
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

8 General first order representation

8.1 First order language

Propositional core

• constants A, B, C, D

• predicates on(·, ·)

– associated arity, e.g., arity of on is 2

• atomic ground sentence is equivalent to atomic proposition; it is
created by applying predicate to constants; e.g., on(A,B)

• true and false symbols >, ⊥

• compound ground sentence built using operations: ∧, ∨, ¬,→,↔;
e.g., on(A,B) ∧ ¬on(B,C)

This is equivalent to propositional logic. For example, instead of writing
on(A,B), we used the notation AonB.

Extension: propositional schema

Instead of repeating the same rules for AonB, BonC, etc., we can use variables
and the predicate on(x, y).

• variables x, y, z

• atomic formula apply predicate to constants and variables;
e.g., on(A, x), on(A,B), on(x, y)

• compound formula use operators of propositional calculus;
e.g., on(A,X) ∧ ¬on(x,B)

• special equality predicate =
(Note that instead of writing = (x,B), write x = B)

• quantifiers ∀ and ∃. If ϕ(. . . x . . .) is a formula, then ∀x ϕ(. . . x . . .)
and ∃x ϕ(. . . x . . .) are formulas.

In such a formula, x is called a bound variable, and variables that are
not bound are free.



CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

• open formula: has free variables.

• closed formula: no free variables (all variables bound). A closed
formula is also called a sentence.

Note: Sentences have truth values (open formulas do not).

This defines the basic first order language. Note that the first order
language strictly extends the representational capacity of propositional logic.

Further extension: functions

• function symbols f(·, ·)

• term composition of functions, constants, and variables; e.g.

f(g(x), h(A,B))

• ground term is a term with no variables. Ground terms can represent
complex objects like strings, trees, expressions.

• open term contains variables (a term does not contain quantifiers)

8.2 Formal inference rules

Operate on sentences. For example:
∀ elimination:

∀xϕ(x)

ϕ(t)
for any ground term t

∃ elimination:

∃xϕ(x)

ϕ(A′)
for a new constant A′

∃ introduction:

ϕ(t)

∃xϕ(x)
t is a ground term



CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

8.3 A simple formal inference system: Resolution

Rules: resolution, substitution, simplification

Assume facts (sentences) represented in clausal form:

Clausal form

∀x1 . . . ∀xn ¬p1(t1) ∨ . . . ∨ ¬pk(tk) ∨ q1(tk+1) ∨ . . . ∨ q`(tk+`)

where the ti are terms that have all variables xj bound by a ∀

Conjunctive normal form Conjunction of clauses

∀x1 . . . ∀xn c1 ∧ c2 ∧ . . . ∧ cm

where each ci is in clausal form

Note: any sentence an be converted into conjunctive normal form:

• eliminate implications (→) and equivalences (↔)

• move negations inward (DeMorgan’s laws)

• standardize variables apart

• move ∀ and ∃ to left (in order)

• remove ∃ by “Skolemization”:
Go from outside in, and for each ∀x1∀x2 . . . ∀xn∃y, eliminate the ∃y
by substituting y with f ′(x1, x2, . . . , xn), where f

′ is a new function
symbol (or constant symbol if n = 0)

• distribute ∧ over ∨

• flatten, e.g., (p ∨ q) ∨ r becomes (p ∨ q ∨ r)

• drop ∀x and assume all variables are universal

(The general conversion procedure can be found in Russell and Norvig, P.296-
297.)



CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

Inference rules

Specialization (substitution):

ϕ

[ϕ]x/t

replace x by term t

Resolution:
α ∨ ¬p(v) β ∨ p(v)

α ∨ β

Simplification:

α ∨ ¬p ∨ ¬p

α ∨ ¬p

α ∨ p ∨ p

α ∨ p

α ∨ ¬p ∨ p

>

(same as for propositional logic)

Example

1: ¬on(x, y) ∨ ¬on(y, z) ∨ ¬on(z, x) given
2: on(A,A) ∨ on(B,B) given

3: ¬on(w,w) ∨ ¬on(w,w) ∨ ¬(w,w) apply substitution x/w, y/w, z/w on 1
4: ¬on(w,w) apply simplification on 3
5: ¬on(A,A) substitution w/A on 4
6: on(B,B) resolution on 2 and 5
7: ¬on(B,B) substitution w/B on 4
8: ⊥ resolution on 6 and 7

Contradiction!



CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

8.4 Unification

Unification is matching formulas by substitution (specialization)

Example

1: ∀xP (A, x) given
2: ∀y∀z ¬P (y, z) ∨ P (z, y) given

3: ∀zP (A, z) substitution x/z on 1
4: ∀z ¬P (A, z) ∨ P (z, A) substitution y/A on 2

Two sub-formulas are unified, and we can apply resolution:
5: ∀zP (z, A)

It is useful to have procedure UNIF(ϕ, χ) which returns either:

• a substitution (binding list) s = {x1/y1, . . . , xn/yn} such that [ϕ]s =
[χ]s, or

• fail, if none exists

s is a unifier of ϕ and χ

Example

UNIF(on(A, x), on(A,B)) = x/B

UNIF(on(A, x), on(y,B)) = x/B, y/A

UNIF(on(A, x), on(y, f(y))) = y/A, x/f(A)

UNIF(on(x, y), on(y, f(y))) = fail

UNIF(on(A, x), on(x,B)) = fail (but could standardize apart)

UNIF(on(x, f(x)), on(g(y), y)) = fail



CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

8.5 Most general unifier

There can be more than one substitution; e.g.

UNIF(on(A, x), on(y, z))

could return {y/A, x/z}, or {y/A, z/x}, or {y/A, x/B, z/B}, or {y/A, x/A, z/A},
etc.

We are interested in the most general unifier:

MGU(on(A, x), on(y, z)) = {y/A, x/z}

Most General Unifier:

• makes least commitments

• exists and is unique up to variable renaming
(if the terms are unifiable)

• can be turned into any other unifier by applying additional substitu-
tions

With MGU, we can merge substitution and resolution into one step:

Resolution with unification

α ∨ ¬p(v) β ∨ p(u)

[α ∨ β]MGU(p(v),p(u))

Unification Algorithm

• Robinson 1965: exponential algorithm

• Huet 1976: almost linear time algorithm O(nα(n))

• Paterson and Wegman 1976: improved Huet’s algorithm to linear time

A few more examples:

UNIF(f(x, g(y, y), x), f(z, z, g(w, f(t)))) = ?

Answer: x/g(f(t), f(t)) z/g(f(t), f(t)) y/f(t) w/f(t)

UNIF(f(x, h(A, t), g(x)), f(g(y), h(z, y), t)) = ?

Answer: fail



CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

Robinson’s algorithm

Algorithm 1 UNIFY(t1, t2)

1: current substitution ← empty substitution
2: if t1 or t2 is a variable then
3: if t1 = t2 then
4: return (true, empty substitution)
5: end if
6: let t1 be variable
7: if t1 occurs in t2 then
8: return false
9: end if

10: return (true, t1/t2)
11: else
12: if terms t1 and t2 cannot be matched then
13: return false
14: end if
15: t1 = f(a1, . . . , an), t1 = f(b1, . . . , bn)
16: for all pairs (ai, bi) (i = 1 . . . n) do
17: make current substitution on ai and bi and call UNIFY on them
18: if UNIFY successful then
19: apply returned substitution to current substitution
20: else
21: return false
22: end if
23: end for
24: end if
25: return (true, current substitution)

Readings

Russell and Norvig 2nd Ed.: Chapters 8 and 9
Genesereth and Nilsson: Chapter 4
Burris: 3.12
Knight, Kevin: Unification: a multidisciplinary survey, ACM computing sur-

veys, March 1989


