2 Automating reasoning: Formal inference

Modelling mathematical reasoning

- Drawing certain conclusions from facts
- More facts \rightarrow strictly more conclusions
(Note: not modelling plausible reasoning (yet):
- Drawing plausible conclusions from evidence
- More evidence \rightarrow change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions

- Primitive propositions p, q, r, \ldots
- Compound propositions
- Logical symbols $\quad \wedge, \vee, \neg, \rightarrow, \leftrightarrow, \perp, \top$
- Composition: $\alpha \wedge \beta, \alpha \vee \beta, \neg \alpha, \alpha \rightarrow \beta, \alpha \leftrightarrow \beta$ where α, β are propositions, either primitive or compound

2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let $\mathrm{w}=$ work, $\mathrm{p}=$ pass exam, $\mathrm{f}=$ fail course, $\mathrm{u}=$ understand concepts, $\mathrm{a}=$ do assignments.

Given

$$
\begin{gathered}
\{w \rightarrow p, w\} \\
\{e \rightarrow p \vee f, \neg f\} \\
\{\text { over } 5 f t \rightarrow \text { over6ft, over6ft }\} \\
\{w \rightarrow p, p\} \\
\{w \rightarrow p, \neg p\} \\
\{u \rightarrow(a \rightarrow p)\} \\
\{w \rightarrow p\} \\
\{p\}
\end{gathered}
$$

Infer ?

$$
\begin{array}{cc}
p & ? \\
e \rightarrow p & ? \\
\text { over5ft } & ? \\
w & ? \\
\neg w & ? \\
(u \rightarrow a) \rightarrow(u \rightarrow p) & ? \\
(p \rightarrow g) \rightarrow(w \rightarrow g) & ? \\
\text { elvis-lives } \rightarrow p & ?
\end{array}
$$

2.3 Formal inference

Conclusions drawn depend only on logical form of propositions E.g., Formal rule of inference: Modus Ponens

Given $\{\alpha, \alpha \rightarrow \beta\}$, infer β
(written $\quad\{\alpha, \alpha \rightarrow \beta\} \vdash \beta \quad$ or $\quad \frac{\alpha, \alpha \rightarrow \beta}{\beta}$)
Formal inference rules - are automatable

- "pattern match" rules that depend only on logical form
- antecedent variables match existing propositions
- consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules - encode domain independent rules of logical reasoning
Propositions - encode domain specific facts

2.5 Derivation

Starting with a set of propositions $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$, can add new propositions β to A by applying available rules of inference. If a proposition γ can be added to A after a finite number of rule applications, then we say that γ is derivable from A; denoted $A \vdash \gamma$. If no finite number of rule applications can add γ to A, then γ is not derivable from A; denoted $A \nvdash \gamma$.

Note that the derivability relation \vdash depends on which inference rules are available.

2.6 E.g. application: automated question answering

Given domain facts $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=A$, ask: is it the case that γ ?
If $\quad A \vdash \gamma \quad$ answer yes
If $A \vdash \neg \gamma$ answer no
If $A \nvdash \gamma$ and $A \nvdash \neg \gamma$ answer I don't know
E.g.

Given \{lights_on \rightarrow battery_ok, battery_ok \rightarrow radio_works, lights_on $\}$
is it the case that radio_works ?
is it the case that \neg radio_works ?

Given

$\{$ lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on $\}$ is it the case that radio_works?
Given
$\{$ lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on, fuse_ok $\}$
is it the case that radio_works?
Given
$\{$ lights_on \rightarrow battery_ok, battery_ok \wedge fuse_ok \rightarrow radio_works, lights_on, \neg radio_works $\}$ is it the case that \neg fuse_ok?
Given
$\{$ lights_on \rightarrow battery_ok, battery_ok \wedge fuse_o \leftrightarrow radio_works, lights_on, radio_works $\}$ is it the case that fuse_ok ?

2.7 Is Modus Ponens adequate?

$\{a, a \rightarrow b\} \quad \vdash \quad b$

No! Cannot derive any of the following

$$
\begin{array}{llll}
\{a \rightarrow b, \neg b\} & \vdash & \neg a ? & \text { Modus Tollens } \frac{\alpha \rightarrow \beta, \neg \beta}{\neg \alpha} \\
\{a \wedge b \rightarrow c, a, b\} & \vdash & c ? & \text { And Introduction } \frac{\alpha, \beta}{\alpha \wedge \beta} \\
\{a \vee b \rightarrow c, a\} & \vdash & c ? & \text { Or Introduction } \frac{\alpha}{\alpha \vee \beta} \\
\{a \rightarrow b, \neg a \rightarrow c, b \rightarrow d, c \rightarrow d\} & \vdash & d ? & \text { Reasoning by cases } \frac{\alpha \rightarrow \beta, \neg \alpha \rightarrow \beta}{\beta} \\
\{\neg \neg a\} & \vdash & a ? & \text { Double Negation } \frac{\neg \neg \alpha}{\alpha}
\end{array}
$$

2.8 Formal inference system

Set of inference rules
(plus, possibly, a restriction on the language)

E.g. 1: Modus Ponens

E.g. 2: Resolution

- Assumes propositions are in clausal form:
$\neg p_{1} \vee \neg p_{2} \vee \cdots \vee \neg p_{k} \vee q_{1} \vee q_{2} \vee \cdots \vee q_{\ell}$
i.e., a disjunction of literals, where each literal is either p or $\neg p$
- Single rule of inference: Resolution rule
$\frac{\alpha \vee \neg p, \beta \vee p}{\alpha \vee \beta} \quad$ (where α, β are also in clausal form)
Note: special case when α, β are empty

$$
\frac{\neg p, \quad p}{\perp} \quad \text { (contradiction) }
$$

- Generalizes Modus Ponens $\frac{\neg p \vee \beta, p}{\beta}$ (which is intuitively equivalent to $\quad \frac{p \rightarrow \beta, p}{\beta}$)

