
A Reformulation of Support Vector Machines for
General Confidence Functions

Yuhong Guo1 and Dale Schuurmans2

1 Department of Computer & Information Sciences
Temple University

www.cis.temple.edu/˜yuhong
2 Department of Computing Science

University of Alberta
www.cs.ualberta.ca/˜dale

Abstract. We present a generalized view of support vector machines that does
not rely on a Euclidean geometric interpretation nor even positive semidefinite
kernels. We base our development instead on theconfidence matrix—the matrix
normally determined by the direct (Hadamard) product of thekernel matrix with
the label outer-product matrix. It turns out that alternative forms of confidence
matrices are possible, and indeed useful. By focusing on theconfidence matrix
instead of the underlying kernel, we can derive an intuitiveprinciple for optimiz-
ing example weights to yield robust classifiers. Our principle initially recovers
the standard quadratic SVM training criterion, which is only convex for kernel-
derived confidence measures. However, given our generalized view, we are then
able to derive a principled relaxation of the SVM criterion that yields a convex
upper bound. This relaxation isalwaysconvex and can be solved with a linear
program. Our new training procedure obtains similar generalization performance
to standard SVMs on kernel-derived confidence functions, but achieves even bet-
ter results with indefinite confidence functions.

1 Introduction

Support vector machines were originally derived from purely geometric principles [13,
1]: given a labeled training set, one attempts to solve for a consistent linear discrimi-
nant that maximizes the minimum Euclidean distance betweenany data point and the
decision hyperplane. Specifically, given(x1, y1), ..., (xt, yt), y ∈ {−1, +1}, the goal
is to determine a(w, b) such thatmini yi(w

>
xi + b)/‖w‖ is maximized. Vapnik [13]

famously proposed this principle and formulated a convex quadratic program for effi-
ciently solving it. With the addition of slack variables thedual form of this quadratic
program can be written

min
α

1

2

∑

ij

αiαjyiyjx
>

i xj −
∑

i

αi subject to 0 ≤ α ≤ β, α>y = 0 (1)

where the dual variablesα behave as weights on the training examples.
One of the key insights behind the support vector machine approach is that the

training vectors appear only as inner products in both training and classification, and



therefore can be abstracted away by a general kernel function. In this case, the kernel
function,k(xi,xj), simply reports inner products〈φ(xi), φ(xj)〉 in some arbitrary fea-
ture (Hilbert) space. Combining the kernel abstraction with theν-SVM formulation of
[12, 4] one can re-express (1) in the more general form

min
α

α>(K ◦ yy
>)α subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1 (2)

whereK is thekernel matrix, Kij = 〈φ(xi), φ(xj)〉, the matrixyy
> is thelabel ma-

trix, the vectore consists of all 1’s, and◦ denotes componentwise matrix multiplication
(Hadamard product).

Although (2) appears to be a very general formulation of the weight training prob-
lem for α, it is in fact quite restrictive: for (2) to be convex, the combined matrix
K◦yy

> must be positive semidefinite, implying thatK itself must be conditionally pos-
itive semidefinite.3 Thus, it is commonly assumed that support vector machines should
be applied on conditionally positive semidefinite kernelsK.

Although the restriction to conditional positive semidefiniteness might not appear
onerous, it is actually problematic in many natural situations. First, as [11] notes, veri-
fying that a putative kernel functionk(·, ·) is conditionally positive semidefinite can be
a significant challenge. Second, as many authors note [2, 3, 7, 9–11, 14] using indefinite
kernels and only approximately optimizing (2) can often yield similar or even better
results than using conventional positive semidefinite kernels. (A frequently used exam-
ple is the hyperbolic tangent “kernel”tanh(a〈xi,xj〉 + b).) Third, adding conditional
positive semidefiniteness as a constraint causes difficultywhen attempting tolearn a
kernel (similarity measure) directly from data.

In fact, it is this third difficulty that is the main motivation for this research. We are
interested inlearningsimilarity measures from data that we can then use to train accu-
rate classifiers. One can easily devise natural ways of doingthis (we elaborate on one
approach below), but unfortunately in these cases ensuringpositive semidefiniteness
ranges from hard to impossible. To date, most successful attempts at learning condi-
tionally positive semidefinite kernels have been reduced totaking convex combinations
of known conditionally positive semidefinite kernels [8, 5]. But we would like to con-
sider a wider range of techniques for learning similarities, and therefore we seek to
generalize (2) to exploit general similarity matrices. Ourgoal is to develop an efficient
weight optimization procedure forα that does not require a positive semidefinite matrix
K ◦ yy

>, while still preserving the desirable generalization and sparseness properties
achieved by standard SVM training.

