
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

2 Automating reasoning: Formal inference

Modelling mathematical reasoning

• Drawing certain conclusions from facts

• More facts → strictly more conclusions

(Note: not modelling plausible reasoning (yet):

• Drawing plausible conclusions from evidence

• More evidence → change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions

• Primitive propositions p, q, r, ...

• Compound propositions

– Logical symbols ∧,∨,¬,→,↔,⊥,>

– Composition: α ∧ β, α ∨ β, ¬α, α→ β, α↔ β

where α, β are propositions, either primitive or compound



CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let w = work,
p = pass exam, f = fail course, u = understand concepts, a = do assignments.

Given Infer ?

{w → p, w} p ?

{e→ p ∨ f, ¬f} e→ p ?

{over5ft→ over6ft, over6ft} over5ft ?

{w → p, p} w ?

{w → p, ¬p} ¬w ?

{u→ (a→ p)} (u→ a)→ (u→ p) ?

{w → p} (p→ g)→ (w → g) ?

{p} elvis-lives→ p ?



CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

2.3 Formal inference

Conclusions drawn depend only on logical form of propositions

E.g., Formal rule of inference: Modus Ponens

Given {α, α→ β}, infer β

(written {α, α→ β} ` β or
α, α→ β

β
)

Formal inference rules – are automatable
– “pattern match” rules that depend only on logical form
– antecedent variables match existing propositions
– consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules – encode domain independent rules of logical reasoning

Propositions – encode domain specific facts

2.5 Derivation

Starting with a set of propositions A = {α1, ..., αn}, can add new propositions
β to A by applying available rules of inference. If a proposition γ can be
added to A after a finite number of rule applications, then we say that γ is
derivable from A; denoted A ` γ. If no finite number of rule applications
can add γ to A, then γ is not derivable from A; denoted A 6` γ.

Note that the derivability relation ` depends on which inference rules are
available.

2.6 E.g. application: automated question answering

Given domain facts {α1, ..., αn} = A, ask: is it the case that γ ?
If A ` γ answer yes

If A ` ¬γ answer no

If A 6` γ and A 6` ¬γ answer I don’t know
E.g.
Given {lights on → battery ok, battery ok → radio works, lights on}

is it the case that radio works ?
is it the case that ¬radio works ?



CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

Given
{lights on → battery ok, battery ok ∧ fuse ok → radio works, lights on}

is it the case that radio works ?
Given
{lights on→ battery ok, battery ok ∧ fuse ok→ radio works, lights on, fuse ok}

is it the case that radio works ?
Given
{lights on→ battery ok, battery ok ∧ fuse ok→ radio works, lights on, ¬radio works}

is it the case that ¬fuse ok ?
Given
{lights on → battery ok, battery ok ∧ fuse ok ↔ radio works, lights on, radio works}

is it the case that fuse ok ?

2.7 Is Modus Ponens adequate?

{a, a→ b} ` b

No! Cannot derive any of the following

{a→ b,¬b} ` ¬a ? Modus Tollens
α→ β, ¬β

¬α

{a ∧ b→ c, a, b} ` c ? And Introduction
α, β

α ∧ β

{a ∨ b→ c, a} ` c ? Or Introduction
α

α ∨ β

{a→ b, ¬a→ c, b→ d, c→ d} ` d ? Reasoning by cases
α→ β, ¬α→ β

β

{¬¬a} ` a ? Double Negation
¬¬α
α



CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

2.8 Formal inference system

Set of inference rules
(plus, possibly, a restriction on the language)

E.g. 1: Modus Ponens

E.g. 2: Resolution

• Assumes propositions are in clausal form:

¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pk ∨ q1 ∨ q2 ∨ · · · ∨ q`

i.e., a disjunction of literals, where each literal is either p or ¬p

• Single rule of inference: Resolution rule

α ∨ ¬p, β ∨ p

α ∨ β
(where α, β are also in clausal form)

Note: special case when α, β are empty

¬p, p

⊥
(contradiction)

• Generalizes Modus Ponens

¬p ∨ β, p

β

(

which is intuitively equivalent to
p→ β, p

β

)

Note: we will often use intuitive equivalences

¬p ∨ q ≡ p→ q

¬p1 ∨ · · · ∨ ¬pk ∨ q1 ∨ · · · ∨ q` ≡ p1 ∧ · · · ∧ pk → q1 ∨ · · · ∨ q`

(You will be able to prove when and why these are equivalent later)

• Strict clausal form:

– No repeated literals

– No opposing literals

– Simplification rules

α ∨ ¬p ∨ ¬p
α ∨ ¬p

α ∨ q ∨ q

α ∨ q

α ∨ ¬p ∨ p

>
(just remove> clauses)



CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

• Can reason by cases:

E.g., Given {p ∨ r, p→ q, q → s, r → s}, can derive s.

