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23 Generalization theory / Overfitting

Generalization

How well does a learned function predict on future test examples?

How to choose hypothesis space H?

If H is too complex

• over-fitting

• small training error

• large test error

• very different functions have similar training error

• perturbing training data slightly yields very different optimal hypothe-
ses

If H is too restricted

• under-fitting

• large training error

• large test error
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23.1 Introduction to statistical generalization theory

Mathematical model

independent identically distributed (IID) random examples

• Assume a fixed joint distribution PXY over X × Y

• Training examples (x1, y1), . . . , (xt, yt) independently drawn from PXY

• Test examples independently drawn from same PXY

Learner maps (x1, y1). . . (xt, yt) to a hypothesis h : X → Y

?
1

t

Possible training set xy

distribution
over
training
samples

⇓

Learner

⇓

hxy distribution over hypotheses

⇓

Exy err(hxy(x), y) expected test error

Êxiyi
err(hxy(xi), yi) training error
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For squared prediction error

err(ŷ, y) = (ŷ − y)2

get

ExyExy (hxy(x)− y)2 test error

= ExyÊxiyi
(hxy(xi)− yi)

2 train error

+ ExyÊxi
(hxy(xi)− h∗(xi))

2 train variance

+ ExyEx (hxy(x)− h∗(x))2 variance

}

opt test
err in H



















hypothesis
test err

where

h∗ = argmin
h∈H

Exy (h(x)− y)2

H is a closed linear space

Immediate consequence

expected optimal expected
hypothesis ≥ test ≥ hypothesis
test error train
error in H error
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23.2 Learning curves

expected
test error

optimal test
error in H

expected
training error

training sample size



CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

23.3 Overfitting curves

complexity of H

expected
test error

expected
training error

optimal test
error in H
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23.4 Automatic complexity control

Model selection

H0 H1 H2 H3 · · ·

How to choose the right complexity level?

Given data, get
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h0 h1 h2 h3 · · ·

decreasing
training
errors

which hypothesis to choose?

• choose too early: under-fit

• choose too late: over-fit
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strategy 1: complexity penalization

• guess at variances

• training errors say nothing about variances

• penalty(i) approximates variance at complexity level i

• minimize: training error(i) + penalty(i)

Strategy 2: Hold out testing

• Split training data into pseudo-train and pseudo-test set

• Train on pseudo-train and test each hypothesis h0, h1, ... on the held-out
pseudo-test

• Hold-out test gives an unbiased estimate of test error

• Pick i with best hold-out test

• Re-train at complexity level i on all the data

Strategy 3: Metric space

PY |X

PX

f : X → Y

Assume we know PX (which can be estimated from unlabeled data x1, x2, ...)
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Defines a metric on H

d(h, g) =

√

∫

x

(h(x)− g(x))2 dPX

d(h,PY |X) =

√

∫

x

∫

y

(h(x)− y)2 dPY |xdPX

Goal is to minimize d(h,PY |X)

Given data, get
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h0 h3 h4h1 h2

Have 2 metrics, real and estimated
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PY |X

h∗
jh∗

i

Adjust d̂(hi, PY |X) by multiplying it by max
j<i

d(hi, hj)

d̂(hi, hj)

Readings

Hastie, Tibshirani, Friedman: Sections 2.9, 5.1–5.5

Schuurmans, D. and Southey, F. (2001) Metric-based methods for adaptive
model selection and regularization. Machine Learning, 48(1-3): 51–84.


