
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

3 Correct and exhaustive reasoning

Is an inference rule “correct”?

Is an inference system “exhaustive”?

Is an inference system “self consistent”?

What do the represented facts/conclusions “mean”?

3.1 Value assignments

Assign values to all primitive propositions
Specifies true “state of affairs”

E.g. truth theory
assign v(p) = t true
or v(p) = f false
for all primitive propositions p
(specifies complete state of affairs)

E.g. relevance theory
v(p) = {t} true

or v(p) = {f} false
or v(p) = {t, f} evidence for both
or v(p) = {} evidence for neither

E.g. 3-valued logic
v(p) = {t} true

or v(p) = {f} false
or v(p) = ∗ undeterminable

All possible primitive assignments = all possible states of affairs

CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

3.2 Evaluating compound propositions

Compositional semantics

value of composite depends only on values of components
(value functional semantics)

E.g. for truth theory

v(¬α) =

{

t if v(α) = f

f if v(α) = t

v(α ∧ β) =

{

t if v(α) = t and v(β) = t

f otherwise

v(α ∨ β) =

{

t if v(α) = t or v(β) = t

f otherwise

v(α→ β) =

{

f if v(α) = t and v(β) = f

t otherwise

Recursively evaluate compound propositions
– bottoms out in values of primitive propositions

Given a complete assignment to primitive propositions
– can evaluate every compound proposition

CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

3.3 What do propositions mean?

A restriction on the possible state of affairs

Asserting α means that the state of affairs v makes α evaluate to t; i.e.
v(α) = t.

v is a state of affairs (truth assignment)

Terminology

• v satisfies α if v(α) = t

• v falsifies α if v(α) = f

• α is satisfiable if exists v such that v(α) = t

• α is falisfiable if exists v such that v(α) = f

• α is unsatisfiable (or inconsistent) if v(α) = f for all v

• α is unfalsifiable (or valid) if v(α) = t for all v

• α entails β if every v that makes α evaluate to t, makes β evaluate to
t as well. Written α |= β.

3.4 Do not confuse entailment with derivability!

Entailment α |= β and derivability α ` β are two completely different
mathematical systems.

We now want to relate derivability and entailment

Assume truth value theory defines correctness

Want inference system to implement entailment

Correct inference

If A ` γ then A |= γ (also called soundness)

Exhaustive inference

If A |= γ then A ` γ (also called completeness)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

3.5 Resolution rule is correct w.r.t. truth assignments

α ∨ ¬p, β ∨ p

α ∨ β

Proof

Assume antecedent satisfied; that is, v(α∨¬p) = t and v(β∨p) = t. Two
cases.

Case 1, if v(p) = t. Then v(α) = v(α∨¬p) and hence v(α∨¬p) = v(α) = t.
This implies v(α ∨ β) = t.

Case 2, if v(p) = f . Then v(β) = v(β ∨ p) and hence v(β ∨ p) = v(β) = t.
This implies v(α ∨ β) = t.

Therefore, in both cases v(α ∨ β) = t.

3.6 Resolution rule is not exhaustive w.r.t. truth as-

signments

E.g. > |= ¬p ∨ p (i.e. ¬p ∨ p is valid)
but > 6` ¬p ∨ p using resolution

Note: Natural deduction system is correct and exhaustive with respect to
truth assignments. For a proof see: D. E. Cohen (1987) Computability and
Logic. Ellis Horwood. (Chapter 11)

3.7 Resolution rule is exhaustive w.r.t. deriving con-

tradictions

If A is unsatisfiable (inconsistent) then resolution can derive contradiction
(that is A ` ⊥)

Proof

Let A = {α1, ..., αn} (α’s in strict clausal form). Let K be the number
of “excess” propositional letters in A; defined as the sum over αi ∈ A of the
number of additional propositional letters in each αi, not including the first
letter if there is one. That is, for a given proposition α, excess(α) = 0 if
α has no propositional letters, and excess(α) = m − 1 if α has m proposi-
tional letters for m > 0. Similarly, for a set of propositions A, excess(A) =
∑

αi∈A
excess(αi).

CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

Proof is by induction on K, the number of excess propositional letters.

Base case: K = 0. A contains clauses only of the form >, ⊥, ¬p or p.
Case 1: A contains ⊥, done.
Case 2: A contains opposing pair ¬p, p. Then can derive ⊥ by resolution

rule, done.
Case 3: A contains no opposing pair nor ⊥. Then one can satisfy all the

clauses in A by assigning v(p) = t if p ∈ A, and v(p) = f if ¬p ∈ A. This
makes every clause evaluate to t, which contradicts the assumption that A
is unsatisfiable; done.

Induction hypothesis: Assume the theorem holds for K − 1 or fewer excess
propositional letters

Induction step: Assume A is unsatisfiable and has K excess propositional
letters for K > 0. We are going to show A ` ⊥ in two steps by considering
strengthenings of A that have fewer propositional letters than A and therefore
fall under the induction hypothesis.

First notice that, since K > 0, there must be at least one clause α ∈ A

that has two or more propositional letters. Without loss of generality, assume
α is of the form p∨β (the case ¬p∨β is similar). Consider the strengthening
α′ = β and let A′ = A − {α} ∪ {α′}. Note that α′ is a strengthening of α,
and hence A′ is a strengthening of A (since α′ |= α and therefore A′ |= A).
There are three immediate consequences: first, excess(A′) = excess(A)−1 by
construction; second, A′ is unsatisfiable since A is unsatisfiable by assumption
and we have that A′ |= A. Therefore, overall we obtain A′ ` ⊥ by the
induction hypothesis.

Now consider two cases.
Case 1: A′ − {α′} ` ⊥. But this immediately implies A− {α} ` ⊥ since

A′ − {α′} = A− {α}, so we are done.
Case 2: A′ − {α′} 6` ⊥. But here we know that A′ ` ⊥ by the induction

hypothesis. Now consider a derivation of ⊥ from A′. Since the only difference
between A and A′ is that the clause α = p ∨ β has been changed to α′ = β

we must have that A ` p. (Just take the derivation of ⊥ from A′ and add a
‘p’ to the side of every resolution step that involves the clause α′ = p ∨ β.)
So we have established the first key consequence that A ` p.

Now we only need to show that A ∪ {p} ` ⊥ and we will be done. To
complete the proof, we follow a similar argument to the above. Consider the
strengthening α′′ = p and let A′′ = A− {α} ∪ {α′′}. Now note both that α′′

is a strengthening of α and A′′ is a strengthening of A (since α′′ |= α and

CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

hence A′′ |= A). Thus once again we obtain three immediate consequences:
first, excess(A′′) ≤ excess(A)−1 since α had at least two propositional letters
and α′′ only has one; second, A′′ is unsatisfiable since A is unsatisfiable by
assumption and A′′ |= A. Therefore, overall we obtain A′′ ` ⊥ by the
induction hypothesis.

To finish Case 2, notice that the last two paragraphs have established
that A ` p and A∪{p} ` ⊥ respectively, which allows us to conclude A ` ⊥,
and we are done.

3.8 Readings

Burris, Chapter 2.
Dean, Allen, Aloimonos, Chapter 3.
Russell and Norvig 2nd Ed., Chapters 7 and 9*.
Genesereth and Nilsson, Chapters 3* and 4*.
* - ignoring material on first order variables and quantification