Below in Section 2 we show how the standard kernel classifier can be generalized
to consider more abstractconfidence functionsc(yiyj |xixj) that play the same role as
the usual kernel-label combinationyiyjk(xi,xj). We then briefly outline some natural
approaches for learning confidence functions from data in Section 3. The approach we
propose there is very simple, but effective. Nevertheless,it suffers from the drawback

3 A symmetric matrixK is conditionally positive semidefinite ifz>Kz ≥ 0 for all z such that
z
>
e = 0. K need only be conditionally positive semidefinite to ensureK ◦ yy

> is positive
semidefinite because of the assumptionα>y = 0. That is, if(α ◦ y)>e = α>y = 0, then
we immediately obtainα>(K ◦ yy

>)α = (α ◦ y)>K(α ◦ y) ≥ 0.



of not being able to ensure a positive semidefinite matrix foroptimization. Section 4
then outlines our main development. Given the general confidence function viewpoint,
we derive anα-weight optimization procedure from intuitive, strictlynon-geometric
first principles. The first procedure we derive simply recovers the classical quadratic
objective, but from a new perspective. With this re-derivation in hand, we are then able
to formulate a novel relaxation of the standard SVM objective that is both principled
while also being guaranteed to be convex. Finally, in Section 6 we present experimen-
tal results with this new training principle, showing similar performance to standard
SVM training with standard kernel functions, but obtainingstronger performance using
indefinite confidence functions learned from data.

2 Confidence function classification

Our goal is to develop a learning and classification scheme that can be expressed more
abstractly than the usual formulation in terms ofyiyjk(xixj). We do this via the notion
of aconfidence function, c(yiyj |xixj), which expresses a numerical confidence that the
label pairyiyj is in fact correct for the input pairxi andxj . A large confidence value
expresses certainty that the label pair is correct, while a small value correspondingly
expresses a lack of confidence that the label pair is correct (or certainty that the label
pair is wrong). We make no other assumptions about the confidence function, although
it is usually presumed to be symmetric:c(yiyj|xixj) = c(yjyi|xjxi).

Although the notion of a pairwise confidence function might seem peculiar, it is in
fact exactly what theyiyjk(xi,xj) values provide to the SVM. In particular, if we make
the analogyc(yiyj |xixj) = yiyjk(xi,xj) and assumey ∈ {−1, +1}, one can see that
yiyjk(xi,xj) behaves as a simple form of confidence function: the value is relatively
large if eitheryi = yj andxi andxj are similar under the kernelk, or if yi 6= yj andxi

andxj aredissimilarunder the kernel. We therefore refer to the matrixC = K ◦ yy
>

as theconfidence matrix.

Proposition 1. If the entries of the confidence matrixK ◦ yy
> are strictly positive,

then the training data is linearly separable in the feature space defined byK.

This proposition clearly shows that high confidence values translate into an accurate
classifier on the training data. In fact, it is confidences, not similarities, that lie at the
heart of support vector machines: The SVM methodology can berecast strictly in terms
of confidence functions, abstracting away the notion of a kernel entirely, without giving
up anything (except the Euclidean geometric interpretation). To illustrate, consider the
standard SVM classifier: Assuming a vector of training example weights,α, has already
been obtained from the quadratic minimization (2), the standard classification rule can
be rewritten strictly in terms of confidence values

ŷ = sign
((

∑

j

αjyjk(x,xj)
)

+ b
)

= argmax
y





(

∑

j

αjyyjk(x,xj)
)

+ by





= argmax
y





(

∑

j

αjc(yyj|xxj)
)

+ by



(3)



Thus a test examplex is classified by choosing the labely that exhibits the largest
weighted confidence when paired against the training data.

