2 Automating reasoning: Formal inference

Modelling mathematical reasoning

- Drawing *certain* conclusions from facts
- More facts \rightarrow strictly more conclusions

(Note: not modelling plausible reasoning (yet):

- Drawing plausible conclusions from evidence
- More evidence \rightarrow change conclusions)

First: Need a language to represent facts and conclusions

2.1 A simple first language: Language of propositions

- Primitive propositions p, q, r, \dots
- Compound propositions
 - Logical symbols $\land, \lor, \neg, \rightarrow, \leftrightarrow, \bot, \top$
 - Composition: $\alpha \land \beta, \, \alpha \lor \beta, \, \neg \alpha, \, \alpha \to \beta, \, \alpha \leftrightarrow \beta$

where α , β are propositions, either primitive or compound

2.2 Inference

Given a set of facts (propositions), what conclusions to draw? Let w = work, p = pass exam, f = fail course, u = understand concepts, a = do assignments.

Given	Infer?	
$\{w \to p, w\}$	p	?
$\{e \to p \lor f, \ \neg f\}$	$e \rightarrow p$?
${over5ft \rightarrow over6ft, over6ft}$	over5 ft	?
$\{w \to p, p\}$	w	?
$\{w \to p, \ \neg p\}$	$\neg w$?
$\{u \to (a \to p)\}$	$(u \to a) \to (u \to p)$?
$\{w \to p\}$	$(p \to g) \to (w \to g)$?
$\{p\}$	$elvis$ -lives $\rightarrow p$?

2.3 Formal inference

Conclusions drawn depend only on *logical form* of propositions *E.g.*, Formal rule of inference: *Modus Ponens*

Given $\{\alpha, \alpha \to \beta\}$, infer β (written $\{\alpha, \alpha \to \beta\} \vdash \beta$ or $\frac{\alpha, \alpha \to \beta}{\beta}$)

Formal inference rules – are automatable

– "pattern match" rules that depend only on logical form

– antecedent variables match existing propositions

– consequent variables produces new propositions

2.4 Two components of mechanized reasoning

Inference rules – encode domain independent rules of logical reasoning

Propositions – encode domain specific facts

2.5 Derivation

E.g.

Starting with a set of propositions $A = \{\alpha_1, ..., \alpha_n\}$, can add new propositions β to A by applying available rules of inference. If a proposition γ can be added to A after a finite number of rule applications, then we say that γ is derivable from A; denoted $A \vdash \gamma$. If no finite number of rule applications can add γ to A, then γ is not derivable from A; denoted $A \nvDash \gamma$.

Note that the derivability relation \vdash depends on which inference rules are available.

2.6 E.g. application: automated question answering

Given domain facts $\{\alpha_1, ..., \alpha_n\} = A$, ask: is it the case that γ ?

```
If A \vdash \gamma answer yes
If A \vdash \neg \gamma answer no
If A \nvDash \gamma and A \nvDash \neg \gamma answer I don't know
```

Given { $lights_on \rightarrow battery_ok, battery_ok \rightarrow radio_works, lights_on$ }

is it the case that *radio_works* ?

is it the case that $\neg radio_works$?

Given

{lights_on → battery_ok, battery_ok ∧ fuse_ok → radio_works, lights_on}
is it the case that radio_works ?
Given
{lights_on → battery_ok, battery_ok ∧ fuse_ok → radio_works, lights_on, fuse_ok}
is it the case that radio_works ?
Given
{lights_on → battery_ok, battery_ok ∧ fuse_ok → radio_works, lights_on, ¬radio_works}
is it the case that ¬fuse_ok ?
Given
{lights_on → battery_ok, battery_ok ∧ fuse_ok ↔ radio_works, lights_on, radio_works}
is it the case that ¬fuse_ok ?

