
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

19 Optimal behavior: Game theory

Adversarial state dynamics
– have to account for worst case

Compute policy π : S → A that maximizes minimum reward

Let S ′(a, s) = { set of possible states s′ reachable by doing a in s }

(Assume you can identify current state)

19.1 Single step case: Maxi-min reward

E.g.

s4s1 s2 s3 s5 s7s6

s0

3 12 5 6 8 11 11

min

max

a1
a2

a3

Sets of possible next states

S ′(a1, s0) = {s1, s2, s3}

S ′(a2, s0) = {s3, s4, s5}

S ′(a3, s0) = {s5, s6, s7}

Solve

a∗ = argmax
a

min
s′∈S′(a,s0)

R(s′)

= a3

Obtain a reward of 8



CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

19.2 Sequential acyclic case

Assume leveled acyclic model (as in acyclic decision theory case)

j
R

>

7

*

-

j

µ

R

- - -

- - -

R

µ

*

q

-

3
j

1

j

j
R

>
7

*

-

j

j
s0 st

s1
k1

s2
k2

st−1
kt−1

s1
0 s2

0 st−1
0

s1
1 s2

1 st−1
1

s0 s1 s2 st−1 st

...
...

. . .

...

. . .

. . .

Assume

• Start at state s0 and finish at state st after t actions

• Model is acyclic:

• after executing action in s0 we go to one of the states

s1
0, s

1
1, . . . , s

1
k1

and after executing the second action, we go to one of the states

s2
0, s

2
1, . . . , s

2
k2

and so on, until after the tth action, we arrive in state st

Given

• State dynamics S ′(a, s)

• Reward function R(s)

Compute

• Optimal policy π∗ : S → A

maximizes minimum total future reward for each state



CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

Utility function

U(s, π) = minimum future reward obtained by running π from s

= R(s) + min
s′∈S′(π(s),s)

U(s′, π)

Compute π∗ that maximizes U(s, π∗) for all s

Efficient algorithm: Dynamic programming

Solve for U(s, π) in last states first, and then recursively back up

π∗(si) = argmax
a

R(si) + min
si+1∈S′(a,si)

U(si+1, π∗)

= argmax
a

min
si+1∈S′(a,si)

U(si+1, π∗)

U(si, π∗) = R(si) + min
si+1∈S′(a,si)

U(si+1, π∗)

where U(si+1, π∗) is already computed



CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

19.3 Special case: Two-person Zero-sum game

Assume

• Acyclic state dynamics

• 2 players

– MAX player tries to maximize reward

– MIN player tries to minimize reward

• R(s) = 0 except at leaf states

Then can dramatically speed up dynamic programming by α-β pruning

Note: slight augmentation in dynamics

Now explicitly model opponent’s moves

s

a

S ′(a, s)

s

a

sopp

aopp

s′

general case 2 player



CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

α-β pruning

Not every path has to be explored

E.g.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3 12 8 2 4 6 14 5 2

Assume the nodes are explored left to right in a depth first fashion. Once
the children of the left MIN node are explored, the left MIN node will choose
reward 3. The MAX node at the top will then know that it can obtain
reward at least 3. The second MIN node (in the middle) will then start to
explore its children. Once it sees that its first child has value 2, it knows that
whatever the other children return, it can only return a reward that is 2 or
smaller. But this means the rest of the children of the middle MIN node are
irrelevant, because they cannot cause this node to obtain a larger value than
2. So the top MAX node will ignore the rest of the middle subtree because
the MAX node can already achieve reward 3 elsewhere. Therefore, the leaves
with rewards 4 and 6 are irrelevant and we do not need to check them.



CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

α-cutoff

>

µ

irrelevant

10

8

α = cutoff value for MIN node (if current best value ≤ α, stop)
= current highest value of MAX ancestor
= lower bound on value MIN can hope to back up to root
= 10 in this example

β-cutoff

¸

3

irrelevant

10

8

β = cutoff value for MAX node (if current best value ≥ β, stop)
= current lowest value of MIN ancestor
= upper bound on value MAX can hope to back up to root
= 10 in this example



CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

This method is called α-β pruning, and it is implemented by calculating
the bounds α and β of “interesting” values:

?

6

.

β

α

interesting values

not interesting

not interesting

Algorithms 1 and 2 describe operations in max and min nodes for α-β
pruning.