Quite obviously, the SVM training algorithm itself can alsobe expressed strictly in
terms of a confidence matrix over training data.

min
α

α>Cα subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1 (4)

This is just a rewriting of (2) with the substitutionC = K◦yy
>, which does not change

the fact that the problem is convex if and only ifC is positive semidefinite. However,
the formulation (4) is still instructive. Apparently the SVM criterion is attempting to re-
weight the training data tominimizeexpected confidence. Why? Below we argue that
this is in fact an incorrect view of (4), and suggest that, alternatively, (4) can be inter-
preted as attempting tomaximizethe robustness of the classifier against changes in the
training labels. With this different view, we can then formulate an alternative training
criterion—a relaxation of (4)—that still attempts to maximize robustness, but is convex
for anyconfidence matrixC. This allows us to advance our goal oflearningconfidence
functions from data, while still being able to use SVM training of the example weights
without having to ensure positive semidefiniteness.

Before turning to the interpretation and relaxation of (4),we first briefly discuss
approaches that can be explored to learning confidence functions.

3 Learning confidence functions

There are many natural ways to consider learning a confidencefunctionc(yiyj |xixj)
from training data. A straightforward approach is to explore any known similarity learn-
ing techniques to learn an arbitrary kernel matrix and then obtain a confidence function
by combining they terms. Alternatively, one can also learn the confidence function di-
rectly. One of such simple techniques has been explored in [6]. Given training labels,
one can just straightforwardly learn to predict label pairsyiyj given their corresponding
input vectorsxi andxj . Concretely, given examples(x1, y1), ..., (xt, yt), it is easy to
form the set of training pairs{(xixj , yiyj)} from the original data, which doubles the
number of input features and squares the number of training labels and classes. (Sub-
sampling can always be used to reduce the size of this training set.) Given such pairwise
training data, standard probabilistic models can be learned to predict the probability of
a label pair given the input vectors.

Many standard probabilistic methods, especially discriminative methods, can be
used for learning pairwise predictors. For example, the logistic regression classifiers can
be trained to maximize the conditional likelihoodP (yiyj |xixj) of the observed label
pairs given the conjoined vector of inputsxixj . Once learned, a pairwise model would
classify test inputsx by maximizing the product̂y = arg maxy

∏

j P (yyj |xxj).4

Clearly, this is equivalent to using a confidence functionc(yiyj |xixj)=logP (yiyj |xixj)
and classifying with respect to uniform example weightsα. Surprisingly, [6] obtained
good classification results with this simple approach. In this paper, we are interested in

4 [6] also considered other techniques for classification, including correlating the predictions on
the test data in a transductive manner, but we do not pursue these extensions here.



the connection to support vector machines and attempt to improve the basic method by
optimizing theα-weights.

Note that, as a confidence measure, using a log probability model,log P (yiyj |xixj),
is a very natural choice. It can be trained easily from the available data, and performs
quite well in practice. However, using a log probability model for a confidence function
raises a significant challenge:log P (yiyj|xixj) is always non-positive and therefore
any confidence matrixC it produces, since it is strictly non-positive, cannot be positive
semidefinite. This raises the same difficulty one faces with non-positive semidefinite
kernels, which motivates us to reformulate the quadratic optimization criterion (4), so
that convexity can be achieved more generally while preserving the effective general-
ization properties.

4 Optimizing training example weights: An alternative view

Given a confidence classifier (3) it is natural to consider adjusting the training example
weightsα to improve accuracy. At first glance, the quadratic minimization criterion (4)
used by SVMs appears to be adjusting the example weights tominimizethe confidence
of the training labelsyi. However, we can argue that this interpretation is misleading.
In fact, standard kernel-based confidence functions have a special property that masks
a key issue: how confidences change when a training label is flipped. For the classifier
(3), it is not the absolute confidence that counts, but ratherthe relative confidences
between the correct label and the incorrect label. That is, we would like the confidence
of a correct label to be larger than the confidence of a wrong label. For kernel-based
confidence functions it turns out that the relationship between the relative confidences
is greatly restricted.

Observation 1 Lety denote a label flip,−y. If c(yiyj |xixj) = yiyjk(xixj) then

∑

j

αjc(yyj|xxj) + by = −
∑

j

αjc(yyj |xxj) − by (5)

However, the relationship (5) is obviously not true in general. For example, it is violated
by any probabilistic confidence function defined byc(yiyj |xixj) = log P (yiyj|xixj).

