17 Optimal behavior: Decision theory

How to act optimally under uncertainty?

Given

- set of states: S
- set of actions: A
- state dynamics: executing a in s leads to s'

Goal

- Maximize reward or achieve a goal
- Reward function R(s)

Generalizes the concept of goal states. Goal states can be expressed using a reward function

$$R(s) = \begin{cases} 1 & \text{if } s \text{ is a goal} \\ 0 & \text{otherwise} \end{cases}$$

Task

- Given state dynamics and reward function
- Need to determine best actions to take

Why is this hard?

- Uncertainty in state dynamics
 - world could be random
 - world could be adversarial
- May have to tradeoff short term versus long term reward

17.1 Easiest case: Planning

Actions are deterministic: s' = a(s)

Given an initial state and goal condition:

- 1. can precompute an optimal action sequence
- 2. execute sequence blindly

17.2 Slightly harder case: Conditional planning

Actions are non-deterministic

S'(a,s) = set of possible next states when a executed in s

Have to plan for multiple outcomes (conditional/contingency planning)

Have to monitor plan and choose future actions based on future states (execution monitoring)

17.3 General case

Have to plan an action for every possible state A *total policy* (or *controller*) is given by $\pi: S \to A$

Optimal behavior: precompute optimal policy

Two cases:

- **Decision theory:** State dynamics are *random*: Living in an oblivious stochastic environment
- Game theory: State dynamics are adversarial: The world (or your opponents) are out to get you

17.4 Optimal decision theory

Given

- state space S
- \bullet actions A
- reward function $R: S \to \Re$
- state transition model P(s'|s, a)

Assume for now that we can *identify* the current state In this case, the optimal policy is a function of state: $\pi^*: S \to A$

Simplest case: optimize immediate expected reward

Only look one step ahead

Given current state s

For each action a, the expected total reward in the next state is

$$R(s) + \sum_{s'} P(s'|s, a) \ R(s')$$

Optimal action

$$\begin{aligned} a^* &= \arg \max_{a} \quad R(s) + \sum_{s'} \mathcal{P}(s'|s,a) \ R(s') \\ &= \arg \max_{a} \quad \sum_{s'} P(s'|s,a) \ R(s') \end{aligned}$$

17.5 Harder case: Sequential decision problem

Have to choose several actions in sequence, depending on resulting states. Goal is to maximize the total reward accumulated.

However, there is a *trade-off* between short term and long term reward. That is, simply taking the action that maximizes *immediate* reward does not always lead to the best policy

Here the optimal policy makes the decision $\pi^*(s_0) = a_2$, even though the optimal action for one step is a_1

17.6 Computing optimal policies: Acyclic case

Assume S finite

Assume no action sequence causes loop in state space

In particular, assume

- initial state s^0
- terminal state s^t
- after executing action in s^0 we go to one of the states

$$s_0^1, s_1^1, \dots, s_{k_1}^1$$

and after executing the second action, we go to one of the states

$$s_0^2, s_1^2, \dots, s_{k_2}^2$$

and so on, until after the tth action we arrive in state s^t

This is represented by

Thus, the state dynamics move forward level by level $P(s^{j+1}|s^j, a)$

Given

- R(s) a lookup table of length |S|
- P(s'|s, a) a lookup table (matrix) of size $|S| \times |S|$ for each a

Compute

• $\pi^*:S\to A$ — a lookup table of size |S| — that maximizes expected future reward from each state

Utility function

 $U(s,\pi)$ = total expected reward obtained by policy π starting in state s

$$= R(s) + \sum_{s'} U(s', \pi) \mathbf{P}(s'|s, \pi(s))$$

 $U(s^t,\pi) \hspace{.1 in} = \hspace{.1 in} R(s^t) \hspace{.1 in} = \hspace{.1 in} 0$

Compute π^* that maximizes $U(s,\pi)$ for all s

Naive algorithm

- Enumerate policies $(|A|^{|S|}$ possible policies)
- Evaluate each one $(O(|A| \times |S|^2))$
- Pick winner

Too expensive!

Efficient algorithm: Dynamic programming

Solve for $U(s,\pi)$ in last states first, and then recursively back up

$$\begin{aligned} \pi^*(s^i) &= \arg \max_a \quad R(s^i) + \sum_{s^{i+1}} U(s^{i+1}, \pi^*) \ \mathbf{P}(s^{i+1} | s^i, a) \\ &= \arg \max_a \sum_{s^{i+1}} U(s^{i+1}, \pi^*) \ \mathbf{P}(s^{i+1} | s^i, a) \\ U(s^i, \pi^*) &= R(s^i) + \sum_{s^{i+1}} U(s^{i+1}, \pi^*) \ \mathbf{P}(s^{i+1} | s^i, \pi^*(s^i)) \end{aligned}$$

where $U(s^{i+1}, \pi^*)$ is already computed

Algorithm 1 Sequential decision problem: acyclic case

1: $U(s^t, \pi^*) \leftarrow R(s^t);$ 2: for $j \leftarrow 0$ to k_{t-1} do $\pi^*(s_j^{t-1}) \leftarrow$ any action, because they all lead to s^t $U(s_j^{t-1}, \pi^*) \leftarrow R(s_j^{t-1}) + U(s^t, \pi^*)$ 3: 4: 5: end for 6: for $i \leftarrow t - 2$ down to 1 do for $j \leftarrow 0$ to k_i do 7: $\begin{array}{l} \pi^{*}(s_{j}^{i}) \leftarrow \arg\max_{a} \sum_{k=0}^{k_{i+1}} U(s_{k}^{i+1}, \pi^{*}) \ \mathrm{P}(s_{k}^{i+1} | s_{j}^{i}, a) \\ U(s_{j}^{i}, \pi^{*}) \leftarrow R(s_{j}^{i}) + \sum_{k=0}^{k_{i+1}} U(s_{k}^{i+1}, \pi^{*}) \ \mathrm{P}(s_{k}^{i+1} | s_{j}^{i}, \pi^{*}(s_{j}^{i})) \end{array}$ 8: 9: end for 10: 11: end for 11. $U(s^0, \pi^*) \leftarrow \arg \max_a \sum_{k=0}^{k_1} U(s^1_k, \pi^*) \operatorname{P}(s^1_k | s^0, a)$ 13. $U(s^0, \pi^*) \leftarrow R(s^0) + \sum_{k=0}^{k_1} U(s^1_k, \pi^*) \operatorname{P}(s^1_k | s^0, \pi^*(s^0))$

Time complexity $\leq |S| \times |S| \times |A| \times levels$

Readings

Russell and Norvig 2nd Ed: Chapter 12, Section 16.1 Dean, Allen, Aloimonos: Section 8.4