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Abstract. We present a generalized view of support vector machinesities
not rely on a Euclidean geometric interpretation nor evesitjye semidefinite
kernels. We base our development instead orctindidence matrix-the matrix
normally determined by the direct (Hadamard) product ofkirmel matrix with
the label outer-product matrix. It turns out that altervetiorms of confidence
matrices are possible, and indeed useful. By focusing ordh&dence matrix
instead of the underlying kernel, we can derive an intuipikiaciple for optimiz-
ing example weights to yield robust classifiers. Our pritecipitially recovers
the standard quadratic SVM training criterion, which isyoobnvex for kernel-
derived confidence measures. However, given our genetlalize, we are then
able to derive a principled relaxation of the SVM criteridrat yields a convex
upper bound. This relaxation @waysconvex and can be solved with a linear
program. Our new training procedure obtains similar gdiztéon performance
to standard SVMs on kernel-derived confidence functionsabhieves even bet-
ter results with indefinite confidence functions.

1 Introduction

Support vector machines were originally derived from puggometric principles [13,
1]: given a labeled training set, one attempts to solve foorssistent linear discrimi-
nant that maximizes the minimum Euclidean distance betvaggrdata point and the
decision hyperplane. Specifically, givéry, y1), ..., (x¢,y:), y € {—1,+1}, the goal
is to determine &w, b) such thatmin; y;(w "x; + b)/||w|| is maximized. Vapnik [13]
famously proposed this principle and formulated a conveadaatic program for effi-
ciently solving it. With the addition of slack variables tHaal form of this quadratic
program can be written

min 5 Zaiajyiiji X — Zai subjectto 0<a<fg, a'y=0 (1)
1] 7
where the dual variables behave as weights on the training examples.

One of the key insights behind the support vector machinecagh is that the
training vectors appear only as inner products in both imgiand classification, and



therefore can be abstracted away by a general kernel fundtidhis case, the kernel
function,k(x;,x;), simply reports inner productg(x; ), ¢(x;)) in some arbitrary fea-
ture (Hilbert) space. Combining the kernel abstractiomtite -SVM formulation of
[12, 4] one can re-express (1) in the more general form

n&n a'(Koyy )a subjectto 0<a<fB, a'y=0,ae=1 (2)

whereK is thekernel matrix K;; = (¢(x;), ¢(x;)), the matrixyy " is thelabel ma-
trix, the vectok consists of all 1's, and denotes componentwise matrix multiplication
(Hadamard product).

Although (2) appears to be a very general formulation of tieéht training prob-
lem for «, it is in fact quite restrictive: for (2) to be convex, the doimed matrix
Koyy " mustbe positive semidefinite, implying thititself must be conditionally pos-
itive semidefinite’ Thus, it is commonly assumed that support vector machinesigh
be applied on conditionally positive semidefinite kernils

Although the restriction to conditional positive semid@éness might not appear
onerous, it is actually problematic in many natural sitoragi. First, as [11] notes, veri-
fying that a putative kernel functiof(-, -) is conditionally positive semidefinite can be
a significant challenge. Second, as many authors note [29311, 14] using indefinite
kernels and only approximately optimizing (2) can oftenldigimilar or even better
results than using conventional positive semidefinite &kstr{A frequently used exam-
ple is the hyperbolic tangent “kernelanh(a(x;,x;) + b).) Third, adding conditional
positive semidefiniteness as a constraint causes diffigutign attempting tdearn a
kernel (similarity measure) directly from data.

In fact, it is this third difficulty that is the main motivatidfor this research. We are
interested ifearningsimilarity measures from data that we can then use to train-ac
rate classifiers. One can easily devise natural ways of dbisgwe elaborate on one
approach below), but unfortunately in these cases ensposdive semidefiniteness
ranges from hard to impossible. To date, most successkrhats at learning condi-
tionally positive semidefinite kernels have been reducédkimg convex combinations
of known conditionally positive semidefinite kernels [8, But we would like to con-
sider a wider range of techniques for learning similarjtimsd therefore we seek to
generalize (2) to exploit general similarity matrices. @uel is to develop an efficient
weight optimization procedure fet that does not require a positive semidefinite matrix
K oyy ", while still preserving the desirable generalization aparseness properties
achieved by standard SVM training.