Thus for kernel-based confidence functions, the confidence in the opposite label is
always just the negation of the confidence in the current label.

We now show how the concept of minimizing sensitivity to label flips on the training
data recovers the classical SVM training criterion. Consider a training example(xi, yi)
and an arbitrary current set of weightsα. The current confidence in the training label
yi is

(

∑

j

αjc(yiyj |xixj)
)

+ byi

Now consider the change in the confidence inyi that would result if a single training
labelyk was actually mistaken. That is, if the current value ofyk is incorrect and should



have been given the opposite sign, then the mistake we are making in yi’s confidence is

∆kc(yi) = αkc(ykyi|xkxi) − αkc(ykyi|xkxi) (6)

= 2αkc(ykyi|xkxi) (7)

Note that (7) holds only under the kernel-based restriction(5), but in this special case
the confidence penalty is just twice the original confidence.If (5) does not hold, then (6)
can be used. The sum of the local confidence changes measures the overall sensitivity
of the classification of training labelyi to possible mislabelings of other data points

∆c(yi) =
∑

k

∆kc(yi) (8)

The smaller this value, the less likelyyi is to be misclassified due to a mislabeling
of some other data point. That is, the sensitivity to label flips should be minimized
if the classifier is to be made more robust. Nevertheless, there might be a trade-off
between the sensitivities of different training examples.Therefore, as a final step, we
consider minimizing the overallweightedsensitivity of the training labels. This yields
the minimization objective

∑

i

αi∆c(yi) =
∑

i

αi

∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

(9)

= 2
∑

ik

αiαkc(ykyi|xkxi) (10)

Again, (10) only holds under the kernel-based restriction (5), but if this is violated, the
more general form (9) can be used.

Therefore, if we are using a kernel-based confidence function, we recover exactly
the same training criterion as the standard SVM (4). What is interesting about this
derivation is that it does not require any reasoning about Euclidean geometry or even
feature (Hilbert) spaces. The argument is only about adjusting the example weights to
reduce the sensitivity of the classifier (3) to any potentialmistakes in the training labels.
That is, from the perspective ofα-weight optimization, it is only the reflection property
(5) and the desire to minimize sensitivity to mislabeled training examples that yields the
same minimization objective as standard SVMs. The remaining constraints in (4) are
also easily justified in this context: It is natural to assumethat the example weights form
a convex combination, and therefore0 ≤ α, α>e = 1. It is also natural to preserve
class balance in the re-weighting, henceα>y = 0. Finally, as a regularization principle,
it makes sense to limit the magnitude of the largest weights so that too few examples do
not dominate the classifier, henceα ≤ β.

Of course, re-deriving an old criterion from alternative principles is not a significant
contribution. However, what is important about this perspective is that it immediately
suggests principled alternatives to the SVM criterion thatcan still reduce sensitivity
to potential training label changes. Our goal is to reformulate the objective to avoid
a quadratic form, since this prevents effective optimization on indefinite confidence
functions, which are the confidence functions we are most interested in (Section 3). It
turns out that just a minor adjustment to (10) yields just such a procedure.



Given the goal of minimizing the sensitivity to training label changes, previously we
sought to minimize theweightedsensitivity, using the same weights being optimized,
which leads to the quadratic form (10) and the optimization problem (4). However,
rather than minimize weighted sensitivity, one could instead be more conservative and
attempt to minimize themaximumsensitivity of any label in the training set. That is,
we would like to adjust the example weights so that the worst sensitivity of any train-
ing labelyi to potential mislabelings of other examples is minimized. This suggestion
immediately yields our proposal for a new training criterion

min
α

max
i

∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

(11)

subject to 0 ≤ α ≤ β, α>y = 0, α>e = 1

Onceα has been optimized, the offsetb can be chosen to minimize training error.

Proposition 2. The objective (11) is convex for any confidence functionc, and more-
over is an upper bound on (4).

The proof of this proposition is obvious. The minimization objective is a maximum
of linear functions ofα, and hence is convex. Given the constraints0 ≤ α, α>e = 1
we immediately havemaxi f(i) ≥

∑

i αif(i).
As a practical matter, (11) can be solved by a simple linear program

min
α,δ

δ subject toδ ≥
∑

k

αk

(

c(ykyi|xkxi) − c(ykyi|xkxi)
)

∀i

0 ≤ α ≤ β, α>y = 0, α>e = 1 (12)

This formulation produces a convex relaxation of theν-SVM criterion for any con-
fidence functionc(yiyj |xixj), and provides an alternative option for using indefinite
kernels.

