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Abstract

Effective local search methods for finding satisfying assignments of CNF formulae exhibit several
systematic characteristics in their search. We identify a series of measurable characteristics of local
search behavior that are predictive of problem solving efficiency. These measures are shown to be
useful for diagnosing inefficiencies in given search procedures, tuning parameters, and predicting
the value of innovations to existing strategies. We then introduce a new local search method, SDF
(“smoothed descent and flood”), that builds upon the intuitions gained by our study. SDF works by
greedily descending in an informative objective (that considers how strongly clauses are satisfied,
in addition to counting the number of unsatisfied clauses) and, once trapped in a local minima,
“floods” this minima by re-weighting unsatisfied clauses to create a new descent direction. The
resulting procedure exhibits superior local search characteristics under our measures. We show that
this method can compete with the state of the art techniques, and significantly reduces the number of
search steps relative to many recent methods.  2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the introduction of GSAT [24] there has been considerable research on local
search methods for finding satisfying assignments for CNF formulae. These methods are
surprisingly effective: they can often find satisfying assignments for large CNF formulae
that are beyond the capability of current systematic search methods [24]. 1 Of course,
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local search is incomplete and cannot prove that a formula has no satisfying assignment
when none exists. However, despite this limitation, incomplete methods for solving large
satisfiability problems are proving their worth in applications ranging from planning to
circuit design and diagnosis [12,13,23].

Significant progress has been made on improving the efficiency of these methods since
the development of GSAT. In fact, a series of innovations have led to current search
methods that are now an order of magnitude faster.

Perhaps the most significant early improvement was to incorporate a “random walk”
component where variables were flipped from within random falsified clauses [21]. This
greatly accelerated search and led to the development of the very successful WSAT
procedure [22]. A contemporary idea was to keep a tabu list [15] or break ties in favor
of least recently flipped variables [7,8] to prevent GSAT from repeating earlier moves. The
resulting TSAT and HSAT procedures were also improvements over GSAT, but to a lesser
extent. The culmination of these ideas was the development of the Novelty and R_Novelty
procedures which combined a preference for least recently flipped variables in a WSAT-
type random walk [16], yielding methods that are currently among the fastest known.

A different line of research has considered adding clause-weights to the basic GSAT
objective (which merely counts the number of unsatisfied clauses) in an attempt to guide
the search from local basins of attraction to other parts of the search space [3–6,17,21].
These methods have proved harder to control than the above techniques, and it has only
been recent that clause re-weighting has been developed into a state of the art method.
The series of “discrete Lagrange multiplier” (DLM) systems developed in [25–27] have
demonstrated competitive results on benchmark challenge problems in the DIMACS and
SATLIB repositories. 2

Although these developments are impressive, a systematic understanding of local search
methods for satisfiability problems remains elusive. Research in this area has been largely
empirical and it is still often hard to predict the effects of a minor change in a procedure,
even when this results in dramatic differences in search times.

In this paper we identify three simple, intuitive measures of local search effectiveness:
depth, mobility, and coverage. We show that effective local search methods for finding
satisfying assignments exhibit all three characteristics. These, however, are conflicting
demands, and successful methods are primarily characterized by their ability to effectively
manage the tradeoff between these factors—whereas ineffective methods tend to fail on at
least one measure. Our goal is to be able to distinguish between effective and ineffective
search strategies in a given problem (or diagnose problems with a given method, or tune
parameters) without having to run exhaustive search experiments to their completion.

To further justify this endeavor, we introduce a new local search procedure, SDF
(“smoothed descent and flood”), that arose from our investigation of the characteristics
of effective local search procedures. We show that SDF exhibits uniformly good depth,
mobility, and coverage values, and consequently achieves good search performance (in
terms of the number of search steps required) on a large collection of benchmark
satisfiability problems. This paper revises and extends the earlier work reported in [20].

2 URLs ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf and http://aida.intellektik.
informatik.tu-darmstadt.de/∼hoos/SATLIB/ respectively.
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2. Local search procedures

In this paper we investigate several dominant local search procedures from the recent
literature. Although many of these strategies appear to be only superficial variants of one
another, they demonstrate dramatically different problem solving performance and (as we
will see) they exhibit distinct local search characteristics as well.

The local search procedures we consider start with a random variable assignment x =
〈x1, . . . , xn〉, x ∈ {0,1}, and make local moves by flipping one variable xi at a time (setting
x ′
i = 1 − xi ) until they either find a satisfying assignment or reach a maximum number of

moves. For any variable assignment there are a total of n possible variables to consider,
and the various strategies differ in how they make this choice. Current methods uniformly
adopt the original GSAT objective of simply minimizing the number of unsatisfied clauses

g(x)=
∑

cj∈clauses

1(x falsifies cj ) (1)

perhaps with some minor variation such as introducing clause weights or considering how
many new clauses become falsified by a flip (break count) or how many new clauses
become satisfied (make count). The specific flip selection strategies we investigate along
with their free parameters (shown in parentheses) are as follows.

GSAT() Flip the variable xi that results in the fewest total number of clauses being
unsatisfied. Break ties uniformly at random [24].

HSAT() Same as GSAT, but break ties in favor of the least recently flipped variable [7].

WSAT-G(p) Pick a random unsatisfied clause cj . With probability p flip a random xi in
cj . Otherwise flip the variable in cj that results in the smallest total number of
unsatisfied clauses [16].

WSAT-B(p) Same as WSAT-G, except in the latter case, flip the variable that would cause
the smallest number of new clauses to become unsatisfied [16].

WSAT(p) Same as WSAT-B, except first check whether some variable xi would not
falsify any new clauses if flipped, and always take such a move if available [16,
22].

Novelty(p) Pick a random clause cj . Flip the variable xi in cj that would result in the
smallest total number of unsatisfied clauses, unless xi is the most recently flipped
variable in cj . In the latter case, flip xi with probability 1 − p and otherwise flip
the variable xk in cj that results in the second smallest total number of unsatisfied
clauses [16].

Novelty+(p, q) Same as Novelty, except that after the clause cj is selected, flip a random
xi in cj with probability q , and otherwise continue with Novelty [11].

The recent DLM procedure is much more complex than the above methods. However,
it is arguably the most efficient search system for satisfying assignments currently known.
DLM keeps a vector of nonnegative weightswj on the clauses cj and then employs a GSAT
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style local search to reduce the total weight of unsatisfied clauses. Once a local minimum
is reached, the weights of the unsatisfied clauses are increased and the search is continued.
In addition, DLM also employs a tabu list on flipped variables. The exact calculation for
the weight updates is complex and the interested reader is referred to [25–27] for details.
Despite its overall complexity (the publically released implementation contains 16 free
parameters) the architects of DLM have managed to engineer it into achieving state of the
art performance [27]—a fact which we verify below. To run DLM in our experiments we
explored the five default parameter sets supplied in the public software release. 3

Note that, conventionally, all of these local search procedures have an outer loop that
places an upper bound, t , on the maximum number of flips allowed before re-starting
with a new random assignment. However, we will not focus on random restarts in our
experiments below because any search strategy can be improved (or at the very least, not
damaged) by choosing an appropriate cutoff value t [9,10]. In fact, it is straightforward
and well known how to do this optimally (in principle): For a given search strategy and
problem, let the random variable T denote the number of flips needed to reach a solution
in a single run, and let Tt denote the number of flips needed when using a random restart
after every t flips. We then have the straightforward equality [18]

E(Tt )= t

P(T � t)
− [

t − E(T | T � t)
]

(2)

which simply states that E(Tt ) is t times the expected number of restarts needed to find
a solution (t/P(T � t)), minus a small correction which accounts for the fact that on the
last restart the search will generally find the solution before the maximum cutoff value has
been reached. Note that this always offers a potential improvement in principle, since one
could choose the optimal cutoff value

t∗ = arg min
t : 0<t�∞

E(Tt ) (3)

which will yield a substantial reduction in expected search time for most natural search
distributions [10] and, at the very least, not increase the expected search time for any
distribution (see Appendix A for a detailed discussion). Therefore, we will focus on
investigating the single run characteristics of the various variable selection policies, but
be sure to report estimates of what the optimum achievable performance would be using
random restarts. We report this optimal quantity for every procedure using the empirical
distribution of T over several runs (at least 100) to estimate E(Tt∗).