Below in Section 2 we show how the standard kernel classifiarbe generalized
to consider more abstracbnfidence functions(y;y; |x;x;) that play the same role as
the usual kernel-label combinatigfy; k(x;, x;). We then briefly outline some natural
approaches for learning confidence functions from data ati®@e3. The approach we
propose there is very simple, but effective. Neverthelgssiffers from the drawback

8 A symmetric matrixk is conditionally positive semidefinite #' Kz > 0 for all z such that
z'e = 0. K need only be conditionally positive semidefinite to enskire yy ' is positive
semidefinite because of the assumptiohy = 0. That is, if(a o y)Te = a Ty = 0, then

we immediately obtaim " (K o yy Na = (aoy)  K(aoy) > 0.



of not being able to ensure a positive semidefinite matrixofstimization. Section 4
then outlines our main development. Given the general cendid function viewpoint,
we derive ana-weight optimization procedure from intuitive, stricthon-geometric
first principles. The first procedure we derive simply reasvibe classical quadratic
objective, but from a new perspective. With this re-deiavatn hand, we are then able
to formulate a novel relaxation of the standard SVM objextivat is both principled
while also being guaranteed to be convex. Finally, in Sadiove present experimen-
tal results with this new training principle, showing siarilperformance to standard
SVM training with standard kernel functions, but obtaingtgnger performance using
indefinite confidence functions learned from data.

2 Confidence function classification

Our goal is to develop a learning and classification schemuiectm be expressed more
abstractly than the usual formulation in termsgygf; k(x;x;). We do this via the notion
of aconfidence functiare(y;y; |x;x;), which expresses a numerical confidence that the
label pairy;y; is in fact correct for the input pait; andx;. A large confidence value
expresses certainty that the label pair is correct, whilemallsvalue correspondingly
expresses a lack of confidence that the label pair is coroeds(ftainty that the label
pair is wrong). We make no other assumptions about the cord@tinction, although
it is usually presumed to be symmetri€y;y;|x;x;) = c(y;y:|x;%;).

Although the notion of a pairwise confidence function migirs peculiar, it is in
fact exactly what the,y; k(x;, x,;) values provide to the SVM. In particular, if we make
the analogy:(y;y;|x:x;) = yiy;jk(x;,x;) and assumg € {—1,+1}, one can see that
yiy;k(x;,%;) behaves as a simple form of confidence function: the valuelagively
large if eithery; = y; andx; andx; are similar under the kerng| or if y; # y; andx;
andx; aredissimilarunder the kernel. We therefore refer to the maix= K o yy
as theconfidence matrix

Proposition 1. If the entries of the confidence matidk o yy " are strictly positive,
then the training data is linearly separable in the featupase defined byK.

This proposition clearly shows that high confidence valussdlate into an accurate
classifier on the training data. In fact, it is confidenceg,similarities, that lie at the
heart of support vector machines: The SVM methodology caetest strictly in terms
of confidence functions, abstracting away the notion of adlegntirely, without giving
up anything (except the Euclidean geometric interpretdtido illustrate, consider the
standard SVM classifier: Assuming a vector of training ex@mgights o, has already
been obtained from the quadratic minimization (2), the dad classification rule can
be rewritten strictly in terms of confidence values

9 = sign((Zajyjk(x, Xj)) + b) = argmax (Z%yyﬂf(xyxj)) + by
r i

= argmax (Z%C(yyjlxxj')) +by | (3)
i



Thus a test examplg is classified by choosing the labglthat exhibits the largest
weighted confidence when paired against the training data.

Quite obviously, the SVM training algorithm itself can alse expressed strictly in
terms of a confidence matrix over training data.

rr&n a'Ca subjectto 0<a<fp, a'y=0, a'e=1 4)

This is just a rewriting of (2) with the substituti@h = K oyy ", which does not change
the fact that the problem is convex if and only(fis positive semidefinite. However,
the formulation (4) is still instructive. Apparently the S\riterion is attempting to re-
weight the training data tminimizeexpected confidence. Why? Below we argue that
this is in fact an incorrect view of (4), and suggest thatralatively, (4) can be inter-
preted as attempting tmaximizethe robustness of the classifier against changes in the
training labels. With this different view, we can then foriale an alternative training
criterion—a relaxation of (4)—that still attempts to makierobustness, but is convex
for anyconfidence matrix’. This allows us to advance our goalle&rningconfidence
functions from data, while still being able to use SVM traipiof the example weights
without having to ensure positive semidefiniteness.

