8 General first order representation

8.1 First order language

Propositional core

- constants A, B, C, D
- predicates on (\cdot, \cdot)
- associated arity, e.g., arity of on is 2
- atomic ground sentence is equivalent to atomic proposition; it is created by applying predicate to constants; e.g., on (A, B)
- true and false symbols \top, \perp
- compound ground sentence built using operations: $\wedge, \vee, \neg, \rightarrow$, \leftrightarrow; e.g., on $(A, B) \wedge \neg$ on (B, C)

This is equivalent to propositional logic. For example, instead of writing on (A, B), we used the notation AonB.

Extension: propositional schema

Instead of repeating the same rules for AonB, BonC, etc., we can use variables and the predicate on (x, y).

- variables x, y, z
- atomic formula apply predicate to constants and variables;
e.g., on (A, x), on (A, B), on (x, y)
- compound formula use operators of propositional calculus; e.g., on $(A, X) \wedge \neg o n(x, B)$
- special equality predicate $=$
(Note that instead of writing $=(x, B)$, write $x=B)$
- quantifiers \forall and \exists. If $\varphi(\ldots x \ldots)$ is a formula, then $\forall x \varphi(\ldots x \ldots)$ and $\exists x \varphi(\ldots x \ldots)$ are formulas.
In such a formula, x is called a bound variable, and variables that are not bound are free.
- open formula: has free variables.
- closed formula: no free variables (all variables bound). A closed formula is also called a sentence.

Note: Sentences have truth values (open formulas do not).
This defines the basic first order language. Note that the first order language strictly extends the representational capacity of propositional logic.

Further extension: functions

- function symbols $f(\cdot, \cdot)$
- term composition of functions, constants, and variables; e.g.

$$
f(g(x), h(A, B))
$$

- ground term is a term with no variables. Ground terms can represent complex objects like strings, trees, expressions.
- open term contains variables (a term does not contain quantifiers)

8.2 Formal inference rules

Operate on sentences. For example:
\forall elimination:

$$
\frac{\forall x \varphi(x)}{\varphi(t)} \text { for any ground term } t
$$

\exists elimination:

$$
\frac{\exists x \varphi(x)}{\varphi\left(A^{\prime}\right)} \text { for a new constant } A^{\prime}
$$

\exists introduction:

$$
\frac{\varphi(t)}{\exists x \varphi(x)} \quad t \text { is a ground term }
$$

8.3 A simple formal inference system: Resolution

Rules: resolution, substitution, simplification
Assume facts (sentences) represented in clausal form:

Clausal form

$$
\forall x_{1} \ldots \forall x_{n} \quad \neg p_{1}\left(t_{1}\right) \vee \ldots \vee \neg p_{k}\left(t_{k}\right) \vee q_{1}\left(t_{k+1}\right) \vee \ldots \vee q_{\ell}\left(t_{k+\ell}\right)
$$

where the t_{i} are terms that have all variables x_{j} bound by a \forall
Conjunctive normal form Conjunction of clauses

$$
\forall x_{1} \ldots \forall x_{n} \quad c_{1} \wedge c_{2} \wedge \ldots \wedge c_{m}
$$

where each c_{i} is in clausal form
Note: any sentence an be converted into conjunctive normal form:

- eliminate implications (\rightarrow) and equivalences (\leftrightarrow)
- move negations inward (DeMorgan's laws)
- standardize variables apart
- move \forall and \exists to left (in order)
- remove \exists by "Skolemization":

Go from outside in, and for each $\forall x_{1} \forall x_{2} \ldots \forall x_{n} \exists y$, eliminate the $\exists y$ by substituting y with $f^{\prime}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where f^{\prime} is a new function symbol (or constant symbol if $n=0$)

- distribute \wedge over \vee
- flatten, e.g., $(p \vee q) \vee r$ becomes $(p \vee q \vee r)$
- drop $\forall x$ and assume all variables are universal
(The general conversion procedure can be found in Russell and Norvig, P.296297.)

Inference rules

Specialization (substitution):

$$
\frac{\varphi}{[\varphi]_{x / t}}
$$

replace x by term t

Resolution:

$$
\frac{\alpha \vee \neg p(\underline{v}) \quad \beta \vee p(\underline{v})}{\alpha \vee \beta}
$$

Simplification:

$$
\frac{\alpha \vee \neg p \vee \neg p}{\alpha \vee \neg p} \quad \frac{\alpha \vee p \vee p}{\alpha \vee p} \quad \frac{\alpha \vee \neg p \vee p}{\top}
$$

(same as for propositional logic)

Example

1: $\neg o n(x, y) \vee \neg o n(y, z) \vee \neg o n(z, x) \quad$ given
2: on $(A, A) \vee$ on $(B, B) \quad$ given
3: $\neg o n(w, w) \vee \neg o n(w, w) \vee \neg(w, w) \quad$ apply substitution $x / w, y / w, z / w$ on 1
4: $\neg o n(w, w) \quad$ apply simplification on 3
5: \neg on $(A, A) \quad$ substitution w / A on 4
6: on (B, B)
7: $\neg o n(B, B)$
resolution on 2 and 5