2.7 Is Modus Ponens adequate?

$$\{a, a \to b\} \qquad \qquad \vdash \qquad b$$

No! Cannot derive any of the following

$$\begin{array}{lll} \{a \rightarrow b, \neg b\} & \vdash & \neg a \ ? & Modus \ Tollens \ \frac{\alpha \rightarrow \beta, \ \neg \beta}{\neg \alpha} \\ \{a \wedge b \rightarrow c, \ a, \ b\} & \vdash & c \ ? & And \ Introduction \ \frac{\alpha, \ \beta}{\alpha \wedge \beta} \\ \{a \lor b \rightarrow c, \ a\} & \vdash & c \ ? & Or \ Introduction \ \frac{\alpha}{\alpha \lor \beta} \\ \{a \rightarrow b, \ \neg a \rightarrow c, \ b \rightarrow d, \ c \rightarrow d\} & \vdash & d \ ? & Reasoning \ by \ cases \ \frac{\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta}{\beta} \\ \{\neg \neg a\} & \vdash & a \ ? & Double \ Negation \ \frac{\neg \neg \alpha}{\alpha} \end{array}$$

2.8 Formal inference system

Set of inference rules

(plus, possibly, a restriction on the language)

E.g. 1: Modus Ponens

E.g. 2: Resolution

• Assumes propositions are in *clausal form*:

 $\neg p_1 \lor \neg p_2 \lor \cdots \lor \neg p_k \lor q_1 \lor q_2 \lor \cdots \lor q_\ell$

i.e., a disjunction of *literals*, where each *literal* is either p or $\neg p$

• Single rule of inference: Resolution rule

$$\frac{\alpha \lor \neg p, \ \beta \lor p}{\alpha \lor \beta} \quad \text{(where } \alpha, \beta \text{ are also in clausal form)}$$

Note: special case when α , β are empty

$$\frac{\neg p, \ p}{\bot} \quad \text{(contradiction)}$$

• Generalizes Modus Ponens

$$\frac{\neg p \lor \beta, \ p}{\beta} \quad \left(\text{which is intuitively equivalent to} \quad \frac{p \to \beta, \ p}{\beta} \right)$$

Note: we will often use intuitive equivalences

$$\neg p \lor q \quad \equiv \quad p \to q$$
$$\neg p_1 \lor \dots \lor \neg p_k \lor q_1 \lor \dots \lor q_\ell \quad \equiv \quad p_1 \land \dots \land p_k \to q_1 \lor \dots \lor q_\ell$$

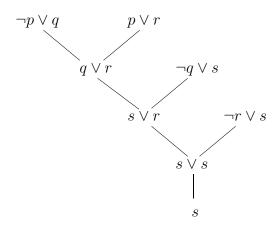
(You will be able to prove when and why these are equivalent later)

- Strict clausal form:
 - No repeated literals
 - No opposing literals
 - Simplification rules

$$\frac{\alpha \vee \neg p \vee \neg p}{\alpha \vee \neg p} \quad \frac{\alpha \vee q \vee q}{\alpha \vee q} \quad \frac{\alpha \vee \neg p \vee p}{\top} \text{ (just remove T clauses)}$$

• Can reason by cases:

$$\begin{split} E.g., \, \text{Given} \, \, \{p \lor r, \; p \to q, \; q \to s, \; r \to s\}, \, \text{can derive } s. \\ \text{Equivalent to} \, \, \{p \lor r, \; \neg p \lor q, \; \neg q \lor s, \; \neg r \lor s\}, \end{split}$$



However, still missing some "reasonable" inferences?
 e.g., {} ∀ ¬p ∨ p under resolution

E.g. 3: Natural deduction system

Restrict propositions to any form using $\land, \lor, \rightarrow, \neg, \top, \bot$.