Before turning to the interpretation and relaxation of (4 first briefly discuss
approaches that can be explored to learning confidencedumsct

3 Learning confidence functions

There are many natural ways to consider learning a confidiemmtion c(y;y, |x;x;)
from training data. A straightforward approach is to explany known similarity learn-
ing techniques to learn an arbitrary kernel matrix and tH&aia a confidence function
by combining they terms. Alternatively, one can also learn the confidencetfondi-
rectly. One of such simple techniques has been explored.ifij@en training labels,
one can just straightforwardly learn to predict label pajtg given their corresponding
input vectorsx; andx;. Concretely, given examplés i, y1), ..., (x¢, y¢), it is easy to
form the set of training pair§(x;x;, y;y;)} from the original data, which doubles the
number of input features and squares the number of traimingl$ and classes. (Sub-
sampling can always be used to reduce the size of this tgpigin) Given such pairwise
training data, standard probabilistic models can be lehto@redict the probability of
a label pair given the input vectors.

Many standard probabilistic methods, especially diserative methods, can be
used for learning pairwise predictors. For example, thstagregression classifiers can
be trained to maximize the conditional likelihodty;y;|x;x;) of the observed label
pairs given the conjoined vector of inputsx;. Once learned, a pairwise model would
classify test inputsc by maximizing the produc = argmax, []; P(yy;lxx;).4
Clearly, this is equivalent to using a confidence functi@ny;|x;x; ) =log P(y;y; |xix;)
and classifying with respect to uniform example weightsSurprisingly, [6] obtained
good classification results with this simple approach. ia laper, we are interested in

4 [6] also considered other techniques for classificatioripiting correlating the predictions on
the test data in a transductive manner, but we do not purgse tixtensions here.



the connection to support vector machines and attempt tooweghe basic method by
optimizing thea-weights.

Note that, as a confidence measure, using a log probabilietiog P(y;y;|x:x;),
is a very natural choice. It can be trained easily from thelake data, and performs
quite well in practice. However, using a log probability nebtbr a confidence function
raises a significant challengkig P(y;y;|x;x;) is always non-positive and therefore
any confidence matrig’' it produces, since it is strictly non-positive, cannot bsitiee
semidefinite. This raises the same difficulty one faces with-positive semidefinite
kernels, which motivates us to reformulate the quadratiocropation criterion (4), so
that convexity can be achieved more generally while presgrhe effective general-
ization properties.

4 Optimizing training example weights: An alternative view

Given a confidence classifier (3) it is natural to consideustitjg the training example
weightsa to improve accuracy. At first glance, the quadratic minirig@@acriterion (4)
used by SVMs appears to be adjusting the example weigméionizethe confidence
of the training labelg);. However, we can argue that this interpretation is miskegdi
In fact, standard kernel-based confidence functions hapeeia property that masks
a key issue: how confidences change when a training labepeefli. For the classifier
(3), it is not the absolute confidence that counts, but rattherelative confidences
between the correct label and the incorrect label. Thatéspauld like the confidence
of a correct label to be larger than the confidence of a wrobglldor kernel-based
confidence functions it turns out that the relationship leetwthe relative confidences
is greatly restricted.

Observation 1 Lety denote a label flip-y. If ¢(y;y;|xix;) = yiy;k(x;x;) then

D ajelyy;lxxg) + by = =Y aje(y;lxx;) — by (5)
J i

However, the relationship (5) is obviously not true in gexidfor example, it is violated
by any probabilistic confidence function defined:ty; y;|x;x;) = log P(yiy;|xix;).