3. Measuring local search performance

In order to tune the parameters of a search strategy, determine whether a strategic
innovation is helpful, or even debug an implementation, it would be useful to be able to
measure how well a search is progressing without having to run it to completion on large,
difficult problems.

3 Software available at http://manip.crhc.uiuc.edu.



D. Schuurmans, F. Southey / Artificial Intelligence 132 (2001) 121–150 125

3.1. Depth

To begin, we consider a simple and obvious measure of local search performance that
has no doubt been used to tune and debug many search strategies in the past.

Depth measures how many clauses remain unsatisfied as the search proceeds. Intuitively,
this indicates how deep in the objective g the search is remaining. To get an overall
summary, we take a depth average over all search steps (after the first td steps 4).
Note that it is desirable to obtain a small value of depth.

Although simple minded, and certainly not the complete story, it is clear that effective
search strategies do tend to descend rapidly in the objective function and remain at good
objective values as the search proceeds. By contrast, strategies that fail to persistently stay
at good objective values usually have very little chance of finding a satisfying assignment
in a reasonable number of flips [16].

To demonstrate this rather obvious effect, consider the problem of tuning the noise
parameter p for the WSAT procedure on a given problem. Here we use the uf100-0953
problem from the SATLIB repository to demonstrate our point. 5 Table 1 shows that higher
noise levels cause WSAT to stay higher in the objective function and significantly increases
the numbers of flips needed to reach a solution for this problem. (The SDF procedure in
the table is introduced in Section 4 below.) This result holds for the raw average number
of flips and also for the optimal expected number of flips using an optimal maximum
flips cutoff with random restarts, Ê(Tt∗) (estimated by choosing the t∗ that minimizes (2)
under the empirical distribution). The explanation is obvious: by repeatedly flipping an
arbitrary random variable in an unsatisfied clause, WSAT is frequently “kicked up” to
higher objective values—to the extent that it begins to spend significant search time simply
re-descending to a lower objective value, only to be prematurely kicked up again.

Although depth is a simplistic measure, it proves to be very useful for tuning noise and
temperature parameters in local search procedures. By measuring depth, one can determine
if the search is spending too much time recovering from large increases in the objective
function and not enough time exploring near the bottom of the objective. More importantly,
maintaining depth appears to be necessary for achieving reasonable search times. Table 2
shows the results of a large experiment conducted on the entire collection of 2700 uf
problems in SATLIB. This comparison ranked four comparable methods—DLM, Novelty,
Novelty+, and WSAT—in terms of their search depth and average flips. For each problem,
the four methods were run 100 times and the optimal expected flip count (using an ideal
restart scheme) was estimated for each, and then the methods were ranked in terms of their
estimated optimal flip count and average depth. Each (flips rank, depth rank) pair was then
recorded in a table. The relative frequencies of these pairs is summarized in Table 2. This

4 Note that a random initial assignment will generally have poor depth, but most search methods will
nevertheless settle into a lower steady state behavior after the initial transient phase. In our experiments we
simply ignore the first td = 100 flips to calculate the average depth to avoid this initial transient phase.

5 The uf series of problems are randomly generated 3-CNF formulae that are generated at the phase transition
ratio of 4.3 clauses to variables. Such formulae have roughly a 50% chance of being satisfiable, but uf contains
only verified satisfiable instances. For a recent approach to generating hard random satisfiable instances see [1].



126 D. Schuurmans, F. Southey / Artificial Intelligence 132 (2001) 121–150

Table 1
Average number of unsatisfied clauses obtained by various search procedures over
the length of a search run (depth), along with the average number of flips needed to
find a solution and the estimated average number of flips needed under an optimal
re-start scheme. Results are averaged over 100 runs on problem uf100-0953 from
SATLIB

100 runs on Average Average Est. optimal
uf100-0953 depth flips average flips

using restarts

WSAT(.5) 5.16 11,757 9,802

WSAT(.7) 8.60 18,042 17,282

WSAT(.8) 10.3 25,543 18,698

WSAT(.9) 12.3 59,042 53,451

Novelty(.5) 3.75 4,916 4,563

Novelty+(.5, .01) 3.68 3,965 3,965

DLM(pars4) 5.40 2,182 1,984

SDF(.00085) 3.03 1,192 1,174

Table 2
Frequencies of (flips rank, depth rank) pairs from among four
search procedures, DLM, Novelty, Novelty+ and WSAT, measured
over the entire collection of uf problems in SATLIB (2700
problems in total)

Flips Depth rank

rank best 1 2 3 worst 4

best 1 .74 .09 .13 .05

2 .10 .28 .38 .25

3 .14 .42 .34 .11

worst 4 .03 .22 .16 .60

table shows that the highest ranked method in terms of search efficiency was almost always
ranked near the top in terms of search depth, and almost never near the bottom rank.

3.2. Mobility

Although useful, depth alone is clearly not a sufficient criterion for ensuring good search
performance. A local search could easily become stuck at a good objective value, and yet
fail to explore widely. To account for this possibility we introduce another measure of local
search effectiveness.
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Fig. 1. Average Hamming distance between variable assignments at different time lags obtained by various search
procedures. Distances are averaged over the length of each search run and then averaged across 100 repetitions
of the uf100-0953 problem in SATLIB.

Mobility measures how rapidly a local search moves in the search space. We measure
mobility by calculating the Hamming distance 6 between variable assignments
that are k steps apart in the search sequence and average this quantity over the
entire sequence to obtain average distances at time lags k = 1,2,3, . . . , etc. It is
desirable to obtain a large value of mobility since this indicates that the search is
moving rapidly through the space.

Mobility is obviously very important in a local search. In fact, most of the significant
innovations in local search methods over the last decade appear to have the effect of sub-
stantially improving mobility without significantly damaging depth. This is demonstrated
clearly in Fig. 1 and Table 3 for the uf100-0953 problem. It appears that the dramatic
improvements of these methods could have been predicted from their improved mobility
scores (while maintaining comparable depth scores).

