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10 Automating interpretation systems

Interpretation

Plausible inference of hidden semantic structure from observable inputs

E.g.

input hidden structure
word sequence → meaning
pixel matrix → object, relations
speech signal → phonemes, words

words in e-mail Subject: → Is message spam? Yes/No
symptoms → illness

How to combine ambiguous, incomplete and conflicting evidence to draw
reasonable conclusions?

Distinct from logical reasoning

• plausible inference:

– non-monotonic: might change conclusions given more evidence

– uncertain: conclusions are not guaranteed to be correct
(but still want to do as well as possible)

• logical inference:

– monotonic: once a conclusion is drawn it can never be retracted

– certain: conclusions are certain given assumptions

10.1 How to build an interpretation system?

observables → ? → hidden semantic structure

Two key problems

1. need to represent facts about process that connects evidence to truth

2. need principles of evidence combination
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In this course

We will represent uncertain knowledge using probability theory

Some alternatives we will not cover are

• fuzzy logic, fuzzy sets

• default logic

• rule-based systems

• Dempster-Shafer theory

• rough sets, . . .

10.2 Probability theory

We will cover this in depth for the next several lectures. To get started,
consider of some simple examples and basic properties of probability

• example: rolling a dice

• example: random variable

Independent random variables

P(X1 = x1, X2 = x2) = P(X1 = x1) P(X2 = x2)

Alternative definition

P(X1 = x1|X2 = x2) = P(X1 = x1)

It is easy to prove these two definitions are equivalent (prove it!)

Conditional probability

P(A|B) =
P(A,B)

P(B)

Bayes’ Theorem

P(A|B) =
P(B|A) P(A)

P(B)
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Conditionally independent random variables

X1 and X2 are conditionally independent given X3 if

P(X1=x1, X2=x2|X3=x3)

= P(X1=x1|X3=x3)P(X2=x2|X3=x3) for all x1, x2, x3

Equivalently, if

P(X1=x1|X2=x2, X3=x3)

= P(X1=x1|X3=x3) for all x1, x2, x3

Prove these definitions are equivalent

10.3 Forward generative models

Now, to apply this to building interpretation systems

1. Represent knowledge with probability: forward generative models

↓ world

truth ↓
↓ sensor

evidence ↓
observed measurement

2. Principle of evidence combination: Bayesian inference

conclusion = arg max
possible truth

P (possible truth|evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)

P (evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)
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10.4 Demos

Demo 1: Image normalization

Bayesian inference

?

??

pose

latent image

observed image

translation

A time component is included to model image stabilization

Demo 2: Independent object tracking

Demo 3: Independent object tracking and object removal
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Demo 4: Face tracking

Two models combined: low-level model

? ?

?

? ?

image patch image patch

image patch

left eye

image patch

right eye

image patch

nose

left mouth right mouth

High-level model

?

À
R

) z

face

left eye location

nose location

right eye location

right mouth locationleft mouth location

Readings

Dean, Allen, Aloimonos: Section 3.7
Russell and Norvig 2nd Ed.: Section 14.7