Thus for kernel-based confidence functions, the confidentiesi opposite label is
always just the negation of the confidence in the currentlabe

We now show how the concept of minimizing sensitivity to lbps on the training
data recovers the classical SVM training criterion. Coesaltraining exampléx;, y;)
and an arbitrary current set of weighis The current confidence in the training label

i is
( Z ajc(yiyj|xixj)) + byi
J

Now consider the change in the confidencejrithat would result if a single training
labely;, was actually mistaken. That s, if the current valugpfs incorrect and should



have been given the opposite sign, then the mistake we ar@giaky;’s confidence is

Age(yi) = arc(yryi|xexi) — arc(Tryilxix:) (6)
= 20c(Yrys| XpXi) (7)

Note that (7) holds only under the kernel-based restridfinbut in this special case
the confidence penalty is just twice the original confidetf¢®) does not hold, then (6)
can be used. The sum of the local confidence changes medseamgtrall sensitivity
of the classification of training labgl to possible mislabelings of other data points

Ac(yi) =Y Are(ys) (8)
k

The smaller this value, the less likely is to be misclassified due to a mislabeling
of some other data point. That is, the sensitivity to labgisflshould be minimized
if the classifier is to be made more robust. Neverthelessetheght be a trade-off
between the sensitivities of different training exampigserefore, as a final step, we
consider minimizing the overalleightedsensitivity of the training labels. This yields
the minimization objective

Y oaidely) =) iy (C(yk:yv:|xkxv:) - C(%ydxkxv:)) (9)
i i k

=2 asanc(yryilxix;) (10)
ik

Again, (10) only holds under the kernel-based restricti®n lfut if this is violated, the
more general form (9) can be used.

Therefore, if we are using a kernel-based confidence fumctie recover exactly
the same training criterion as the standard SVM (4). Whahisrésting about this
derivation is that it does not require any reasoning aboutié®ean geometry or even
feature (Hilbert) spaces. The argument is only about aidgishe example weights to
reduce the sensitivity of the classifier (3) to any potemtimstakes in the training labels.
Thatis, from the perspective af-weight optimization, it is only the reflection property
(5) and the desire to minimize sensitivity to mislabelethireg examples that yields the
same minimization objective as standard SVMs. The remgiognstraints in (4) are
also easily justified in this context: It is natural to assuhst the example weights form
a convex combination, and therefdre< o, a'e = 1. It is also natural to preserve
class balance in the re-weighting, heacey = 0. Finally, as a regularization principle,
it makes sense to limit the magnitude of the largest weightkat too few examples do
not dominate the classifier, henae< g.

Of course, re-deriving an old criterion from alternativenpiples is not a significant
contribution. However, what is important about this pecspe is that it immediately
suggests principled alternatives to the SVM criterion tteat still reduce sensitivity
to potential training label changes. Our goal is to refomirithe objective to avoid
a quadratic form, since this prevents effective optim@aton indefinite confidence
functions, which are the confidence functions we are mostésted in (Section 3). It
turns out that just a minor adjustment to (10) yields jushsaiprocedure.



Given the goal of minimizing the sensitivity to training Ellchanges, previously we
sought to minimize theveightedsensitivity, using the same weights being optimized,
which leads to the quadratic form (10) and the optimizatioobfem (4). However,
rather than minimize weighted sensitivity, one could iagtee more conservative and
attempt to minimize thenaximumsensitivity of any label in the training set. That is,
we would like to adjust the example weights so that the wassgivity of any train-
ing labely; to potential mislabelings of other examples is minimizeklisTsuggestion
immediately yields our proposal for a new training crit@rio

min max Ek: g (C(yk%IXchi) - C(ykinkai)) (11)
subjectto 0<a<f, a'y=0, a'e=1

Oncea has been optimized, the offgdetan be chosen to minimize training error.

Proposition 2. The objective (11) is convex for any confidence functicemd more-
over is an upper bound on (4).

The proof of this proposition is obvious. The minimizatidjective is a maximum

of linear functions of, and hence is convex. Given the constraints o, a'e = 1
we immediately havenax; f(i) > >, a; f(1).
As a practical matter, (11) can be solved by a simple lineag@mm
min 0 subjecttod > Ek:oék (C(ykyllxkxl) c(ykyz|xkxz)) Vi
0<a<fB ay=0ae=1 (12)

This formulation produces a convex relaxation of th&VM criterion for any con-
fidence functiore(y;y;|x;x;), and provides an alternative option for using indefinite
kernels.