Fig. 1 and Table 3 cover several highlights in the development of local search methods
for satisfiability. For example, one of the first useful innovations to GSAT was to add a
preference for least recently flipped variables, resulting in the superior HSAT procedure.
Table 3 shows that one benefit of this change is to increase mobility without damaging
search depth, which corresponds to improved solution times. (GSAT failed to solve the
problem within 500,000 steps on 100 trials, whereas HSAT solved it once.) Another
early innovation was to incorporate “random walk” in GSAT. Fig. 1 shows that WSAT-G

6 The Hamming distance between two Boolean vectors is simply the number of positions where the vectors
disagree.
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Table 3
Hamming distance between assignments 100 steps apart in the search, averaged
over the length of a search run (along with depth and search step measures). Results
are averaged over 100 runs on problem uf100-0953 in SATLIB

100 runs on Average Average Average Est. optimal
uf100-0953 mobility depth flips average flips

using restarts

GSAT() 6.0 2.19 500,000 na

HSAT() 9.0 2.06 495,003 16,700

WSAT-G(.5) 10.1 4.20 29,661 15,442

WSAT(.5) 16.1 5.16 11,757 9,802

Novelty(.5) 19.0 3.75 4,916 4,563

Novelty+(.5, .01) 18.7 3.68 3,965 3,965

DLM(pars4) 28.6 5.40 2,182 1,984

SDF(.00085) 29.7 3.03 1,192 1,174

also delivers a noticeable increase in mobility—again resulting in a dramatic reduction
in solution times (Table 3). It is interesting to note that the apparently subtle distinction
between WSAT-G and WSAT in terms of their definition is no longer subtle here: WSAT
offers a dramatic improvement in mobility, along with an accompanying improvement
in efficiency. The culmination of novelty and random walk in the Novelty procedure
achieves even a further improvement in mobility, and, therefore it seems, solution time.
Finally, the recent DLM procedure clearly exhibits superior mobility and search step
scores to all the other methods (except perhaps for the SDF procedure, which we introduce
below).

We have observed this relationship between mobility and solution time consistently over
the entire range of problems we have investigated. In fact, Fig. 2 and Table 4 show that
similar results are obtained by averaging over the entire collection of uf100 problems in
the SATLIB repository (1000 problems in total). From these results it appears that, in
addition to depth, mobility also is a necessary characteristic of an effective local search
for satisfiability problems. To establish this further, Table 5 shows the results of a large
experiment conducted on the entire collection of 2700 uf problems in SATLIB. The same
four procedures were tested as before (DLM, Novelty, Novelty+, WSAT) and ranked in
terms of their mobility scores and number of flips to find a solution. The results show
that the highest ranked in terms of mobility is almost always ranked near the top in
problem solving efficiency, and that low mobility tends to be correlated with inferior search
efficiency.

3.3. Coverage

A final characteristic of local search behavior that we consider is easily demonstrated
by a simple observation: Hoos [11] presents a small satisfiable CNF formula with five
variables and six clauses that causes Novelty to sometimes get stuck (permanently) in a
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Fig. 2. Same as Fig. 1, but results are averaged over 100 runs on all 1000 uf100 problems from SATLIB.

Table 4
Same as Table 3, but results averaged over 100 runs on all 1000 uf100 problems
from SATLIB

100 runs on 1000 Average Average Average Est. optimal
uf100 problems mobility depth flips average flips

using restarts

GSAT() 8.8 1.62 74,595 10,823

HSAT() 15.8 1.35 73,510 2,503

WSAT-G(.5) 12.8 3.13 7,695 4,431

WSAT(.5) 18.9 3.49 3,582 2,828

Novelty(.5) 23.4 1.90 2,586 1,473

Novelty+(.5, .05) 23.6 1.93 2,224 1,393

DLM(pars4) 32.4 6.36 1,020 800

SDF(.00085) 31.8 1.41 876 755

local basin of attraction that prevents it from solving an otherwise trivial problem. The
significance of this example is that Novelty exhibits good depth and mobility on this
instance and yet fails to solve what is otherwise an easy problem. This concern led Hoos
to develop the slightly modified procedure Novelty+ in [11]. The characteristic that the
original Novelty procedure is missing in this case is coverage.
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Table 5
Frequencies of (flips rank, mobility rank) pairs from
among four search procedures, DLM, Novelty, Novelty+
and WSAT, measured over the entire collection of uf
problems in SATLIB (2700 problems in total). Mobility
is measured between assignments 100 steps apart in the
search, averaged over the length of a search run

Flips Mobility rank

rank best 1 2 3 worst 4

best 1 .92 .07 .01 .00

2 .06 .72 .21 .01

3 .03 .20 .75 .03

worst 4 .00 .01 .03 .96

Coverage measures how systematically the search explores the entire space. We compute
a rate of coverage by first estimating the size of the largest unexplored “gap” in the
search space (given by the maximum Hamming distance between any unexplored
assignment and the nearest explored assignment) and measuring how rapidly the
largest gap size is being reduced. In particular, we define the coverage rate to be
(n− max gap)/(search steps × n). Note that it is desirable to have a high rate of
coverage as this indicates that the search is systematically exploring new regions
of the space as it proceeds.

Unfortunately, given a set of Boolean assignments it is NP-hard to find an assignment
that has the greatest minimum Hamming distance from the set, and therefore we can
only approximate this measure. It is possible to use a linear programming relaxation to
efficiently calculate an upper bound on the maxi-min distance (since this target quantity
can be determined by an integer linear program), but we instead use a cheaper heuristic that
simply determines the maxi-min distance among negations of existing search assignments.

Table 6 shows that Hoos’s modified Novelty+ procedure improves the coverage rate
of Novelty on the uf100-0953 problem. Table 7 shows that this effect is systematic over
a large number of uf100 problems from the SATLIB repository. In these experiments
Novelty+ demonstrates better coverage than Novelty while maintaining similar values on
other measures, and thereby achieves better performance on almost every problem in the
benchmark collections.

From these results it appears that coverage too is a necessary trait for effective local
search in satisfiability problems. To further support this assertion Table 8 shows the results
of a large experiment conducted on the entire collection of 1000 uf100 problems in
SATLIB. Once again, we tested the four procedures, DLM, Novelty, Novelty+, and WSAT,
and measured the (flips rank, coverage rank) frequencies they obtained. Table 8 shows that
the highest ranked in terms of coverage is almost always ranked near the top in problem
solving efficiency, and again almost never near the bottom rank.

It is important to emphasize that coverage captures a different aspect of local search
behavior than mobility. Mobility characterizes how rapidly the search moves away from
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Table 6
Average coverage rates obtained over entire search runs by various search procedures—along with depth,
mobility, and number of search steps needed to find a solution. Results are averaged over 100 runs on problem
uf100-0953 in SATLIB

100 runs on Average Average Average Average Est. optimal
uf100-0953 coverage mobility depth flips average flips

rate using restarts

GSAT() .00003 6.0 2.19 500,000 na

HSAT() .00028 9.0 2.06 495,003 16,700

WSAT-G(.5) .00011 10.1 4.20 29,661 15,442

WSAT(.5) .00013 16.1 5.16 11,757 9,802

Novelty(.5) .00013 19.0 3.75 4,916 4,563

Novelty+(.5, .01) .00017 18.7 3.68 3,965 3,965

DLM(pars4) .00047 28.6 5.40 2,182 1,984

SDF(.00085) .00053 29.7 3.03 1,192 1,174

Table 7
Same as Table 6, but results averaged over 100 runs on all 1000 uf100 problems from SATLIB