Note: we will often use intuitive equivalences

$$
\begin{aligned}
\neg p \vee q & \equiv p \rightarrow q \\
\neg p_{1} \vee \cdots \vee \neg p_{k} \vee q_{1} \vee \cdots \vee q_{\ell} & \equiv p_{1} \wedge \cdots \wedge p_{k} \rightarrow q_{1} \vee \cdots \vee q_{\ell}
\end{aligned}
$$

(You will be able to prove when and why these are equivalent later)

- Strict clausal form:
- No repeated literals
- No opposing literals
- Simplification rules

$$
\frac{\alpha \vee \neg p \vee \neg p}{\alpha \vee \neg p} \quad \frac{\alpha \vee q \vee q}{\alpha \vee q} \quad \frac{\alpha \vee \neg p \vee p}{\top} \text { (just remove } \top \text { clauses) }
$$

- Can reason by cases:
E.g., Given $\{p \vee r, p \rightarrow q, q \rightarrow s, r \rightarrow s\}$, can derive s.

Equivalent to $\{p \vee r, \neg p \vee q, \neg q \vee s, \neg r \vee s\}$,

- However, still missing some "reasonable" inferences?
e.g., $\} \nvdash \neg p \vee p$ under resolution

E.g. 3: Natural deduction system

Restrict propositions to any form using $\wedge, \vee, \rightarrow, \neg, \top, \perp$.

$$
\text { Introduction } \quad \text { Elimination }
$$

And

$$
\frac{\alpha, \beta}{\alpha \wedge \beta}
$$

$$
\frac{\alpha \wedge \beta}{\alpha, \beta}
$$

Implication $\frac{\text { If } A \cup\{\alpha\} \vdash \beta}{\alpha \rightarrow \beta}$

$$
\frac{\alpha, \alpha \rightarrow \beta}{\beta}
$$

Or

$$
\frac{\alpha}{\alpha \vee \beta}
$$

$$
\frac{\alpha \vee \beta, \alpha \rightarrow \gamma, \beta \rightarrow \gamma}{\gamma}
$$

Not $\quad \frac{\text { If } A \cup\{\alpha\} \vdash \perp}{\neg \alpha} \quad \frac{\text { If } A \cup\{\neg \alpha\} \vdash \perp}{\alpha}$
Tautology
Contradiction

$$
\frac{\alpha, \neg \alpha}{\perp}
$$

$$
\frac{\top}{\alpha \vee \neg \alpha}
$$

$$
\frac{\perp}{\alpha}
$$

2.9 Characterizing inference systems

For a given inference system:

- Take a given set of propositions $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and consider applying all available inference rules to A repeatedly:
- Get a monotonically growing set (Note: inference rules do not block each other, can always add conclusions in any order)

A set A is closed if no available inference rule can introduce any new propositions to A.

- The closure of a set $A, \operatorname{close}(A)$, is called the theory of A.
- Monotonicity: $A \subset B$ implies that $\operatorname{close}(A) \subset \operatorname{close}(B)$
(That is, adding new facts and new rules will only strictly increase the theory.)
- Monotonicity gives modularity: It is clear how new facts affect the theory. You never lose old conclusions. (This is a special feature of logical reasoning as opposed to plausible reasoning, which usually doesn't obey monotonicity.)

A proposition γ is called a tautology if $\} \vdash \gamma$. Such a γ is contained in every closure.

A set of propositions A is said to contain a contradiction if A contains any of $\perp, \top \rightarrow \perp$, or both α and $\neg \alpha$ for some α.

2.10 Computational complexity and search

Sometimes, even give that form of logical reasoning can be automated in principle, it can still be computationally hard to reach the desired conclusions. A surprising example of this is trying to prove the "pigeonhole principle" (that $N+1$ pigeons cannot be placed solitarily in N pigeonholes) using resolution:
E.g., 3 pigeons, 2 holes

		pigeons		
		A	B	C
holes	1	$A 1$	$B 1$	$C 1$
	2	$A 2$	$B 2$	$C 2$

Constraints:

$$
\begin{array}{ccc}
A 1 \vee A 2 & B 1 \vee B 2 & C 1 \vee C 2 \\
\neg(A 1 \wedge B 1) & \neg(A 1 \wedge C 1) & \neg(B 1 \wedge C 1) \\
\neg(A 2 \wedge B 2) & \neg(A 2 \wedge C 2) & \neg(B 2 \wedge C 2)
\end{array}
$$

Re-expressed in clausal form:

$$
\begin{array}{ccc}
A 1 \vee A 2 & B 1 \vee B 2 & C 1 \vee C 2 \\
\neg A 1 \vee \neg B 1 & \neg A 1 \vee \neg C 1 & \neg B 1 \vee \neg C 1 \\
\neg A 2 \vee \neg B 2 & \neg A 2 \vee \neg C 2 & \neg B 2 \vee \neg C 2
\end{array}
$$

Exercise: derive \perp from these facts using resolution.
Hint: it can be done, but it is surprisingly hard!

2.11 Readings

Burris, Chapter 1 and 2.
Dean, Allen, Aloimonos, Chapter 3.
Russell and Norvig 2nd Ed., Section 7.5.