5 Related Work

Most work related to our proposed approach concerns legu®ifMs with indefinite
kernels [10, 2, 3, 11]; although in this paper we addressligktly more general prob-
lem of learning from confidence functions—a superset of demftes derived from
indefinite kernels.

As noted, if the kernel matrix is not conditionally positsemidefinite, the standard
SVM training problem (2) becomes non-convex, hence hargbtionize. To overcome
this difficulty, some authors have suggested using the iniiefkernel directly but in-
stead solve an approximate form of the SVM training probléin 9, 7]. Most, however,
propose to transform the indefinite kernel into a positivaigefinite kernel and then
apply standard SVM training. Such transformation methadkde “denoise” (neglect
the negative eigenvalues), “flip” (flip the sign of the negattigenvalues) and “shift”
(shift all eigenvalues by a positive constant to make alitp@y; see [14] for details.
A limitation of using such simple transformation methodghiat valuable information



about the data can be lost in the transformation processefdre, more recently, a
number of papers have begun to pursue a middle ground strategre the original

indefinite kernel is used in training, while the SVM obijeeti perturbed as little as
possible to maintain a convex objective [10, 2, 3]. Theseepaproceed by fixing the
original indefinite kerneK, and then modifying the training objective as follows.

1
m&xxm&n a'e— §aT(Kony)a+p||K—KOH2 (13)
subjectto a'y=0,0<a<f3, K*=0

We provide some comparison of our approach to these difféeehniques below.

6 Experimental results

We implemented the new weight optimization scheme basedhearl programming
(12) and compared it both to standard SVM quadratic minitiona(4) and to a sim-
ple approach of using uniform weights. In addition, ifmdefiniteconfidence measures,
we compared our proposed method to the existing kernelforanation methods men-
tioned in Section 5 above. Note that training based on (4)ocey be efficiently per-
formed when the kernel is positive semidefinite. Furtheenoote that although using
uniform weights appears to be naive, for high quality confaEmeasures such as those
learned by training reasonable probability models, unifareighting can still achieve
highly competitive generalization performance—a fact thifl be revealed below.

We compared these different weight optimization schemea wariety of confi-
dence functions, including those defined by standard pessemidefinite kernels (lin-
ear dot product and RBF), as well as the sigmoid ketagh, and two probabilistic
confidence models trained using naive Bayes and logistiessgn respectively. In
our result tables below, we will denote the results produzgdhe proposed weight
optimization scheme (12) as1, for the uniform weighting scheme as0, and for
the standard SVM quadratic minimization scheme (4nds We compared the test
accuracy of these various algorithms on a set of two-clasedaa sets. All of our
experimental results are averages over 5 times repeatsraiiting size equal to 100 or
4/5ths of the data size.

In the first study we compared how the different weight optettion schemes per-
formed using the positive semidefinite confidence functidetermined by the linear
and RBF kernels respectively. Table 1 shows that the newhwejgtimization scheme
(12) achieves comparable generalization performanceatalatd quadratic training (4).
The uniform weighting strategy is generally inferior in tleear kernel case (being
dominated on all data sets except placing seconffas@andgermar). Although uni-
form weighting performs relatively better in the RBF kergake, the results are still
not comparable to the linear and quadratic weighting sckefftee reason is that the
confidence functions are only weakly informative here, angply averaging them still
yields a sensitive classifier. It is encouraging to note thatconvex relaxation retains
most of the benefit of the original quadratic objective irstbase.

We also compared our proposed approach to existing metlwwdsdrning with
indefinite kernels. Table 2 shows the comparative resultehtained using indefinite



kernels produced byanh functions. Interestingly, the straightforwadeénoiseandflip
transformations yield very good results using tanh kernelsle shift produces very
poor performance. The sophisticated)-svmtechnique, based on (13) [10, 2, 3], re-
quires much more involved training, yet produces very simiksults to the simple
linear optimization scheme we propose.