100 runs on 1000 Average Average Average Average Est. optimal
uf100 problems coverage mobility depth flips average flips

rate using restarts

GSAT() .0002 8.8 1.62 74,595 10,823

HSAT() .0007 15.8 1.35 73,510 2,503

WSAT-G(.5) .0004 12.8 3.13 7,695 4,431

WSAT(.5) .0005 18.9 3.49 3,582 2,828

Novelty(.5) .0010 23.4 1.90 2,586 1,473

Novelty+(.5, .01) .0012 23.6 1.93 2,224 1,393

DLM(pars4) .0014 32.4 6.36 1,020 800

SDF(.00085) .0016 33.4 1.52 870 725

recently explored assignments. However, this does not necessarily imply that the search is
exploring significant new regions of the space. Moving rapidly within a large but confined
region is quite different from systematically moving into new regions—even an extremely
mobile search could be managing to ignore significant regions of the search space, which
clearly is not a desirable characteristic in a general search procedure. Coverage, on the
other hand, measures precisely how systematically the search is uncovering new regions of
the space that have not been previously explored.
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Table 8
Frequencies of (flips rank, coverage rank) pairs from
among four search procedures, DLM, Novelty, Novelty+
and WSAT, measured over the entire collection of uf100
problems in SATLIB (1000 problems in total)

Flips Coverage rank

rank best 1 2 3 worst 4

best 1 .67 .22 .10 .01

2 .19 .43 .32 .06

3 .13 .32 .45 .11

worst 4 .00 .04 .14 .82

3.4. Sufficiency

To this point we have investigated the necessity of the three proposed measures:
depth, mobility and coverage. Necessity means that poor performance under any one
measure leads to poor performance in overall problem solving behavior. However, these
observations raise the question of the sufficiency of the three measures. That is, are
simultaneously good depth, mobility, and coverage scores sufficient to ensure that effective
problem solving performance is obtained (independent of other algorithmic details)? To
present some evidence that this might be the case, at least empirically, we conducted the
following study: We ran all of the local search methods we had available (DLM, SDF,
Novelty+, Novelty, WSAT, HSAT, GSAT) with three parameter perturbations each, for
a total of 21 methods on all 2700 uf problems in the SATLIB repository. Our intent
was to measure the correlation between each performance measure and problem solving
efficiency, while keeping the other search measures fixed but allowing all other aspects of
algorithmic detail to vary as widely as possible.

Specifically, we ran all 21 methods on the 2700 uf problems and recorded their
depth, mobility, coverage, and flips scores, averaged over 100 runs. This yielded 56,700
〈depth,mobility, coverage,flips〉 tuples. For each of the candidate measures (say depth)
we controlled the two other measures by placing the tuples into buckets defined by small
intervals of the two remaining measures (say mobility and coverage); thereby attempting
to keep the two other measures approximately constant. For example, in one experiment
the 56,700 tuples were first partitioned into 25 buckets determined by mobility values in
the 0–4, 5–8, 9–12, . . . , 97–100 percentiles, and then each of these buckets was further
subdivided into 25 sub-buckets determined by coverage values in the 0–4, 5–8, . . . , 97–
100 percentiles, so that in the end we obtained 625 buckets that each contained tuples with
similar mobility and coverage scores. We then investigated the relationship between the
depth and flip scores within each bucket. The idea was to keep mobility and coverage fixed
and see how systematically depth might be correlated with search steps (flips). Note that,
on average, each bucket should contain about 56,700/625 ≈ 91 〈depth,flips〉 pairs, which
hopefully vary enough to allow us to detect any relationship in their behavior. In each
bucket we measured the correlation between depth and flips using the standard sample
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Table 9
Correlation of each proposed measure with number of
search steps (flips), holding the other two measures
roughly constant. Numbers are averaged across 625
buckets of controlled tuples obtained by running 21
methods over the entire collection of 2700 uf problems.
The entropy numbers indicate the average diversity of
methods in each bucket that support the estimates

Depth Mobility Coverage

Correlation 0.21 −0.31 −0.49

Entropy 2.20 2.07 1.23

correlation statistic, and also measured the diversity of the bucket by the entropy of the
distribution of methods it contained. 7

In this experiment, supporting evidence for the sufficiency of the set of criteria
(independent of other algorithmic details) would be given by an appropriate correlation of
each measure with flips while the other measures are held approximately constant, along
with a diversity of methods supporting the inference. Such an outcome would suggest that,
the two other measures being equal (but little else controlled), improving any one criterion
would generally result in a reduction in search steps. In fact, this is basically what we
observe. Table 9 shows that, the other two measures being held equal (but the algorithms
varying otherwise), each one of the three criteria is correlated in the appropriate direction
with search steps (positive with depth, negative with mobility and coverage), and each of
these inferences is supported by a nontrivial diversity of search methods.

Although these results do not completely settle the matter, we believe that this
experiment does provide some weak evidence that the three proposed criteria might at
least be partially sufficient for yielding effective local search performance, in addition to
their more obvious necessity.

3.5. Summary

Overall, our results lead us to hypothesize that local search procedures work effectively
because they descend quickly in the objective, persistently explore variable assignments
with good objective values, and do so while moving rapidly through the search space
and visiting very different variable assignments without returning to previously explored
regions. That is, we surmise that good local search methods do not possess any special
ability to predict whether a local basin of attraction contains a solution—rather they simply
descend to promising regions and explore near the bottom of the objective as rapidly,
broadly, and systematically as possible, until they stumble across a solution. Although this
is a rather simplistic view, it seems supported by our data, and moreover it has led to the
development of a new local search technique that we introduce below. Our new procedure

7 Hence, the maximum entropy is obtained by a uniform distribution over the 21 methods, for a value of 4.39
bits.
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achieves good characteristics under these measures and, more importantly, exhibits good
search-step performance in comparison to existing methods.

4. A new local search strategy: SDF

Although the previous measures provide useful diagnostic information about local
search performance, one of the the main contributions of this paper is a new local search
procedure, which we call SDF for “smoothed descent and flood.” Our procedure has two
main components that distinguish it from previous approaches. First, we perform steepest
descent in a more informative objective function than earlier methods. Second, we use
multiplicative clause re-weighting to rapidly move out of local minima and efficiently
travel to promising new regions of the search space.

Recall that the standard GSAT objective g (defined in (1)) simply counts the number
of unsatisfied clauses for a given variable assignment. We instead consider a smoothed
objective f (defined below) which takes into account how many variables satisfy each
clause. To explain this objective, it will be more convenient to think of a reversed goal
where we seek to maximize the number of satisfied clauses rather than minimize the number
of unsatisfied clauses. Our smoothed objective f works by favoring variable assignments
that satisfy more clauses, but all things being equal, favoring assignments that satisfy more
clauses twice (subject to satisfying the same number of clauses once), and so on. In effect,
we introduce a tie-breaking criterion that decides, when two assignments satisfy the same
number of clauses, that we should prefer the assignment which satisfies more clauses
on two distinct variables, and if the assignments are still tied, that we should prefer the
assignment that satisfies more clauses on three distinct variables, etc. This tie-breaking
scheme can be expressed in a scalar function that gives a large increment to the first
satisfying variable, and then gives exponentially diminishing increments for subsequent
satisfying variables for a given clause. For k-CNF formulas with m clauses such a scoring
function is

f (x)=
∑

c∈clauses

score(# xi’s that satisfy c), (4)

where

score(0) = 0,

score(1) = mk−1,

score(2) = mk−1 +mk−2,

...

score(k) = mk−1 +mk−2 + · · · + 1.

