
CMPUT 366 – Intelligent Systems: Dale Schuurmans 1

17 Optimal behavior: Decision theory

How to act optimally under uncertainty?

Given

• set of states: S

• set of actions: A

• state dynamics: executing a in s leads to s′

Goal

• Maximize reward or achieve a goal

• Reward function R(s)

Generalizes the concept of goal states. Goal states can be expressed
using a reward function

R(s) =

{

1 if s is a goal
0 otherwise

Task

• Given state dynamics and reward function

• Need to determine best actions to take

Why is this hard?

• Uncertainty in state dynamics

– world could be random

– world could be adversarial

• May have to tradeoff short term versus long term reward

CMPUT 366 – Intelligent Systems: Dale Schuurmans 2

17.1 Easiest case: Planning

Actions are deterministic: s′ = a(s)

Given an initial state and goal condition:

1. can precompute an optimal action sequence

2. execute sequence blindly

17.2 Slightly harder case: Conditional planning

Actions are non-deterministic

S ′(a, s) = set of possible next states when a executed in s

Have to plan for multiple outcomes (conditional/contingency planning)

Have to monitor plan and choose future actions based on future states (exe-
cution monitoring)

17.3 General case

Have to plan an action for every possible state
A total policy (or controller) is given by π : S → A

Optimal behavior: precompute optimal policy

Two cases:

Decision theory: State dynamics are random: Living in an oblivious stochas-
tic environment

Game theory: State dynamics are adversarial: The world (or your oppo-
nents) are out to get you

CMPUT 366 – Intelligent Systems: Dale Schuurmans 3

17.4 Optimal decision theory

Given

• state space S

• actions A

• reward function R : S → <

• state transition model P(s′|s, a)

Assume for now that we can identify the current state
In this case, the optimal policy is a function of state: π∗ : S → A

Simplest case: optimize immediate expected reward

Only look one step ahead

Given current state s

For each action a, the expected total reward in the next state is

R(s) +
∑

s′

P (s′|s, a) R(s′)

Optimal action

a∗ = argmax
a

R(s) +
∑

s′

P(s′|s, a) R(s′)

= argmax
a

∑

s′

P (s′|s, a) R(s′)

CMPUT 366 – Intelligent Systems: Dale Schuurmans 4

17.5 Harder case: Sequential decision problem

Have to choose several actions in sequence, depending on resulting states.
Goal is to maximize the total reward accumulated.

However, there is a trade-off between short term and long term reward.
That is, simply taking the action that maximizes immediate reward does not
always lead to the best policy

>

s -
-

-
-

s0

s4s2

s3s1

a1

a2

a1

a1

a2

a2

R = 0

R = 100 R = −100

R = 0 R = 100

Here the optimal policy makes the decision π∗(s0) = a2, even though the
optimal action for one step is a1

17.6 Computing optimal policies: Acyclic case

Assume S finite

Assume no action sequence causes loop in state space

In particular, assume

• initial state s0

• terminal state st

• after executing action in s0 we go to one of the states

s1

0, s
1

1, . . . , s
1

k1

and after executing the second action, we go to one of the states

s2

0, s
2

1, . . . , s
2

k2

and so on, until after the tth action we arrive in state st

CMPUT 366 – Intelligent Systems: Dale Schuurmans 5

This is represented by

j
R

>

7

*

-

j

µ

R

- - -

- - -

R

µ

*

q

-

3
j

1

j

j
R

>
7

*

-

j

j
s0 st

s1
k1

s2
k2

st−1

kt−1

s1
0 s2

0 st−1

0

s1
1 s2

1 st−1

1

s0 s1 s2 st−1 st

...
...

. . .

...

. . .

. . .

Thus, the state dynamics move forward level by level P(sj+1|sj, a)

Given

• R(s) — a lookup table of length |S|

• P (s′|s, a) — a lookup table (matrix) of size |S| × |S| for each a

Compute

• π∗ : S → A — a lookup table of size |S| — that maximizes expected
future reward from each state

Task

R P → optimizer → π

|S| × 1 |S| × |S| × |A| |S| × 1

CMPUT 366 – Intelligent Systems: Dale Schuurmans 6

Utility function

U(s, π) = total expected reward obtained by policy π starting in state s

= R(s) +
∑

s′

U(s′, π) P(s′|s, π(s))

U(st, π) = R(st) = 0

Compute π∗ that maximizes U(s, π) for all s

Naive algorithm

• Enumerate policies (|A||S| possible policies)

• Evaluate each one (O(|A| × |S|2))

• Pick winner

Too expensive!

Efficient algorithm: Dynamic programming

Solve for U(s, π) in last states first, and then recursively back up

π∗(si) = argmax
a

R(si) +
∑

si+1

U(si+1, π∗) P(si+1|si, a)

= argmax
a

∑

si+1

U(si+1, π∗) P(si+1|si, a)

U(si, π∗) = R(si) +
∑

si+1

U(si+1, π∗) P(si+1|si, π∗(si))

where U(si+1, π∗) is already computed

CMPUT 366 – Intelligent Systems: Dale Schuurmans 7

Algorithm 1 Sequential decision problem: acyclic case

1: U(st, π∗)← R(st);
2: for j ← 0 to kt−1 do

3: π∗(st−1

j)← any action, because they all lead to st

4: U(st−1

j , π∗)← R(st−1

j) + U(st, π∗)
5: end for

6: for i← t− 2 down to 1 do
7: for j ← 0 to ki do

8: π∗(si
j)← argmaxa

∑ki+1

k=0
U(si+1

k , π∗) P(si+1

k |s
i
j, a)

9: U(si
j, π

∗)← R(si
j) +

∑ki+1

k=0
U(si+1

k , π∗) P(si+1

k |s
i
j, π

∗(si
j))

10: end for

11: end for

12: π∗(s0)← argmaxa

∑k1

k=0
U(s1

k, π
∗) P(s1

k|s
0, a)

13: U(s0, π∗)← R(s0) +
∑k1

k=0
U(s1

k, π
∗) P(s1

k|s
0, π∗(s0))

Time complexity ≤ |S| × |S| × |A| × levels

Readings

Russell and Norvig 2nd Ed: Chapter 12, Section 16.1
Dean, Allen, Aloimonos: Section 8.4