Algorithm 1 α-β pruning algorithm: alpha beta max(s, α, β)

Require: s is a max-node situation, α and β are boundaries
Ensure: the max value and an optimal action is returned, assuming given

boundaries
1: if s is a leaf node then
2: return (R(s), ‘no action’)
3: end if

4: opt action← ‘not important’
5: for all possible actions a do
6: (v,m)← alpha beta min(a(s), α, β)
7: if v > α then

8: α← v

9: opt action← a

10: if α ≥ β then

11: return (α, opt action)
12: end if

13: end if

14: end for

15: return (α, opt action)

If we know the minimal and maximal value of the reward, i.e., minsR(s)
and maxsR(s), then those are the initial values for α and β; otherwise,
α = −∞ and β = +∞ initially.
The figure 1 illustrates what values of α and β are passed during the

search, and which nodes are visited (circled ones), in α-β pruning (the initial
values are α = −∞ and β = +∞.



CMPUT 366 – Intelligent Systems: Dale Schuurmans 8

Algorithm 2 α-β pruning algorithm: alpha beta min(s, α, β)

Require: s is a min-node situation, α and β are boundaries
Ensure: the min value and an optimal action is returned, assuming given

boundaries
1: if s is a leaf node then
2: return (R(s), ‘no action’)
3: end if

4: opt action← ‘not important’
5: for all possible actions a do
6: (v,m)← alpha beta max(a(s), α, β)
7: if v < β then

8: β ← v

9: opt action← a

10: if α ≥ β then

11: return (β, opt action)
12: end if

13: end if

14: end for

15: return (β, opt action)

01

1

32

2

67 12

3 3

3

3

α = −∞
β = +∞

α = −∞
β = +∞ β = +∞

α = 3

α = 3
β = +∞

α = −∞
β = 3 β = +∞

α = −∞
β = +∞

β = 3
α = −∞

β = +∞β = +∞
α = 3

α = 3

α = 3

43

3

43

3

3

65

5

34

5

Figure 1: α-β pruning example



CMPUT 366 – Intelligent Systems: Dale Schuurmans 9

Application to real games

A problem with almost all practical games is that the search tree is too large.
If the game is cyclic, it is infinite. In any case, it is usually impossible in
practice to search the whole tree. On improvement is to usememoization, i.e.,
keep a cache of calculated situations (positions). Additionally, memoization
can prevent us from exploring in an infinite loop in cyclic state spaces.
The leaves of the search tree are usually to far away to be reached by

a search algorithm, so we cannot usually back up exact values from the
leaves. (Remember that the leaves are the terminal states at the very end
of the game!) In practice, one almost always uses a heuristic approach:
search to a bounded depth, evaluate a heuristic function at the states reached
(which estimates the future min-max reward), treat this heuristic value as
the terminal reward, and back up the results.

Combined random-adversarial games

In some games, the sequence of states does not depend on the players’ actions
alone, but also on a random element, such as a dice roll or a card shuffle (e.g.
Backgammon or Poker). In these cases, the game tree contains chance nodes
in addition to MIN and MAX nodes. The value in chance nodes in calculated
as the expected value of the child-nodes’ values, using the probability distri-
bution of the random event. In this case, we use the terms expecti-mini-max

algorithm, expecti-mini-max policy, etc.

19.4 General cyclic case

Maximize discounted sum of minimum future rewards

Value function

Vπ(s) = minimum discounted reward obtained by π starting in s

= R(s) + γ min
s′∈S′(π(s),s)

Vπ(s
′)



CMPUT 366 – Intelligent Systems: Dale Schuurmans 10

Policy evaluation

• Initialize Vπ arbitrarily

• Iterate
V new
π (s) = R(s) + γ min

s′∈S′(π(s),s)
V old
π (s′)

for each s

• Halt when V new
π and V old

π are sufficiently close

Policy iteration

• Initialize π arbitrarily and evaluate Vπ

• Iterate

πnew(s) = argmax
a

R(s) + γ min
s′∈S′(a,s)

Vπold(s′)

= argmax
a

min
s′∈S′(a,s)

Vπold(s′)

for each s

• Use policy evaluation to calculate Vπnew for πnew

and repeat policy update

• Halt when πnew = πold (or more generally when Vπnew = Vπold)

Value iteration

• Initialize V arbitrarily

• Iterate
Vnew(s) = R(s) + γmax

a
min

s′∈S′(a,s)
V old(s′)

for each s

• Halt when V new and V old are sufficiently close



CMPUT 366 – Intelligent Systems: Dale Schuurmans 11

Recovering greedy policy

Given a value function V , recover π by

π(s) = argmax
a

R(s) + γ min
s′∈S′(a,s)

V (s′)

= argmax
a

min
s′∈S′(a,s)

V (s′)

for each s

Readings

Russell and Norvig 2nd Ed: Sections 6.1, 6.2, 6.5