The key property of this scoring function is that the increment obtained by increasing the
number of satisfying variables in one clause from j to j + 1 is greater than the increment
obtained by increasing the number of satisfying variables in all remaining m− 1 clauses
from j + 1 all the way to k. That is
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Fig. 3. Average number of unsatisfied clauses (depth in g) achieved before reaching a local optimum or plateau.
Results are obtained by running initial descents in g and −f on uf100-0953 until the first local optimum or
plateau point is reached, and then reporting the average g value at a given time point if at least 95 of 100 runs
have successfully descended that many steps.

score(j + 1)− score(j) = mk−j−1

> (m− 1)

(
mk−j−1 − 1

m− 1

)

= (m− 1)
(
mk−j−2 +mk−j−3 + · · · + 1

)
= (m− 1)

(
score(k)− score(j + 1)

)
.

Our intuition is that performing steepest ascent in this objective should help build
robustness in the current variable assignment which the search can later exploit to
satisfy new clauses. That is, once the search has reached an assignment where no
additional clauses can be satisfied immediately, we can still proceed productively by
finding assignments that satisfy more clauses on two distinct variables, or failing that,
finding assignments that satisfy more clauses on three distinct variables, etc.—with the
hope that this will create the opportunity to satisfy more clauses (once) later in the search.
We have clearly observed this phenomenon in our experiments. In fact, Fig. 3 shows that
following a steepest ascent in f descends deeper in the original GSAT objective g than the
GSAT procedure itself (before either procedure reaches a local extrema or plateau). This
happens because plateaus in the GSAT objective g are not plateaus in f—such plateaus are
usually opportunities to build up robustness in satisfied clauses which can be later exploited
to satisfy new clauses. This effect is clearly demonstrated in Fig. 3, and has been observed
over the range of problems we have considered. This gives our first evidence that the SDF
procedure, by descending deeper in the GSAT objective, has the potential to improve the
performance of existing local search methods.

The main issue is to cope with local maxima in the new objective. That is, although f

does not contain many plateaus, the local search procedure now has to deal with legitimate
(and numerous) local maxima in the search space. While this means that plateau walking
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is no longer a significant issue, it creates the difficulty of having to escape from true traps
in the objective function. Our strategy for coping with local maxima involves the second
main idea behind the SDF procedure: multiplicative clause re-weighting. That is, we first
consider a clause-weighted version of our smoothed objective

h(x,w)=
∑

c∈clauses

w(c) score(# xi’s that satisfy c) (5)

(where the clause weights are initially assigned to be uniform, w(c)= 1/m) and then use
multiplicative weight updates to escape local maxima. Note that when a search is trapped
at a local maxima the current variable assignment must leave some subset of the clauses
unsatisfied. Many authors have observed that such local extrema can be “filled in” by
increasing the weight of the unsatisfied clauses to create a new search direction that allows
the procedure to escape [5,17,21,26,27]. That is, one permits a few low weight clauses
to be sacrificed in the interests of satisfying an important high weight clause. However,
previous published re-weighting schemes all use additive updates to increment the clause
weights. Unfortunately, additive updates do not work very well on difficult search problems
because the clauses develop large weight differences over time, and this causes the update
mechanism to lose its ability to rapidly adapt the weight profile to new regions of the
search space. Multiplicative updating has the advantage of maintaining the ability to swiftly
change the weight profile whenever necessary.

However, a final issue we faced in devising our update procedure was that persistently
satisfied clauses would often lose their weight to the extent that they would become
frequently falsified, and consequently the depth of search (as measured in g) would
deteriorate. To cope with this effect, we flattened the weight profile of the satisfied clauses
at each re-weighting by shrinking them towards their common mean. This increased the
weights of satisfied clauses without requiring them to be explicitly falsified, and had
the overall effect of restoring search depth and improving performance. The final SDF
procedure we tested is summarized as follows. 8

SDF(δ, ρ) Flip the variable xi that leads to the greatest increase in the weighted objective
h(x,w). If the current variable assignment is a local maximum and not a solution,
then re-weight the clauses to create a new ascent direction and continue (see
Fig. 4).

Re-weight(δ, ρ) Multiplicatively re-weight the unsatisfied clauses and re-normalize the
clause weights w so that the resulting largest difference in the h(x,w) objective
(when flipping any one variable) is δ. (That is, create a new greedy search
direction.) Then flatten the weight profile of the satisfied clauses by shrinking
them 1 − ρ of the distance towards their common mean (to prevent the weights
from becoming too small and causing clauses to be gratuitously falsified in the
future). The technical details of this algorithm are outlined in Fig. 5.

One interesting aspect of this procedure is that it is almost completely deterministic
(given that ties are rare in the objective, and ignoring the application of random re-

8 Our code is publically available at http://ai.uwaterloo.ca/∼dale/software/sdf/.
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procedure SDF(δ, ρ)

Initialize the weight w(c) := 1
m for each clause c

Start with a random initial variable assignment x

Compute �xi (x,w) := h(x(xi :=1−xi),w)− h(x,w) for each variable xi

while x is not a satisfying assignment

xi∗ := arg maxxi �xi (x,w)

if �xi∗ (x,w) < 0

w := Re-weight(δ, ρ)(x,w)

Recompute �xi (x,w) for each xi
xi∗ := arg maxxi �xi (x,w)

end

xi∗ := 1 − xi∗

Update �xi (x,w) for each xi that shares a common clause with xi∗
end

Fig. 4. Simple outline of the SDF procedure. Note that this description does not mention an outer re-start loop
because we assume this can be implicitly added to any local search procedure, as discussed in Section 2.
Also note that an efficient implementation of this procedure requires the quantities �xi to be maintained
implicitly and updated in a lazy manner that avoids explicitly looping through the entire set of clauses; see
http://ai.uwaterloo.ca/∼dale/software/sdf/ for details.

starts) and yet seems to perform very well in comparison to the best current methods,
all of which are highly stochastic. We claim that much of the reason for this success
is that SDF maintains good depth, mobility, and coverage in its search. This is clearly
demonstrated in all of the experiments of Section 3, where it is shown that SDF obtains
superior measurements under every criteria.

5. Evaluation

We have conducted an evaluation of SDF on several thousand benchmark satisfiability
problems from the SATLIB and DIMACS repositories. The results we obtained yield a
number of observations. In general, comparing SDF to the very effective Novelty+ and
WSAT procedures we find that SDF typically reduces the number of flips needed to find a
satisfying assignment over the best of Novelty+ and WSAT by a factor of two to three on
random satisfiable CNF formulae (in the uf, flat, and aim collections) and usually by much
larger factors on non-random CNF formulae (in the SATLIB blocks-world and ais problem
sets). These results are consistent across the range of the problems we have investigated,
and hold up even when considering the mean flips without restarts, median flips, and
optimal expected flips using restarts, Ê(Tt∗), estimated from (1). Although much simpler,
SDF appears to be competitive with DLM in terms of search steps as well (although not in
terms of CPU time).
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procedure Re-weight(δ, ρ)

Let F = total weight of false clauses
S = total weight of satisfied clauses (note that F + S = 1)

For each variable xi let

f+
i

= total increment from currently false clauses (i.e., satisfied by 1 − xi )
s+
i

= total increment from currently satisfied clauses (satisfied by 1 − xi )
s−
i

= total decrement from currently satisfied clauses (i.e., satisfied by xi )

Note that �xi = f+
i + s+i − s−i (defined in Fig. 4) and also by the assumption

of re-weighting we have �xi < 0 for all xi .