5 Related Work

Most work related to our proposed approach concerns learning SVMs with indefinite
kernels [10, 2, 3, 11]; although in this paper we address the slightly more general prob-
lem of learning from confidence functions—a superset of confidences derived from
indefinite kernels.

As noted, if the kernel matrix is not conditionally positivesemidefinite, the standard
SVM training problem (2) becomes non-convex, hence hard to optimize. To overcome
this difficulty, some authors have suggested using the indefinite kernel directly but in-
stead solve an approximate form of the SVM training problem [11, 9, 7]. Most, however,
propose to transform the indefinite kernel into a positive semidefinite kernel and then
apply standard SVM training. Such transformation methods include “denoise” (neglect
the negative eigenvalues), “flip” (flip the sign of the negative eigenvalues) and “shift”
(shift all eigenvalues by a positive constant to make all positive); see [14] for details.
A limitation of using such simple transformation methods isthat valuable information



about the data can be lost in the transformation process. Therefore, more recently, a
number of papers have begun to pursue a middle ground strategy, where the original
indefinite kernel is used in training, while the SVM objective is perturbed as little as
possible to maintain a convex objective [10, 2, 3]. These papers proceed by fixing the
original indefinite kernelK0 and then modifying the training objective as follows.

max
α

min
K

α>e−
1

2
α>(K ◦ yy

>)α + ρ‖K − K0‖
2 (13)

subject to α>y = 0, 0 ≤ α ≤ β, K � 0

We provide some comparison of our approach to these different techniques below.

6 Experimental results

We implemented the new weight optimization scheme based on linear programming
(12) and compared it both to standard SVM quadratic minimization (4) and to a sim-
ple approach of using uniform weights. In addition, forindefiniteconfidence measures,
we compared our proposed method to the existing kernel transformation methods men-
tioned in Section 5 above. Note that training based on (4) canonly be efficiently per-
formed when the kernel is positive semidefinite. Furthermore, note that although using
uniform weights appears to be naive, for high quality confidence measures such as those
learned by training reasonable probability models, uniform weighting can still achieve
highly competitive generalization performance—a fact that will be revealed below.

We compared these different weight optimization schemes ona variety of confi-
dence functions, including those defined by standard positive semidefinite kernels (lin-
ear dot product and RBF), as well as the sigmoid kerneltanh, and two probabilistic
confidence models trained using naive Bayes and logistic regression respectively. In
our result tables below, we will denote the results producedby the proposed weight
optimization scheme (12) asα1, for the uniform weighting scheme asα0, and for
the standard SVM quadratic minimization scheme (4) asα2. We compared the test
accuracy of these various algorithms on a set of two-class UCI data sets. All of our
experimental results are averages over 5 times repeats withtraining size equal to 100 or
4/5ths of the data size.

In the first study we compared how the different weight optimization schemes per-
formed using the positive semidefinite confidence functionsdetermined by the linear
and RBF kernels respectively. Table 1 shows that the new weight optimization scheme
(12) achieves comparable generalization performance to standard quadratic training (4).
The uniform weighting strategy is generally inferior in thelinear kernel case (being
dominated on all data sets except placing second onflare andgerman). Although uni-
form weighting performs relatively better in the RBF kernelcase, the results are still
not comparable to the linear and quadratic weighting schemes. The reason is that the
confidence functions are only weakly informative here, and simply averaging them still
yields a sensitive classifier. It is encouraging to note thatour convex relaxation retains
most of the benefit of the original quadratic objective in this case.

We also compared our proposed approach to existing methods for learning with
indefinite kernels. Table 2 shows the comparative results weobtained using indefinite



kernels produced bytanh functions. Interestingly, the straightforwarddenoiseandflip
transformations yield very good results using tanh kernels, while shift produces very
poor performance. The sophisticatedreg-svmtechnique, based on (13) [10, 2, 3], re-
quires much more involved training, yet produces very similar results to the simple
linear optimization scheme we propose.