8: \perp
Contradiction!
resolution on 6 and 7

8.4 Unification

Unification is matching formulas by substitution (specialization)

Example

1: $\forall x P(A, x) \quad$ given
2: $\forall y \forall z \neg P(y, z) \vee P(z, y) \quad$ given
3: $\forall z P(A, z) \quad$ substitution x / z on 1
4: $\forall z \neg P(A, z) \vee P(z, A) \quad$ substitution y / A on 2
Two sub-formulas are unified, and we can apply resolution:
5: $\forall z P(z, A)$
It is useful to have procedure $\operatorname{UNIF}(\varphi, \chi)$ which returns either:

- a substitution (binding list) $s=\left\{x_{1} / y_{1}, \ldots, x_{n} / y_{n}\right\}$ such that $[\varphi]_{s}=$ $[\chi]_{s}$, or
- fail, if none exists
s is a unifier of φ and χ

Example

$$
\begin{aligned}
\operatorname{UNIF}(\operatorname{on}(A, x), \text { on }(A, B)) & =x / B \\
\operatorname{UNIF}(\operatorname{on}(A, x), \text { on }(y, B)) & =x / B, y / A \\
\operatorname{UNIF}(\operatorname{on}(A, x), \text { on }(y, f(y))) & =y / A, x / f(A) \\
\operatorname{UNIF}(\operatorname{on}(x, y), \text { on }(y, f(y))) & =\text { fail } \\
\operatorname{UNIF}(\text { on }(A, x), \text { on }(x, B)) & =\text { fail (but could standardize apart) } \\
\operatorname{UNIF}(\operatorname{on}(x, f(x)), \text { on }(g(y), y)) & =\text { fail }
\end{aligned}
$$

8.5 Most general unifier

There can be more than one substitution; e.g.

$$
\operatorname{UNIF}(o n(A, x), o n(y, z))
$$

could return $\{y / A, x / z\}$, or $\{y / A, z / x\}$, or $\{y / A, x / B, z / B\}$, or $\{y / A, x / A, z / A\}$, etc.

We are interested in the most general unifier:

$$
\operatorname{MGU}(o n(A, x), o n(y, z))=\{y / A, x / z\}
$$

Most General Unifier:

- makes least commitments
- exists and is unique up to variable renaming (if the terms are unifiable)
- can be turned into any other unifier by applying additional substitutions

With MGU, we can merge substitution and resolution into one step:

Resolution with unification

$$
\frac{\alpha \vee \neg p(\underline{v}) \quad \beta \vee p(\underline{u})}{[\alpha \vee \beta]_{\operatorname{MGU}(p(\underline{v}), p(\underline{u}))}}
$$

Unification Algorithm

- Robinson 1965: exponential algorithm
- Huet 1976: almost linear time algorithm $O(n \alpha(n))$
- Paterson and Wegman 1976: improved Huet's algorithm to linear time

A few more examples:

$$
\operatorname{UNIF}(f(x, g(y, y), x), f(z, z, g(w, f(t))))=?
$$

Answer: $x / g(f(t), f(t)) z / g(f(t), f(t)) y / f(t) w / f(t)$

$$
\operatorname{UNIF}(f(x, h(A, t), g(x)), f(g(y), h(z, y), t))=?
$$

Answer: fail

Robinson's algorithm

```
Algorithm \(1 \operatorname{UNIFY}\left(t_{1}, t_{2}\right)\)
    current substitution \(\leftarrow\) empty substitution
    if \(t_{1}\) or \(t_{2}\) is a variable then
        if \(t_{1}=t_{2}\) then
            return (true, empty substitution)
        end if
        let \(t_{1}\) be variable
        if \(t_{1}\) occurs in \(t_{2}\) then
            return false
        end if
        return (true, \(t_{1} / t_{2}\) )
    else
        if terms \(t_{1}\) and \(t_{2}\) cannot be matched then
            return false
        end if
        \(t_{1}=f\left(a_{1}, \ldots, a_{n}\right), t_{1}=f\left(b_{1}, \ldots, b_{n}\right)\)
        for all pairs \(\left(a_{i}, b_{i}\right)(i=1 \ldots n)\) do
            make current substitution on \(a_{i}\) and \(b_{i}\) and call UNIFY on them
            if UNIFY successful then
            apply returned substitution to current substitution
        else
            return false
        end if
        end for
    end if
    return (true, current substitution)
```


Readings

Russell and Norvig 2nd Ed.: Chapters 8 and 9
Genesereth and Nilsson: Chapter 4
Burris: 3.12
Knight, Kevin: Unification: a multidisciplinary survey, ACM computing surveys, March 1989