For each variable xi such that f+
i > 0, compute

αi := s−i − s+i + Sδ

F(s−i − s+i )+ Sf+
i

, βi := 1 − Fαi

S

This ensures the following two properties (proved in Appendix B):

Property 1: αiF + βiS = 1, αi > 1, and βi < 1

Property 2: if f+
i
> 0, then �′

xi
= αif

+
i

+ βis
+
i

− βis
−
i

= δ

Assign α∗ := mini αi , β∗ := 1 − Fα∗
S

,

w(c) :=


α∗ w(c) if c currently false

β∗ w(c) if c currently satisfied

This ensures that �x∗ = δ by Property 2, and F + S = 1 by Property 1.

To shrink the satisfied clause weights towards their common mean, assign

sat := 1

#sat

∑
c∈sat

w(c)

w(c) := (1 − ρ) sat + ρ w(c)

Note that this still ensures F + S = 1 (Property 3, proved in Appendix B).

Fig. 5. Conceptual outline of the multiplicative clause re-weighting procedure, demonstrating the required
calculations and key properties. Note that an efficient implementation of this procedure requires the clause
weights to be maintained implicitly and only updated when directly connected to a flipped variable; see
http://ai.uwaterloo.ca/∼dale/software/sdf/ for details.

In more detail, our experiments were conducted by running each search procedure
100 times on each problem and then averaging the results over these runs. The numbers
reported are average number of flips needed to find a solution, the estimated optimal
number of flips needed under an optimal restart scheme (estimated using (3)), the
percentage of failures over 100 repetitions (cut off at 500,000 flips), 9 and the average CPU
time per flip (in milliseconds on a PIII 450MHz processor). The methods we tested were
SDF, DLM, Novelty, Novelty+, and WSAT, and on smaller problems HSAT, GSAT, and

9 All problems were cut off at 500,000 flips except bw_large.c (1,000,000 flips).
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Table 10
Flat problems (100 problems each)

flat100 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 42,795 34,814 .28 2.7

Novelty(.6) 17,979 13,946 .14 2.8

Novelty+(.6, .01) 17,134 12,540 .02 2.8

DLM(pars4) 9,571 8,314 0 4.8

SDF(.0002) 7,175 6,474 0 20.9

flat125 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 75,135 66,232 1.6 2.9

Novelty(.6) 32,727 24,616 .75 3.0

Novelty+(.5, .01) 36,739 26,066 .78 2.8

DLM(pars4) 26,182 21,506 0 5.1

SDF(.0002) 15,169 13,293 0 21.4

flat150 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 146,163 129,407 8.3 2.9

Novelty(.5) 92,859 60,827 3.6 2.9

Novelty+(.5, .01) 81,276 57,698 2.7 2.9

DLM(pars4) 69,779 54,637 .98 5.5

SDF(.0001) 36,304 29,327 .22 25.3

flat200 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 299,847 298,091 36 3.1

Novelty(.5) 235,679 204,691 26 3.0

Novelty+(.6, .01) 238,738 224,526 27 3.3

DLM(pars4) 280,401 242,439 31 6.2

SDF(.0001) 140,005 112,020 7 26.1

simulated annealing. To ensure that we compared SDF to other state of the art clause re-
weighting schemes, we included the most recent version of DLM [27] in our experiments.
All parameter settings used for each procedure are indicated in parentheses. 10

There are two broad classes of experiments reported in Tables 10 to 17. The first class,
Tables 10 to 14, covers a wide array of random satisfiability problems from both the

10 All parameter settings are shown explicitly, with the exception of SDF where only the value if δ is given
(since ρ is fixed to 0.995 in all cases), and DLM where the 16 parameters were set by testing each of the 5 default
parameter sets given at http://manip.crhc.uiuc.edu and choosing the best of these sets.
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Table 11
Small uf problems (100 problems each, except uf50 and uf100 which have
1000 problems each)

uf50 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 656 496 0 3.6

Novelty(.7) 633 230 .07 3.3

Novelty+(.7, .01) 259 235 0 3.8

DLM(pars4) 186 160 0 6.6

SDF(.003) 156 140 0 11.6

uf75 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 1818 1365 0 3.7

Novelty(.6) 1493 635 .15 3.3

Novelty+(.7, .01) 661 605 0 3.8

DLM(pars4) 515 404 0 6.1

SDF(.0015) 435 389 0 13.4

uf100 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 3622 2813 0 3.8

Novelty(.6) 2788 1273 .23 3.4

Novelty+(.6, .01) 1581 1261 0 3.7

DLM(pars4) 1020 800 0 6.3

SDF(.00085) 864 725 0 15.9

uf125 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 8966 5452 .01 3.9

Novelty(.7) 4892 2785 .32 3.7

Novelty+(.7, .01) 3314 2606 0 4.0

DLM(pars4) 2096 1573 0 6.1

SDF(.0006) 1879 1505 0 17.6

SATLIB and DIMACS repositories. The second class of experiments, Tables 15 to 17,
covers large structured problems in these collections. The results in all cases are averaged
over all problems in the respective problem set.

The results on the second class of (structured) problems are particularly striking. These
problems challenge the previous generation of local search methods (WSAT, Novelty and
Novelty+) and yet SDF and DLM both appear to solve them with significantly fewer search
steps. This suggests that, although SDF and DLM shares many similarities to other local
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Table 12
Larger uf problems (100 problems each)

uf150 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 14,353 8027 .3 4.1

Novelty(.6) 7551 4344 .3 3.8

Novelty+(.6, .01) 6075 4817 0 4.0

DLM(pars4) 3263 2455 0 6.3

SDF(.00065) 3312 2533 0 18.5

uf175 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 27,493 19,289 .66 4.2

Novelty(.6) 14,342 8554 .31 4.1

Novelty+(.6, .01) 13,820 8453 .17 4.2

DLM(pars4) 6819 4923 0 6.4

SDF(.0005) 7228 5491 0 20.3

uf200 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 40,323 30,859 2.7 4.3

Novelty(.6) 26,463 20,437 1.9 4.3

Novelty+(.6, .01) 26,479 21,503 1.9 4.3

DLM(pars4) 13,316 9,020 .08 6.6

SDF(.0003) 14,962 8,467 .44 22.6

uf225 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 44,808 34,481 2.5 4.4

Novelty(.6) 31,634 22,909 2.5 4.4

Novelty+(.6, .01) 31,412 20,823 2.3 4.4

DLM(pars4) 16,098 10,072 .04 6.7

SDF(.00025) 17,505 10,366 .22 24.0

search methods currently in use, they might offer a qualitatively different approach that
could yield benefits in real world problems.