Table 1. Comparison of the test accuracy of differentα-weight optimizers on UCI data sets
using the positive semidefinite confidence functions definedby linear (L) and RBF (k(xi,xj) =
exp(−‖xi − xj‖

2)) kernels. Here,α0 denotes the results for uniform weighting;α1 for our
proposed linear optimization (12); andα2 for standard quadratic SVM optimization (4).

L-α0 L-α1 L-α2 RBF-α0 RBF-α1 RBF-α2
australian0.6130.8150.843 0.729 0.784 0.713
breast 0.9280.9690.970 0.947 0.971 0.962
cleve 0.6170.7940.802 0.817 0.819 0.792
corral 0.5710.9000.929 0.907 0.936 1.000
crx 0.5460.8500.837 0.649 0.770 0.677
diabetes 0.6510.7540.705 0.741 0.705 0.730
flare 0.8290.8290.760 0.800 0.815 0.829
german 0.7000.7050.666 0.498 0.628 0.700
glass2 0.7560.7810.819 0.892 0.867 0.864
heart 0.7800.8240.835 0.764 0.794 0.774
hepatitis 0.8130.8630.863 0.725 0.825 0.825
mofn-3-7 0.7790.7810.805 0.704 0.776 0.857
pima 0.6510.7630.736 0.772 0.701 0.694
vote 0.6150.9310.935 0.881 0.913 0.875
average 0.7030.8260.822 0.773 0.807 0.807

Another interesting test of the method is on usinglearned indefinite confidence
functions, such as those determined by an estimated probability modellog P (yiyj|xixj).
In these cases, the quadratic objective is non-convex and cannot be solved by standard
quadratic optimizers. However, as mentioned, our relaxation remains convex. [11] sug-
gests more sophisticated approach for training in these cases, but their methods are
substantially more technical than the simple technique proposed here. Table 3 shows
the results of our linear weight optimization procedure andthe uniform weighting on
the indefinite confidence functions. Noticeably the probabilistic (trained) confidence
functions yield better results than the ones produced in theprevious tables by standard
SVMs with both linear and RBF kernels. Moreover, even uniform weighting already
achieves good results for these confidence functions, sincethe confidence functions
obtained using LR and NB are very informative.

The main benefit of the new approach is the ability to reliablyoptimize example
weights for a wider range of confidence functions. We believethis is a useful advantage
over SVM training because most natural confidence functions, in particular learned
confidence functions, are not usually positive semidefinitebut have a wider potential
for generalization improvement over using fixed kernels, asour results suggest.



Table 2. Comparison of the test accuracy of different methods using indefinite kernels produced
by tanh (k(xi, xj) = tanh(0.001 · xixj − 1)). Here, the column headings refer to the various
techniques reviewed in Section 5, except thatα1 refers to our proposed method based on (12).

denoise flip shift reg-svm α1
australian 0.852 0.8520.554 0.782 0.844
breast 0.967 0.9670.650 0.965 0.969
cleve 0.778 0.7670.541 0.798 0.763
corral 0.893 0.8930.429 0.871 0.879
crx 0.842 0.8410.429 0.828 0.879
diabetes 0.758 0.7590.651 0.759 0.699
flare 0.829 0.6980.829 0.828 0.829
german 0.722 0.7230.700 0.726 0.695
glass2 0.768 0.7650.540 0.781 0.781
heart 0.827 0.8270.553 0.837 0.815
hepatitis 0.875 0.8750.813 0.813 0.825
mofn-3-7 1.000 1.0000.779 0.816 0.813
pima 0.756 0.7630.651 0.766 0.735
vote 0.935 0.9350.615 0.928 0.921
average 0.843 0.8330.624 0.821 0.818

7 Conclusion

We have introduced a simple generalization of support vector machines based on the
notion of aconfidence functionc(yiyj|xixj). This view allows us to think of SVM
training as attempting to minimize the sensitivity of the classifier to perturbations of
the training labels. From this perspective, we can not only re-derive the standard SVM
objective without appealing to Euclidean geometry, we can also devise a new training
objective that is convex for arbitrary, not just positive semidefinite, confidence func-
tions. Of course, other optimization objectives are possible, and perhaps superior ones
could still be developed. An important research direction is to develop a generalization
theory for our relaxed training procedure that is analogousto the theory that has already
been developed for SVMs.
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