CMPUT 366 — Intelligent Systems: Dale Schuurmans 1

2 Automating reasoning: Formal inference

Modelling mathematical reasoning
e Drawing certain conclusions from facts
e More facts — strictly more conclusions
(Note: not modelling plausible reasoning (yet):
e Drawing plausible conclusions from evidence
e More evidence — change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions
e Primitive propositions p,q,r, ...
e Compound propositions

— Logical symbols A, V,—, —,«, L, T
— Composition: a A S, aV 3, ma, a — 3, a < 3

where «, [are propositions, either primitive or compound

CMPUT 366 — Intelligent Systems: Dale Schuurmans 2

2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let w = work,
p = pass exam, f = fail course, u = understand concepts, a = do assignments.

Given Infer ?
{w—p, w} p ?
{e—=pVf ~f} e—p ?
{oversft — over6ft, over6ft} overdft 7
{w—p, p} w ?
{w — p, —p} —w ?
{u—(a—p)} (u—a) = (u—p) ?
{w — p} p—9)—(w—g) 7

{p} elvis-lives — p ?

CMPUT 366 — Intelligent Systems: Dale Schuurmans 3

2.3 Formal inference

Conclusions drawn depend only on logical form of propositions

E.g., Formal rule of inference: Modus Ponens

Given {a, a — [}, infer
a, a — 3

(written {a, a = S} F 3 or #)

Formal inference rules — are automatable
— “pattern match” rules that depend only on logical form
— antecedent variables match existing propositions
— consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules — encode domain independent rules of logical reasoning

Propositions — encode domain specific facts

2.5 Derivation

Starting with a set of propositions A = {ay, ..., a,, }, can add new propositions
£ to A by applying available rules of inference. If a proposition v can be
added to A after a finite number of rule applications, then we say that ~ is
derivable from A; denoted A F . If no finite number of rule applications
can add v to A, then ~ is not derivable from A; denoted A I ~.

Note that the derivability relation - depends on which inference rules are
available.

2.6 E.g. application: automated question answering

Given domain facts {1, ...,a,} = A, ask: is it the case that v ?
If Ak~ answer yes
If AF -y answer no
If AF¥~y and At/ -y answer I dont know
E.g.
Given {lights_on — battery_ok, battery_ok — radio_works, lights_on}
is it the case that radio_works 7
is it the case that —radio_works 7

CMPUT 366 — Intelligent Systems: Dale Schuurmans 4

Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on}
is it the case that radio_works ?

Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on, fuse_ok}
is it the case that radio_works 7

Given

{lights_on — battery_ok, battery_ok A fuse_ok — radio_works, lights_on, —radio_works}
is it the case that —fuse_ok ?

Given

{lights_on — battery_ok, battery ok A fuse_ok < radio_works, lights_on, radio_works}
is it the case that fuse_ok ?

2.7 Is Modus Ponens adequate?
{a, a — b} - b

No! Cannot derive any of the following

{a — b, —b} F =a? Modus Tollens LW
. a,
? J
{anb—c, a, b} o ¢? And Introduction N
a
0 :
{aVvb—c a} F ¢ ? Or Introduction Wi
a— 3, a—f

{a = b, ~a—c¢, b—d, c—d} F d7? Reasoning by cases

&

T

{——a} F a? Double Negation

CMPUT 366 — Intelligent Systems: Dale Schuurmans 5

2.8 Formal inference system
Set of inference rules

(plus, possibly, a restriction on the language)
E.g. 1: Modus Ponens

E.g. 2: Resolution

e Assumes propositions are in clausal form:
prVope Ve Ve Vi Vg Ve Ve

i.e., a disjunction of literals, where each [literal is either p or —p

e Single rule of inference: Resolution rule

aV-p, BVp .
av i (where «, 3 are also in clausal form)
Note: special case when «, 3 are empty
% (contradiction)

e (Generalizes Modus Ponens

-V . C 111 1 ’
pﬁmj (Whlch is intuitively equivalent to]Hﬁﬁp)

Note: we will often use intuitive equivalences

pVyq = P—q
Ve VeV Ve Vg DN AP —=q V-V

(You will be able to prove when and why these are equivalent later)

e Strict clausal form:

— No repeated literals
— No opposing literals

— Simplification rules
aV-—pV-p aVqVq aV-—pVp
aV-p aVyg T

(just remove T clauses)

CMPUT 366 — Intelligent Systems: Dale Schuurmans

e Can reason by cases:
E.g., Given {pVr, p—gq, ¢ — s, 7 — s}, can derive s.