To compare SDF to DLM directly, we find that they generally achieved solutions in about
the same number of steps. SDF has a significant flips advantage on flat, but DLM holds a
significant advantage on aim. However, SDF is consistently a factor of three to four times
slower than DLM in terms of CPU overhead, and therefore SDF is not competitive with
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Table 13
Largest uf problems (uf250), 100 problems

uf250 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 41,287 36,310 1.4 4.5

Novelty(.6) 27,677 24,453 1.7 4.5

Novelty+(.6, .01) 27,639 25,954 1.8 4.9

DLM(pars4) 22,635 12,387 .25 6.9

SDF(.0002) 18,905 13,433 .26 25.4

Table 14
jnh and aim problems (16 problems each)

jnh Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 4706 3776 0 7.8

Novelty(.5) 3523 2689 .06 7.2

Novelty+(.5, .01) 3135 2576 0 7.3

DLM(pars4) 879 723 0 12.1

SDF(.0005) 917 877 0 48.4

aim-100 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 252,616 252,469 50 2.0

Novelty(.6) 251,230 251,002 50 1.7

Novelty+(.7, .01) 251,587 250,494 50 1.7

DLM(pars5) 2,655 2,463 0 4.4

SDF(.0005) 105,105 102,503 16 12.9

aim-200 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 268,238 258,620 50 2.1

Novelty(.5) 270,069 257,488 51 1.8

Novelty+(.6, .01) 263,989 257,927 50 1.8

DLM(pars1) 51,671 41,464 1.4 3.3

SDF(.00025) 268,238 258,620 50 21.3

DLM in terms of CPU time. Nevertheless, SDF is competitive with the previous systems
(WSAT, Novelty+) in CPU time on large structured problems such as ais and bw_large. 11

11 The similarity in flips performance between SDF and DLM suggests that the simpler SDF procedure might
be capturing some essential aspect of the complex DLM system that accounts for its performance advantage over
WSAT and Novelty. We hope to investigate this question further in future research.
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Table 15
ais (All-Interval series) problems (1 problem each)

ais6 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.7) 1,332 1,061 0 5.7

Novelty(.4) 455,008 1,047 91 5.0

Novelty+(.7, .01) 8,563 1,083 0 5.5

DLM(pars4) 410 406 0 9.5

SDF(.0015) 441 441 0 19.3

ais8 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.3) 29,706 8,000 0 7.9

Novelty(.7) 495,002 13,300 99 8.5

Novelty+(.4, .01) 155,992 8,791 7 8.0

DLM(pars1) 4,678 4,460 0 18.1

SDF(.0004) 4,748 4,641 0 36.2

ais10 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.3) 190,325 65,600 13 11.4

Novelty(.5) 500,000 na 100 12.2

Novelty+(.3, .01) 433,702 433,702 72 11.3

DLM(pars4) 18,420 14,306 0 16.5

SDF(.00013) 20,464 16,320 0 55.8

ais12 Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.6) 487,542 487,542 96 16.1

Novelty(.5) 500,000 na 100 15.7

Novelty+(.2, .01) 491,714 491,714 97 15.1

DLM(pars1) 165,904 165,904 3 30.0

SDF(.0001) 156,253 132,342 5 81.1

It is obvious that our current implementation of SDF is not without its limitations. We
are currently using a floating-point implementation that maintains a number of additional
quantities over DLM, and therefore even though SDF executes a comparable number of
search steps (flips) to solve most problems, each search step is more expensive to compute.
(DLM almost entirely avoids the use of floating point arithmetic.) However, the complexity
of DLM’s main loop is in principle no simpler than SDF’s, and we are hopeful that further
optimizations might improve the relative performance. Unfortunately, our floating point
implementation creates the additional disadvantage of round off errors which eventually
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Table 16
bw_large problems (1 problem each)

bw_large.a Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 20,753 17,340 0 7.3

Novelty(.4) 9,028 9,022 0 7.1

Novelty+(.4, .01) 10,553 10,546 0 7.0

DLM(pars4) 3,712 3,701 0 15.7

SDF(.0001) 2,906 2,902 0 39.8

bw_large.b Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.4) 336,855 336,855 42 9.3

Novelty(.4) 195,126 170,137 4 9.4

Novelty+(.4, .01) 147,370 130,004 4 9.4

DLM(pars4) 44,361 39,216 0 19.2

SDF(.00005) 37,122 36,728 0 79.8

bw_large.c Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 1,000,000 na 100 18.1

Novelty(.5) 1,000,000 na 100 18.8

Novelty+(.2, .01) 924,451 924,451 83 12.9

DLM(pars4) 895,213 895,213 77 37.9

SDF(.00002) 939,975 938,975 89 171

cause the variable scores and clause weights to drift out of agreement with one another
(primarily due to the use of an efficient lazy weight updating scheme). To compensate, we
have to run periodic correction loops in SDF to explicitly re-calculate these quantities—
which adds to the overall computational overhead. It remains an open question as to
whether a fundamentally faster algorithm in terms of CPU time can be developed from
the ideas presented in this paper.

6. Conclusion

We have introduced three simple measures of local search performance—depth,
mobility, and coverage—and demonstrated that achieving adequate measures under these
criteria appears to be necessary for achieving effective problem solving performance
using greedy local search for satisfiability problems. We provided two general pieces of
evidence to support each claim of necessity: First, we demonstrated that superior local
search procedures exhibit uniformly good scores under all three criteria, whereas inferior
search procedures always exhibit significantly weaker scores on at least one criterion.
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Table 17
Other structured problems (1 problem each)

medium Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 1038 961 0 5.1

Novelty(.5) 496 493 0 5.6

Novelty+(.6, .01) 482 482 0 5.5

DLM(pars4) 265 265 0 13.0

SDF(.0005) 297 293 0 17.9

huge Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.5) 20,154 19,502 0 10.1

Novelty(.4) 9,988 9,065 0 9.7

Novelty+(.4, .01) 10,032 9,759 0 9.8

DLM(pars4) 3,658 3,532 0 21.8

SDF(.0001) 3,018 2,960 0 44.0

logistics.c Avg. Opt. Fail% msec.
Flips Flips per flip

WSAT(.2) 168,895 168,895 2 5.8

Novelty(.4) 115,654 115,120 1 6.3

Novelty+(.3, .01) 109,575 108,141 1 6.5

DLM(pars4) 12,101 11,805 0 24.7

SDF(8.76 × 10−6) 16,849 16,688 0 170

Second, even among superior search procedures, there is a strong positive correlation
between problem solving performance on one hand, and good measures under each of the
search criteria on the other—and this holds for each of the three measures independently.
Finally, to address the question of sufficiency, we provided experimental evidence that good
performance under all three measures simultaneously appears to be predictive of effective
local search performance. Our evidence for this claim is given by the observation that an
improved rating under any one measure (holding the others fixed) systematically yields a
predictive correlation with reduced number of search steps, roughly independent of other
algorithmic details.

With the intent of creating a local search procedure that exhibits superior measures on all
three criteria, we developed the new procedure SDF, which employs a smoothed version of
the standard GSAT objective to obtain better depth scores, and uses multiplicative clause-
weight updating to obtain better mobility and coverage scores than existing methods. The
outcome is a simple search procedure that systematically reduces the number of search
steps (flips) needed to find a solution over older methods, and competes very closely with
the state of the art DLM system. Although SDF does not yet deliver an improvement in
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CPU time (owing to its greater computational overhead per flip) the improvement in terms
of flips does vindicate our claim that improvements under the three measurable search
criteria should predict reductions in the number of search steps needed to find satisfying
assignments.

