16a. Syntactic disambiguation

Given word sequence,
extract hidden syntactic structure:

- objects
- relations
(arguments of relation)
- modifiers
(who modifies who)

16a. 1 Recover "phrase structure" of sentence

E.g.

(standard "metaphorical" interpretation)

16a. 2 Syntactic ambiguity

"Command" interpretation

"Strange species of flies" interpretation

16a. 3 Capture phrase structure with a CFG

Context Free Grammar (CFG) consists of:

- Terminal symbols (words) $A=\left\{w_{1}, w_{2}, \ldots\right\}$
- Non-terminal symbols N_{1}, N_{2}, \ldots
- Special start symbol S
- Context free rules $N \rightarrow \alpha$
- N a single non-terminal
$-\alpha$ a finite string of terminals/non-terminals
E.g.

$$
\begin{array}{rl}
\mathrm{S} & \rightarrow \mathrm{NP} \text { VP } \\
\mathrm{S} & \rightarrow \mathrm{VP} \\
\mathrm{NP} \rightarrow \mathrm{~N} & \mathrm{~V} \rightarrow \text { flies } \\
\mathrm{NP} \rightarrow \mathrm{D} \mathrm{~N} & \mathrm{~V} \rightarrow \text { like } \\
\mathrm{NP} \rightarrow \mathrm{NP} \text { N } & \mathrm{N} \rightarrow \text { flies } \\
\mathrm{NP} \rightarrow \text { arrow } \\
\mathrm{VP} \rightarrow \mathrm{~V} \text { NP } & \mathrm{N} \rightarrow \text { time } \\
\mathrm{VP} \rightarrow \mathrm{~V} \text { PP } & \mathrm{P} \rightarrow \text { like } \\
\mathrm{VP} \rightarrow \text { V NP PP } & \mathrm{D} \rightarrow \text { an } \\
\mathrm{PP} \rightarrow \mathrm{P} \mathrm{NP} &
\end{array}
$$

Sequences a grammar can produce are legal
Sequences a grammar cannot produce are illegal

In natural language

- Legal sequences can have many different parses (derivations)
- Selecting a parse is important
\rightarrow gives argument structure

Will select "right" parse with probability models

Build a joint distribution P (sentence, parse)

$$
\begin{aligned}
\text { interp } & =\arg \max _{\text {parse }} \mathrm{P}(\text { parse|sentence }) \\
& =\arg \max _{\text {parse }} \mathrm{P}(\text { parse, sentence })
\end{aligned}
$$

16a. 4 Probabilistic Context Free Grammar

Add probabilities to a context free grammar

- For each non-terminal N_{i}

Assign probability distribution over its rules

$$
\begin{array}{rr}
N_{i} \rightarrow \alpha_{1} & p_{1} \\
N_{i} \rightarrow \alpha_{2} & p_{2} \\
\vdots & \\
N_{i} \rightarrow \alpha_{k} & p_{k}
\end{array}
$$

Where $\sum_{j} p_{j}=1$
E.g.

S	$\rightarrow \mathrm{NP} \mathrm{VP}$.6	V	\rightarrow	flies
.5					
S	$\rightarrow \mathrm{VP}$.4	V	\rightarrow	like
.3					
NP	$\rightarrow \mathrm{N}$.5	V	\rightarrow	time
.2					
NP	$\rightarrow \mathrm{D} \mathrm{N}$.3	N	\rightarrow	flies
.5					
NP	$\rightarrow \mathrm{NP} \mathrm{N}$.2	N	\rightarrow	arrow
.3					
VP	$\rightarrow \mathrm{V} \mathrm{NP}$.5	N	\rightarrow	time
.2					
VP	$\rightarrow \mathrm{V} \mathrm{PP}$.3	P	\rightarrow	like
VP	$\rightarrow \mathrm{V} \mathrm{NP} \mathrm{PP}$.2	D	\rightarrow	an
VP	$\rightarrow \mathrm{P} \mathrm{NP}$	1			

16a. 5 Generate

Sample random tree, sentence) configurations by

- Starting with S
- Expand non-terminals independently by selecting rules according to probabilities

This assumes subtrees are conditionally independent given their root Generates random trees

$$
\text { leaves }=\text { word sequence }
$$

16a. 6 Evaluation

Calculate probability of a complete (tree, sentence) configuration by taking products of the individual probabilities
E.g. Let sentence1 = "time flies like an arrow" and let tree1, tree2 and tree3 be the three different parse trees shown before (respectively). Then we have

$$
\begin{aligned}
& \mathrm{P}(\text { tree1, sentence1 })=.6 .5 .2 .3 .511 .31 .3=.00081 \\
& \mathrm{P}(\text { tree2, sentence1 })=.4 .2 .2 .5 .511 .31 .3=.00036 \\
& \mathrm{P}(\text { tree3, sentence1 })=.6 .2 .5 .2 .5 .5 .3 .31 .3=.000081
\end{aligned}
$$