	Introduction	Elimination
And	$\frac{\alpha,\ \beta}{\alpha \wedge \beta}$	$\frac{\alpha \wedge \beta}{\alpha, \ \beta}$
Implication	$\frac{\text{If } A \cup \{\alpha\} \vdash \beta}{\alpha \to \beta}$	$\frac{\alpha, \ \alpha \to \beta}{\beta}$
Or	$\frac{\alpha}{\alpha \lor \beta}$	$\frac{\alpha \lor \beta, \ \alpha \to \gamma, \ \beta \to \gamma}{\gamma}$
Not	$\frac{\text{If } A \cup \{\alpha\} \vdash \bot}{\neg \alpha}$	$\frac{\text{If } A \cup \{\neg \alpha\} \vdash \bot}{\alpha}$
Tautology	T	$\frac{\top}{\alpha \vee \neg \alpha}$
Contradiction	$\alpha, \neg \alpha$	$\frac{\perp}{\alpha}$

L.g.,	g_{1} (p)	q, p r	$, q \rightarrow 3, 7 \rightarrow 3$ can derive a
1	$p \rightarrow q$		
2	$\neg p \to r$		
3	$q \to s$		
4	$r \rightarrow s$		
5	Т		by Taut intro
6	$p \vee \neg p$		by Taut elim on 5
7.0		Assume p	
7.1		q	by Impl elim on 1 and 7.0
7.2		s	by Impl elim on 3 and 7.1
7	$p \rightarrow s$		by Impl intro
8.0		Assume $\neg p$	
8.1		r	by Impl elim on 2 and 8.0
8.2		s	by Impl elim on 4 and 8.1
8	$\neg p \to s$		by Impl intro
9	s		by Or elim on 6, 7 and 8

E.g., given $\{p \to q, \neg p \to r, q \to s, r \to s\}$ can derive s.

1.0		Assume p	
1.1		p	
1	$p \rightarrow p$		by Impl intro on 1.0 and 1.1

2.9 Characterizing inference systems

For a given inference system:

- Take a given set of propositions $A = \{\alpha_1, ..., \alpha_n\}$ and consider applying all available inference rules to A repeatedly:
- Get a monotonically growing set

(Note: inference rules do not block each other, can always add conclusions in any order)

A set A is *closed* if no available inference rule can introduce any new propositions to A.

- The closure of a set A, close(A), is called the *theory* of A.
- Monotonicity: $A \subset B$ implies that $close(A) \subset close(B)$ (That is, adding new facts and new rules will only strictly increase the theory.)
- Monotonicity gives modularity: It is clear how new facts affect the theory. You never lose old conclusions. (This is a special feature of *logical* reasoning as opposed to *plausible* reasoning, which usually doesn't obey monotonicity.)

A proposition γ is called a *tautology* if $\{\} \vdash \gamma$. Such a γ is contained in every closure.

A set of propositions A is said to contain a *contradiction* if A contains any of \bot , $\top \rightarrow \bot$, or both α and $\neg \alpha$ for some α .

2.10 Computational complexity and search

Sometimes, even give that form of logical reasoning can be automated in principle, it can still be computationally hard to reach the desired conclusions. A surprising example of this is trying to prove the "pigeonhole principle" (that N + 1 pigeons cannot be placed solitarily in N pigeonholes) using resolution:

E.g., 3 pigeons, 2 holes

		pigeons		
		А	В	С
holes	1	A1	B1	C1
	2	A2	B2	C2

Constraints:

$A1 \lor A2$	$B1 \lor B2$	$C1 \lor C2$
$\neg(A1 \land B1)$	$\neg(A1 \land C1)$	$\neg(B1 \land C1)$
$\neg (A2 \land B2)$	$\neg(A2 \land C2)$	$\neg(B2 \land C2)$

Re-expressed in clausal form:

 $\begin{array}{cccc} A1 \lor A2 & B1 \lor B2 & C1 \lor C2 \\ \neg A1 \lor \neg B1 & \neg A1 \lor \neg C1 & \neg B1 \lor \neg C1 \\ \neg A2 \lor \neg B2 & \neg A2 \lor \neg C2 & \neg B2 \lor \neg C2 \end{array}$

Exercise: derive \perp from these facts using resolution.

Hint: it can be done, but it is surprisingly hard!

2.11 Readings

Burris, Chapter 1 and 2. Dean, Allen, Aloimonos, Chapter 3. Russell and Norvig 2nd Ed., Section 7.5.