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Aggregate Types
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Array of Aggregate Types
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Array of Aggregate Types - Actual Use
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Structure Splitting
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- Observe the program
- Profiling
- Static analysis

- Use a heuristic

Defining the Data Layout
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- Field affinity

Structure Splitting Heuristics
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There are problems.
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There are problems:

- Require runtime knowledge
- Expensive profiling
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Mannarswamy et al. (2009) 
introduced the region-based 
approach
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We propose:

Region-based data layout 
transformations in regions that 
present data reuse
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RebaseDL: 
Region-Based Data Layout
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RebaseDL:

- Defines layout statically
- No profiling
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RebaseDL:

- Simplifies enforcing legality
- Only within regions
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RebaseDL:

- Uses copying
- Additional overhead
- Offset by data reuse
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RebaseDL:

- Also considers packing
- Not limited to aggregate types



The Transformation
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Snippet from 179.art
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Candidates
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Pairs → [Loop] - [Memory Range]
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Candidates
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Pairs → [Loop] - [Memory Range]

- Single-entry single-exit (SESE) region
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Transformation Example

Transform f1_layer in 
loop_tj:
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4. Replace uses
5. Copy back and 

deallocate
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Transformation Example

As a result:
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RebaseDL: The Analysis
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Overview
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Candidates In

- For a loop nest
- All loop - memory range pairs
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- Mitigates copy overhead
- Candidate must reuse their memory range

- Otherwise, it is eliminated
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Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate

- 8 bytes / 64 bytes = 0.125
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Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate

- Candidates must have a low cache utilization
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Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop

- Candidate must not have a
low access frequency
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Cost/Benefit

A score for candidates.

- Cost/Benefit must be low
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RebaseDL in LLVM

➜ opt -load-pass-plugin libRebaseDLPass.so -passes=rebasedl input.ll



Artifact Available

78

https://doi.org/10.5281/zenodo.10457086



Evaluation
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Analysis Results

Total of 71 candidates in SPEC CPU benchmark suites
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- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation
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Best performing 
region
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- Keep the same 
behaviour

- Change numf2s



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

85



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

86



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

87



Transformation Evaluation
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- Transformation 
performance?
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- Transformation 
performance?

- Not all regions 
execute with 
SPEC inputs
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Transformation Evaluation



98

Region-Based Data 
Layout via Data Reuse 

Analysis

Caio Salvador Rohwedder
csalvado@ualberta.ca



Extra Slides
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Transformation Example - Packing

Previous example: 

- Region-based
- structure splitting 
- field reordering
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- Keep access pattern
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Transformation Example - Packing

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate
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