post-state
is guaranteed to satisfy the target goal.
For example, if we apply the action “put A on B” in the reverse direction

to the goal γ = AonB ∧ BonC we obtain

x



















A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

∗ ∗ ∗ ∗ 0 1 ∗ 0 0 sub-goal
∗ ∗ ∗ ∗ 0 ∗ ∗ 0 0 pre-condition
0 1 0 ∗ ∗ ∗ ∗ ∗ ∗ post-condition
∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ target-goal

x





















CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

That is, we obtain the new sub-goal

A

T

A

B

A

C

B

T

B

A

B

C

C

T

C

A

C

B

∗ ∗ ∗ ∗ 0 1 ∗ 0 0

So from any state that satisfies this sub-goal, if we apply the chosen action
“put A on B”, the resulting state is guaranteed to satisfy the original target
goal γ = AonB ∧ BonC.
In order to determine which approach, forward or backward search, is

more promising, it is useful to analyze the branching factor. If the closest
solution is at distance d from the initial state, and the branching factor is b,
a typical search algorithm will spend O(bd) time to find the solution.

E.g. For blocks world, if there are k stacks in a configuration, then there
are k2 possible forward actions (we can remove the top block from any of
the stacks and put it on one of the remaining k − 1 stacks or on the table).
For backward search, if we assume that a goal contains k positive atomic
propositions and no negative propositions (vector of 1s and ‘*’s), then there
are k actions that can be applied backward. For example, for goal AonB ∧
ConD we can apply either ‘put A on B’ or ‘put C on D’ in backward direction.
Hence, the branching factor is only k. This is not a strict analysis, but it
does give us some intuition that the branching factor for backward search
might be smaller than the branching factor for forward search, so backward
search may be more efficient.
On the other hand, there are more goal vectors than state vectors (3n

versus 2n) which suggests that there might be a trade-off—since intuitively,
a larger search space could result in a slower search.

6.4.3 Bidirectional search

Forward and backward search can be done in parallel, in a method in a
method called bidirectional search. In bidirectional search, two frontiers are
expanded—one from the initial state, and the other from the target goal—
until an intersection of the two frontiers is found. The final solution is con-
structed as the path s0 →→ g, where s0 is the initial state, and g is the
target goal.
If we assume that the branching factor for forward search and for back-

ward search is b, and the shortest distance to a solution is d, then both
forward and backward search need O(bd) time to find the solution. However,



CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

the following figure illustrates that time needed for bidirectional search is
O(bd/2 + bd/2) = O(bd/2) time.

z

¼

s

s0
g

d/2 d/2

explored search space

frontiers

Hence, when the forward and backward branching factors are equal, bidi-
rectional search may be a good approach.
A problem: In bidirectional search, at least one search frontier has to be

in memory, so it consumes a lot of space.

Readings

Russell and Norvig 2nd Ed.: Chapter 11
Dean, Allen, Aloimonos: Chapter 7



CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

Appendix: Number of states in blocks world

Assume there are N blocks. Let us first ignore block labels.
In order to count number of configurations having k stacks (1 ≤ k ≤ N),

we have to choose k − 1 out of N − 1 places to “cut” a long stack of blocks
into k stacks (as in the following picture):

We see that we can make
(

10

3

)

choices to split 11 blocks into 4 stacks
(N = 11, k = 4).
Stack permutations are not important, so the number of distinct unla-

beled configurations of k stacks is 1

k!

(

N−1

k−1

)

.
Now, we can add labels to blocks: there are N ! label permutations; so

the size of the state space for the blocks world is:

N !

[(

N − 1

0

)

+
1

2

(

N − 1

1

)

+
1

3!

(

N − 1

2

)

+ . . .+
1

N !

(

N − 1

N − 1

)]

One can also note that the upper bound on the shortest solution is 2N−2:
We can always flatten the configuration to stacks of height 1 (at most N − 1
moves), and build any configuration we want in not more than additional
N−1 moves. Hence, the size of the search tree is not larger than (N 2)2N−2 =
N4N−4.


