16a. Syntactic disambiguation

Given word sequence,

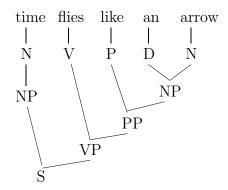
extract hidden syntactic structure:

- objects
- relations (arguments of relation)
- modifiers

(who modifies who)

16a.1 Recover "phrase structure" of sentence

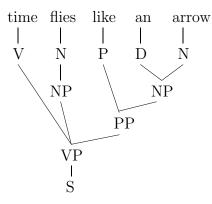
E.g.



(standard "metaphorical" interpretation)

16a.2 Syntactic ambiguity

"Command" interpretation



"Strange species of flies" interpretation



16a.3 Capture phrase structure with a CFG

Context Free Grammar (CFG) consists of:

- Terminal symbols (words) $A = \{w_1, w_2, ...\}$
- Non-terminal symbols N_1, N_2, \dots
- Special start symbol S
- Context free rules $N \to \alpha$
 - -N a single non-terminal
 - $-\alpha$ a finite string of terminals/non-terminals

\mathbf{S}	\rightarrow	NP VP	V	\rightarrow	flies
\mathbf{S}	\rightarrow	VP	V	\rightarrow	like
NP	\rightarrow	Ν	V	\rightarrow	time
NP	\rightarrow	D N	Ν	\rightarrow	flies
NP	\rightarrow	NP N	Ν	\rightarrow	arrow
\mathbf{VP}	\rightarrow	V NP	Ν	\rightarrow	time
\mathbf{VP}	\rightarrow	V PP	Р	\rightarrow	like
\mathbf{VP}	\rightarrow	V NP PP	D	\rightarrow	an
\mathbf{PP}	\rightarrow	P NP			

Sequences a grammar can produce are *legal* Sequences a grammar cannot produce are *illegal*

In natural language

- Legal sequences can have many different parses (derivations)
- Selecting a parse is *important*

 \rightarrow gives argument structure

Will select "right" parse with probability models

Build a joint distribution P(sentence, parse)

$$interp = \arg \max_{parse} P(parse|sentence)$$

= $\arg \max_{parse} P(parse, sentence)$

16a.4 Probabilistic Context Free Grammar

Add probabilities to a context free grammar

• For each non-terminal N_i

Assign probability distribution over its rules

$$N_i \to \alpha_1 \qquad p_1$$
$$N_i \to \alpha_2 \qquad p_2$$
$$\vdots$$
$$N_i \to \alpha_k \qquad p_k$$

Where $\sum_{j} p_j = 1$

E.g.

$\tilde{\mathrm{S}}$	\rightarrow	NP VP VP	.6 .4	V	\rightarrow	flies like	.5 .3
NP			.5			time	.2
		D N NP N	.3 2			flies arrow	.5 .3
		V NP	.2 .5			time	.ə .2
• –		V PP	.3			like	.2 1
• –		V NP PP	.0	_		an	1
		P NP	1				

16a.5 Generate

Sample random tree, sentence) configurations by

- Starting with S
- Expand non-terminals independently by selecting rules according to probabilities

This assumes subtrees are conditionally independent given their root Generates random trees

leaves = word sequence

16a.6 Evaluation

Calculate probability of a complete (*tree*, *sentence*) configuration by taking products of the individual probabilities

E.g. Let sentence1 = "time flies like an arrow" and let tree1, tree2 and tree3 be the three different parse trees shown before (respectively). Then we have

 $\begin{array}{rcl} P(tree1, sentence1) &=& .6 .5 .2 .3 .5 1 1 .3 1 .3 = .00081 \\ P(tree2, sentence1) &=& .4 .2 .2 .5 .5 1 1 .3 1 .3 = .00036 \\ P(tree3, sentence1) &=& .6 .2 .5 .2 .5 .3 .3 1 .3 = .000081 \end{array}$

16a.7 Inference

Marginalization

$$P(sentence) = \sum_{trees} P(sentence, tree)$$

Conditioning

$$P(tree|sentence) = \frac{P(sentence, tree)}{P(sentence)}$$

Completion

$$interpretation = \arg \max_{tree} P(tree|sentence)$$
$$= \arg \max_{tree} P(tree, sentence)$$

16a.8 Polynomial time algorithms for PCFGs

First, we will assume CFG is in *Chomsky Normal Form (CNF)*. That is, rules are restricted to be of form:

• $S \rightarrow N_i$

- $N_i \rightarrow N_j N_k$
- $N_i \rightarrow w$

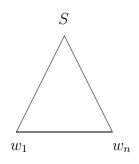
Note For any PCFG there is an equivalent PCFG in Chomsky normal form E.g.

- Eliminate unit chains N₁ → N₂, N₂ → N₃, ..., N_k → w, by replacing each chain with a single rule N₁ → w.
 Probability of new rule = product of probabilities in original chain
- Eliminate non-binary rules $N_1 \rightarrow N_2 N_3 \dots N_k$, by replacing this with a set of binary rules on new non-terminals $N_1 \rightarrow N_2 A_2, A_2 \rightarrow N_3 A_3, \dots A_k \rightarrow N_k$.

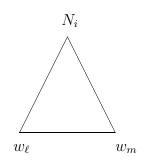
Where probability of $N_1 \rightarrow N_2 A_2$ = probability of original rule, remaining probabilities = 1

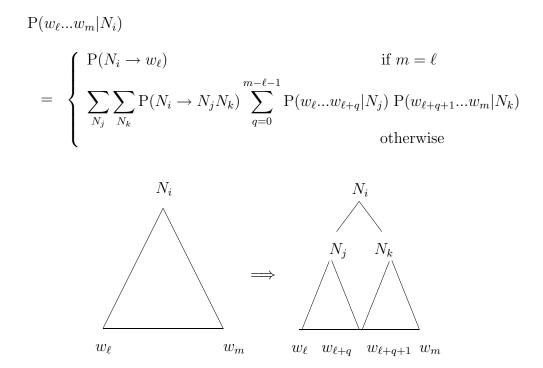
Efficient marginalization

Compute $P(w_1...w_n|S)$



Consider recursive divide and conquer approach:





- Note that the rightmost product encodes the assumption that the subtrees generated below N_j and N_k are independent once N_j and N_k are chosen.
- Unfortunately the computation time of this recursive procedure is exponential (because subtree computations can be repeated)

Efficient bottom-up dynamic programming

Compute all	Time
$\mathrm{P}(w_\ell N_i)$	$n \times N$
$\mathrm{P}(w_{\ell}w_{\ell+1} N_i)$	$(n-1) \times 1 \times N^3$
$\mathcal{P}(w_{\ell}w_{\ell+1}w_{\ell+2} N_i)$	$(n-2) \times 2 \times N^3$
÷	
$\mathbf{P}(w_{\ell}w_{\ell+j} N_i)$	$(n-j) \times j \times N^3$
Total time = $N^3 \sum_{j=1}^n (n - 1)^{n-1}$	$j)j = O(N^3n^3)$

Note $N^3 \ge G$ where G is the number of non-terminal rules in the grammar, so the running time is actually more like $O(Gn^3)$

16a.9 Completion

$$tree^* = \arg \max_{tree} P(w_1...w_n, tree)$$

Same algorithm as above!

Just replace	\sum_{N_j}	\sum_{N_k}	$\sum_{q=0}^{m-\ell-1}$
with	\max_{N_j}	\max_{N_k}	$\max_{q=0}^{m-\ell-1}$

Readings

Russell and Norvig 2nd Ed: Chapter 23 Dean, Allen, Aloimonos: Sections 10.2-10.5