By no means does this paper close the line of research on local search for satisfiability,
nor does it settle the question about which are the best methods for simultaneously
optimizing the three proposed criteria. One of the important directions for future research
is to investigate other forms of global search strategies for satisfiability (for example,
population-based and global-stochastic search methods) and see if any significant further
gains can be made. Even for the SDF procedure itself, we continue to investigate
simplifications that might allow reductions in CPU time in addition to improvements in
overall numerical stability. Finally, it remains future work to conduct a theoretical analysis
of the search criteria we have proposed and verify whatever guarantees they might offer
for local search performance, as well as discover what the ultimate limitations of these
measures are.
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Appendix A. Effects of random re-starts

It can be shown that imposing an ideal re-start value t∗ on the random search time T

yields an improvement in expected time for most natural search distributions. To see this,
note that for any random variable T we have

E(T )= E(T | T � t)P(T � t)+ E(T | T > t)P(T > t). (A.1)

From (2) we know that the expected search time when using a random restart after t flips
is

E(Tt ) = t

P(T � t)
− [

t − E(T | T � t)
]

= t

(
1

P(T � t)
− 1

)
+ E(T | T � t)

= t
P(T > t)

P(T � t)
+ E(T | T � t). (A.2)

To determine whether (A.2) offers an improvement over (A.1) first note that for an
exponential random variable T (i.e., such that P(T > x)= e−x/µ for all x > 0) we actually
have E(T ) = E(Tt) for every cutoff value t > 0. This follows from the “memoryless
property” of exponential random variables which states that P(T > t +x | T > t)= P(T >

x) for all t > 0 and x > 0 [19], and immediately implies that
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E(T | T > t) = t + E(T ) (A.3)

for all t > 0. Thus

E(T ) = E(T | T > t)P(T > t)+ E(T | T � t)P(T � t)

= tP(T > t)+ E(T )P(T > t)+ E(T | T � t)P(T � t) (A.4)

from (A.3), and therefore for exponential random variables we always have

E(T )P(T � t) = tP(T > t)+ E(T | T � t)P(T � t)

and hence

E(T ) = t
P(T > t)

P(T � t)
+ E(T | T � t)= E(Tt ) (A.5)

for all t > 0, as stated.
So imposing a random restart after a cutoff value t does not affect the expectation of

any exponential random variable T . It might therefore appear that random restarts may not
offer a useful improvement in general. However, the equality (A.5) only holds because of
the memoryless property (A.3), and it turns out that this property holds for all t > 0 only
for exponential random variables [19].

By contrast, it is widely believed that the search time distributions for heuristic search
algorithms exhibit a “heavy tailed” behavior on difficult constraint satisfaction problems
[10]. That is, the tail of the search time distribution P(T > x) is not exponential, but instead
is typically a much slower converging function such as a power law P(T > x)= Cx−α for
α > 0, C > 0 (where the tails become heavier for smaller α) [10]. A simple example of
a power law distribution is a Pareto density p(x) = α(1 + x)−α−1, x > 0, α > 0, which
defines a random variable T such that P(T > x)= (1 + x)−α . The kth moments of power
law distributions are only defined for k < α, and in particular their expected values become
infinite for α � 1.

For heavy tailed distributions in general, it is easy to demonstrate that a random re-start
strategy will always yield a reduction in expected search time. To see this, first consider
the case of a heavy tailed distribution with a finite expected search time; that is, a power
law distribution such that α > 1. An interesting property of such a distribution is that it is
no longer memoryless. In fact, the additional expected search time actually increases given
that an early solution has not been found:

E(T | T > t) > t + E(T ) (A.6)

for t > 0, which is in direct contrast to (A.3). From this property it immediately follows
that a random re-start strategy yields an improvement in expected solution time, since

E(T ) = E(T | T > t)P(T > t)+ E(T | T � t)P(T � t)

> tP(T > t)+ E(T )P(T > t)+ E(T | T � t)P(T � t)

= E(Tt ).

For example, for a Pareto distribution with α > 1 we have E(T | T > f ) = t + E(T ) +
tE(T ) for all t > 0 and hence immediately obtain E(Tt ) < E(T ).
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For the more extreme case of a heavy tailed distribution with an infinite expected value
(i.e., when α � 1) it is obvious that a random re-start strategy significantly improves search
time, since E(Tt ) is clearly finite (A.2) for any t such that P(T � t) > 0 by inspection.

Therefore, in general, using a random restart strategy with a cutoff value

t∗ = arg min
t : 0<t�∞ E(Tt )

(where E(T∞) is defined to be E(T )) should improve expected search time, since if (A.6)
is satisfied for any t we will immediately obtain E(Tt∗) < E(T ), and otherwise if no such
value of t exists we obtain E(Tt∗)= E(T ) (and hence cause no harm). Therefore, under any
circumstance, employing a random restart strategy after an ideal cutoff value t∗ is never a
losing strategy.

Appendix B. Properties of clause re-weighting scheme

Proof of Property 1. First, to show that αiF + βiS = 1, note

αiF + βiS = αiF + 1 − Fαi

S
S = αiF + 1 − Fαi = 1.

Next, to verify that αi > 1, recall that by assumption �xi = f+
i + s+i − s−i < 0 < δ, and

therefore

αi = s−i − s+i + Sδ

F(s−i − s+i )+ Sf+
i

>
s−i − s+i + S(f+

i + s+i − s−i )
F (s−i − s+i )+ Sf+

i

= (1 − S)(s−i − s+i )+ Sf+
i

F (s−i − s+i )+ Sf+
i

= F(s−i − s+i )+ Sf+
i

F (s−i − s+i )+ Sf+
i

= 1.

Finally, to verify that βi < 1, note that βi = (1 − Fαi)/S < (1 − F)/S = 1. ✷
Proof of Property 2. Assume F > 0 and f+

i > 0. First note that

αi = s−i − s+i + Sδ

Sf+
i + F(s−i − s+i )

=
s−i −s+i
Sf+

i

+ δ

f+
i

1 + F(s−i −s+i )
Sf+

i

= s−i − s+i
Sf+

i

+ δ

f+
i

− Fαi(s
−
i − s+i )
Sf+

i

(B.1)

=
(

1 − Fαi

S

)
s−i − s+i
f+
i

+ δ

f+
i

= βi(s
−
i − s+i )+ δ

f+
i

,

where the second step (B.1) uses the fact that α = a
1+b if and only if α = a − bα. Thus

αif
+
i + βi(s

+
i − s−i )= βi(s

−
i − s+i )+ δ + βi(s

+
i − s−i )= δ. ✷
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Proof of Property 3. Recall that before shrinking the satisfied clause weights towards
their common mean we have S = ∑

c∈sat w(c) and sat = S/(#sat). Let w′(c) = (1 −
ρ)sat + ρw(c). We then obtain

S′ =
∑
c∈sat

w′(c)= (1 − ρ)sat(#sat)+ ρ
∑
c∈sat

w(c)

= (1 − ρ)
∑
c∈sat

w(c)+ ρ
∑
c∈sat

w(c)= S

and therefore S′ + F = S + F = 1. ✷
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