Equivalent to {pVr, =pV q, 7qV s, —rV s},

-pVyqg pVr
~N
qVvr —qV s
N
sVr Vs
N
sVs

S

e However, still missing some “reasonable” inferences?

e.g., {} I/ =p V p under resolution

CMPUT 366 — Intelligent Systems: Dale Schuurmans

E.g. 3: Natural deduction system

Restrict propositions to any form using A, V, —, -, T, L.

Introduction Elimination
a, aNp
And A B a,
. fAU{a}F g a, a— [
Implication P R —
Or aVpj ¥
Not If Au{a}hrL IfAU{-a}FL
el o
-
Tautology - 5V o0
Contradiction = S
1 «

CMPUT 366 — Intelligent Systems: Dale Schuurmans

E.g., given {p — q, -p — r, ¢ — s, r — s} can derive s.

I p—yg

2 —por

3 q—s

4 r—s

5 T by Taut intro

6 pV-p by Taut elim on 5

7.0 Assume p

7.1 q by Impl elim on 1 and 7.0
7.2 S by Impl elim on 3 and 7.1
7T p—s by Impl intro

8.0 Assume —p

8.1 r by Impl elim on 2 and 8.0
8.2 S by Impl elim on 4 and 8.1
8§ —p—s by Impl intro

9 s by Or elim on 6, 7 and 8

E.g., given {} can derive p — p

1.0 Assume p
1.1 P
1 p—p by Impl intro on 1.0 and 1.1

CMPUT 366 — Intelligent Systems: Dale Schuurmans 9

2.9 Characterizing inference systems

For a given inference system:

— Take a given set of propositions A = {a,...,a,} and consider
applying all available inference rules to A repeatedly:
— Get a monotonically growing set

(Note: inference rules do not block each other, can always add
conclusions in any order)

A set A is closed if no available inference rule can introduce any new
propositions to A.

— The closure of a set A, close(A), is called the theory of A.

— Monotonicity: A C B implies that close(A) C close(B)

(That is, adding new facts and new rules will only strictly increase
the theory.)

— Monotonicity gives modularity: It is clear how new facts affect the
theory. You never lose old conclusions. (This is a special feature of
logical reasoning as opposed to plausible reasoning, which usually
doesn’t obey monotonicity.)

A proposition 7 is called a tautology if {} F 7. Such a + is contained in
every closure.

A set of propositions A is said to contain a contradiction if A contains
any of 1L, T —_, or both a and —a for some «a.

CMPUT 366 — Intelligent Systems: Dale Schuurmans 10

2.10 Computational complexity and search

Sometimes, even give that form of logical reasoning can be automated in prin-
ciple, it can still be computationally hard to reach the desired conclusions. A
surprising example of this is trying to prove the “pigeonhole principle” (that
N +1 pigeons cannot be placed solitarily in NV pigeonholes) using resolution:

E.qg., 3 pigeons, 2 holes

pigeons

A B C

holes 1| A1 Bl (C1
2| A2 B2 (C2

Constraints:
Al vV A2 B1V B2 C1v (C2
—(A1AB1) =(A1AC1) —=(B1AC1)
—(A2 A B2) —=(A2ANC2) —=(B2AC2)

Re-expressed in clausal form:

Al vV A2 Bl1vV B2 C1vC2
-Alv-Bl —-Alv-C1 —=-Blv-Cl1
—-A2V -B2 —-A2vV -C2 —-B2VvV-C2

Exercise: derive L from these facts using resolution.

Hint: it can be done, but it is surprisingly hard!

2.11 Readings

Burris, Chapter 1 and 2.
Dean, Allen, Aloimonos, Chapter 3.
Russell and Norvig 2nd Ed., Section 7.5.