16a. 7 Inference

Marginalization

$$
P(\text { sentence })=\sum_{\text {trees }} \mathrm{P}(\text { sentence }, \text { tree })
$$

Conditioning

$$
P(\text { tree } \mid \text { sentence })=\frac{\mathrm{P}(\text { sentence }, \text { tree })}{\mathrm{P}(\text { sentence })}
$$

Completion

$$
\begin{aligned}
\text { interpretation } & =\arg \max _{\text {tree }} \mathrm{P}(\text { tree } \mid \text { sentence }) \\
& =\arg \max _{\text {tree }} \mathrm{P}(\text { tree, sentence })
\end{aligned}
$$

16a. 8 Polynomial time algorithms for PCFGs

First, we will assume CFG is in Chomsky Normal Form (CNF).
That is, rules are restricted to be of form:

- $S \rightarrow N_{i}$
- $N_{i} \rightarrow N_{j} N_{k}$
- $N_{i} \rightarrow w$

Note For any PCFG there is an equivalent PCFG in Chomsky normal form E.g.

- Eliminate unit chains $N_{1} \rightarrow N_{2}, N_{2} \rightarrow N_{3}, \ldots, N_{k} \rightarrow w$, by replacing each chain with a single rule $N_{1} \rightarrow w$.
Probability of new rule $=$ product of probabilities in original chain
- Eliminate non-binary rules $N_{1} \rightarrow N_{2} N_{3} \ldots N_{k}$, by replacing this with a set of binary rules on new non-terminals $N_{1} \rightarrow N_{2} A_{2}, A_{2} \rightarrow N_{3} A_{3}, \ldots A_{k} \rightarrow N_{k}$.
Where probability of $N_{1} \rightarrow N_{2} A_{2}=$ probability of original rule, remaining probabilities $=1$

Efficient marginalization

Compute $\mathrm{P}\left(w_{1} \ldots w_{n} \mid S\right)$

Consider recursive divide and conquer approach:

$$
\begin{aligned}
& \mathrm{P}\left(w_{\ell} \ldots w_{m} \mid N_{i}\right) \\
& =\left\{\begin{array}{lc}
\mathrm{P}\left(N_{i} \rightarrow w_{\ell}\right) & \text { if } m=\ell \\
\sum_{N_{j}} \sum_{N_{k}} \mathrm{P}\left(N_{i} \rightarrow N_{j} N_{k}\right) \sum_{q=0}^{m-\ell-1} \mathrm{P}\left(w_{\ell} \ldots w_{\ell+q} \mid N_{j}\right) \mathrm{P}\left(w_{\ell+q+1} \ldots w_{m} \mid N_{k}\right) \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Note that the rightmost product encodes the assumption that the subtrees generated below N_{j} and N_{k} are independent once N_{j} and N_{k} are chosen.
- Unfortunately the computation time of this recursive procedure is exponential (because subtree computations can be repeated)

Efficient bottom-up dynamic programming

Compute all	Time
$\mathrm{P}\left(w_{\ell} \mid N_{i}\right)$	$n \times N$
$\mathrm{P}\left(w_{\ell} w_{\ell+1} \mid N_{i}\right)$	$(n-1) \times 1 \times N^{3}$
$\mathrm{P}\left(w_{\ell} w_{\ell+1} w_{\ell+2} \mid N_{i}\right)$	$(n-2) \times 2 \times N^{3}$
\vdots	
$\mathrm{P}\left(w_{\ell} \ldots w_{\ell+j} \mid N_{i}\right)$	$(n-j) \times j \times N^{3}$

Total time $=N^{3} \sum_{j=1}^{n}(n-j) j=O\left(N^{3} n^{3}\right)$

Note $N^{3} \geq G$ where G is the number of non-terminal rules in the grammar, so the running time is actually more like $O\left(G n^{3}\right)$

16a. 9 Completion

$$
\text { tree }^{*}=\arg \max _{\text {tree }} \mathrm{P}\left(w_{1} \ldots w_{n}, \text { tree }\right)
$$

Same algorithm as above!

$$
\begin{array}{lll}
\text { Just replace } & \sum_{N_{j}} & \sum_{N_{k}}
\end{array} \sum_{q=0}^{m-\ell-1}
$$

Readings

Russell and Norvig 2nd Ed: Chapter 23
Dean, Allen, Aloimonos: Sections 10.2-10.5