Equivalent to {p ∨ r, ¬p ∨ q, ¬q ∨ s, ¬r ∨ s},

¬p ∨ q p ∨ r

q ∨ r ¬q ∨ s

s ∨ r ¬r ∨ s

s ∨ s

s

• However, still missing some “reasonable” inferences?

e.g., {} 6` ¬p ∨ p under resolution



CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

E.g. 3: Natural deduction system

Restrict propositions to any form using ∧,∨,→,¬,>,⊥.

Introduction Elimination

And
α, β

α ∧ β

α ∧ β

α, β

Implication
If A ∪ {α} ` β

α→ β

α, α→ β

β

Or
α

α ∨ β

α ∨ β, α→ γ, β → γ

γ

Not
If A ∪ {α} `⊥

¬α
If A ∪ {¬α} `⊥

α

Tautology
>

>
α ∨ ¬α

Contradiction
α, ¬α
⊥

⊥
α



CMPUT 366 – Intelligent Systems: Dale Schuurmans 8

E.g., given {p→ q, ¬p→ r, q → s, r → s} can derive s.

1 p→ q

2 ¬p→ r

3 q → s

4 r → s

5 > by Taut intro
6 p ∨ ¬p by Taut elim on 5
7.0 Assume p
7.1 q by Impl elim on 1 and 7.0
7.2 s by Impl elim on 3 and 7.1
7 p→ s by Impl intro
8.0 Assume ¬p
8.1 r by Impl elim on 2 and 8.0
8.2 s by Impl elim on 4 and 8.1
8 ¬p→ s by Impl intro
9 s by Or elim on 6, 7 and 8

E.g., given {} can derive p→ p

1.0 Assume p
1.1 p

1 p→ p by Impl intro on 1.0 and 1.1



CMPUT 366 – Intelligent Systems: Dale Schuurmans 9

2.9 Characterizing inference systems

For a given inference system:

– Take a given set of propositions A = {α1, ..., αn} and consider
applying all available inference rules to A repeatedly:

– Get a monotonically growing set

(Note: inference rules do not block each other, can always add
conclusions in any order)

A set A is closed if no available inference rule can introduce any new
propositions to A.

– The closure of a set A, close(A), is called the theory of A.

– Monotonicity: A ⊂ B implies that close(A) ⊂ close(B)

(That is, adding new facts and new rules will only strictly increase
the theory.)

– Monotonicity gives modularity: It is clear how new facts affect the
theory. You never lose old conclusions. (This is a special feature of
logical reasoning as opposed to plausible reasoning, which usually
doesn’t obey monotonicity.)

A proposition γ is called a tautology if {} ` γ. Such a γ is contained in
every closure.

A set of propositions A is said to contain a contradiction if A contains
any of ⊥, > →⊥, or both α and ¬α for some α.



CMPUT 366 – Intelligent Systems: Dale Schuurmans 10

2.10 Computational complexity and search

Sometimes, even give that form of logical reasoning can be automated in prin-
ciple, it can still be computationally hard to reach the desired conclusions. A
surprising example of this is trying to prove the “pigeonhole principle” (that
N +1 pigeons cannot be placed solitarily in N pigeonholes) using resolution:

E.g., 3 pigeons, 2 holes

pigeons
A B C

holes 1 A1 B1 C1
2 A2 B2 C2

Constraints:

A1 ∨ A2 B1 ∨B2 C1 ∨ C2
¬(A1 ∧B1) ¬(A1 ∧ C1) ¬(B1 ∧ C1)
¬(A2 ∧B2) ¬(A2 ∧ C2) ¬(B2 ∧ C2)

Re-expressed in clausal form:

A1 ∨ A2 B1 ∨B2 C1 ∨ C2
¬A1 ∨ ¬B1 ¬A1 ∨ ¬C1 ¬B1 ∨ ¬C1
¬A2 ∨ ¬B2 ¬A2 ∨ ¬C2 ¬B2 ∨ ¬C2

Exercise: derive ⊥ from these facts using resolution.

Hint : it can be done, but it is surprisingly hard!

2.11 Readings

Burris, Chapter 1 and 2.
Dean, Allen, Aloimonos, Chapter 3.
Russell and Norvig 2nd Ed., Section 7.5.