Table 1. Comparison of the test accuracy of differamtweight optimizers on UCI data sets
using the positive semidefinite confidence functions defipdidear (L) and RBF §(x;,x;) =
exp(—||x: — x;||?)) kernels. HereaO denotes the results for uniform weighting for our
proposed linear optimization (12); anal2 for standard quadratic SVM optimization (4).

|L-a0 L-al|L-a2||RBF-a0|RBF-al|RBF-a2
australian0.6130.8150.843| 0.729 | 0.784 | 0.713
breast |0.928§0.9690.97Q| 0.947 | 0.971 | 0.962
cleve 0.6170.7940.804| 0.817 | 0.819 | 0.792
corral  |0.5710.9000.929| 0.907 | 0.936 | 1.000
crx 0.5460.8500.837| 0.649 | 0.770 | 0.677
diabetes|0.6510.7540.705| 0.741 | 0.705 | 0.730
flare 0.8290.8290.760Q| 0.800 | 0.815 | 0.829
german |0.7000.7050.664| 0.498 | 0.628 | 0.700
glass2 |0.7560.7810.819| 0.892 | 0.867 | 0.864
heart 0.7800.8240.835| 0.764 | 0.794 | 0.774
hepatitis [0.8130.8630.863| 0.725 | 0.825 | 0.825
mofn-3-7|0.7790.7810.805| 0.704 | 0.776 | 0.857
pima 0.651/0.7630.73q| 0.772 | 0.701 | 0.694
vote 0.6150.93110.935| 0.881 | 0.913 | 0.875
average |0.7030.8260.823| 0.773 | 0.807 | 0.807

Another interesting test of the method is on uslaegrnedindefinite confidence
functions, such as those determined by an estimated piapatodellog P(y;y;|xix;).
In these cases, the quadratic objective is non-convex amtbtde solved by standard
quadratic optimizers. However, as mentioned, our relaratmains convex. [11] sug-
gests more sophisticated approach for training in thesescdmit their methods are
substantially more technical than the simple technique@@sed here. Table 3 shows
the results of our linear weight optimization procedure #reluniform weighting on
the indefinite confidence functions. Noticeably the prolisti (trained) confidence
functions yield better results than the ones produced iptbeious tables by standard
SVMs with both linear and RBF kernels. Moreover, even umifaveighting already
achieves good results for these confidence functions, sireeonfidence functions
obtained using LR and NB are very informative.

The main benefit of the new approach is the ability to reliadyyimize example
weights for a wider range of confidence functions. We belthigeis a useful advantage
over SVM training because most natural confidence functionparticular learned
confidence functions, are not usually positive semidefinitehave a wider potential
for generalization improvement over using fixed kernelgasresults suggest.



Table 2. Comparison of the test accuracy of different methods usidgfinite kernels produced
by tanh (k(x:,x;) = tanh(0.001 - x;x; — 1)). Here, the column headings refer to the various
techniques reviewed in Section 5, except thitrefers to our proposed method based on (12).

denoise flip | shift reg-svm a1l

australian 0.85210.8520.554 0.782 |0.844
breast | 0.967|0.9670.650 0.965 |0.969
cleve 0.778]0.7670.541 0.798 |0.763
corral 0.893|0.8930.429 0.871 |0.879
crx 0.842]0.8410.429 0.828 |0.879
diabetes| 0.758|0.7590.651 0.759 |0.699
flare 0.829|0.6980.829 0.828 |0.829
german | 0.722]0.7230.700 0.726 |0.695
glass2 | 0.7680.7650.54Q 0.781 |0.781
heart 0.827|0.82710.553 0.837 |0.815
hepatitis | 0.875|0.8750.813 0.813 |0.825
mofn-3-7| 1.000|1.0000.779 0.816 |0.813
pima 0.756|0.7630.651 0.766 |0.735
vote 0.935]0.9350.615 0.928 |0.921
average | 0.843/0.8330.624 0.821 |0.818

7 Conclusion

We have introduced a simple generalization of support veotachines based on the
notion of aconfidence functior(y;y;|x;x;). This view allows us to think of SVM
training as attempting to minimize the sensitivity of thagdifier to perturbations of
the training labels. From this perspective, we can not oedglerive the standard SVM
objective without appealing to Euclidean geometry, we daa devise a new training
objective that is convex for arbitrary, not just positiversdefinite, confidence func-
tions. Of course, other optimization objectives are pdesénd perhaps superior ones
could still be developed. An important research direct®toidevelop a generalization
theory for our relaxed training procedure that is analodgotise theory that has already
been developed for SVMs.
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