
Region-Based Data Layout 
via Data Reuse Analysis

Caio S. Rohwedder
João P. L. De Carvalho - J. Nelson Amaral



Data Layout Transformations

2



Aggregate Types

3



Array of Aggregate Types

4



Array of Aggregate Types - Actual Use

5



Structure Splitting

6



- Observe the program
- Profiling
- Static analysis

- Use a heuristic

Defining the Data Layout

7



- Observe the program
- Profiling
- Static analysis

- Use a heuristic

Defining the Data Layout

8



- Field affinity

Structure Splitting Heuristics

9



10

There are problems.



11

There are problems:

- Whole-program scope
- No single optimal layout
- All mallocs and type references must be updated

- Hard to enforce legality
- C/C++ languages 



12

There are problems:

- Whole-program scope
- No single optimal layout
- All mallocs and type references must be updated

- Hard to enforce legality
- C/C++ languages



13

There are problems:

- Whole-program scope
- No single optimal layout
- All mallocs and type references must be updated

- Hard to enforce legality
- C/C++ languages



14

There are problems:

- Require runtime knowledge
- Expensive profiling



15

Mannarswamy et al. (2009) 
introduced the region-based 
approach



16

We propose:

Region-based data layout 
transformations in regions that 
present data reuse



17

We propose:

Region-based data layout 
transformations in regions that 
present data reuse



RebaseDL: 
Region-Based Data Layout

18



19

RebaseDL:

- Defines layout statically
- No profiling



20

RebaseDL:

- Simplifies enforcing legality
- Only within regions



21

RebaseDL:

- Uses copying
- Additional overhead
- Offset by data reuse



22

RebaseDL:

- Also considers packing
- Not limited to aggregate types



The Transformation

23



Snippet from 179.art

24



Candidates

25

Pairs → [Loop] - [Memory Range]



Candidates

26

Pairs → [Loop] - [Memory Range]



Candidates

27

Pairs → [Loop] - [Memory Range]

- Single-entry single-exit (SESE) region



Candidates

28

Pairs → [Loop] - [Memory Range]

- Base pointers
- Alias analysis
- Code versioning



Candidates

29

Pairs → [Loop] - [Memory Range]

- Base pointers
- Alias analysis
- Code versioning



Candidates

30

Pairs → [Loop] - [Memory Range]

- Base pointers
- Alias analysis
- Code versioning



Candidates

31

Pairs → [Loop] - [Memory Range]

- Base pointers
- Alias analysis
- Code versioning



Transformation Example

Transform f1_layer in 
loop_tj:

32



Transformation Example

Transform f1_layer in 
loop_tj:

33



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

34



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

35



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

36



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

37



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

38



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

39



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

40



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

41



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

42



Transformation Example

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

43



Transformation Example

As a result:

44



RebaseDL: The Analysis

45



46

Overview



47

Candidates In

- For a loop nest
- All loop - memory range pairs



48

Data Reuse

- Mitigates copy overhead
- Candidate must reuse their memory range

- Otherwise, it is eliminated



49

Data Reuse

- Mitigates copy overhead
- Candidate must reuse their memory range

- Otherwise, it is eliminated



50

Data Reuse

- Mitigates copy overhead
- Candidate must reuse their memory range

- Otherwise, it is eliminated



51

Data Reuse

- Mitigates copy overhead
- Candidate must reuse their memory range

- Otherwise, it is eliminated



52

Legality

Inside the candidate’s loop, verify:

- Intraprocedural
- No global references
- Known loop bounds
- Single base pointer



53

Legality

Inside the candidate’s loop, verify:

- Intraprocedural
- No global references
- Known loop bounds
- Single base pointer



54

Legality

Inside the candidate’s loop, verify:

- Intraprocedural
- No global references
- Known loop bounds
- Single base pointer



55

Legality

Inside the candidate’s loop, verify:

- Intraprocedural
- No global references
- Known loop bounds
- Single base pointer



56

Legality

Inside the candidate’s loop, verify:

- Intraprocedural
- No global references
- Known loop bounds
- Single base pointer



57

Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate



58

Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate



59

Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate

- 8 bytes / 64 bytes = 0.125



60

Cache Utilization

Amount of data used /
Amount of data brought to cache
by a candidate

- Candidates must have a low cache utilization



61

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop



62

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop



63

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop



64

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop



65

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop



66

Relative Access Frequency

Freq. of candidate’s accesses
relative to freq. of the target loop

- Candidate must not have a
low access frequency



67

Cost/Benefit

A score for candidates.

- Cost/Benefit must be low



68

Cost/Benefit

Candidate benefit:

- Reduction in unused data loaded to cache
- Multiplied by the trip count of the target loop



69

Cost/Benefit

Candidate benefit:

- Reduction in unused data loaded to cache
- Multiplied by the trip count of the target loop



70

Cost/Benefit

Candidate benefit:

- Reduction in unused data loaded to cache
- Multiplied by the trip count of the target loop



71

Cost/Benefit

Candidate cost:

- Data brough to cache to create copy
- Multiplied by 2 if the copying back is needed



72

Cost/Benefit

Candidate cost:

- Data brough to cache to create copy
- Multiplied by 2 if the copying back is needed



73

Cost/Benefit

Candidate cost:

- Data brough to cache to create copy
- Multiplied by 2 if the copying back is needed



74

Greedy Selection

- Sorts candidates based on cost/benefit
- Break ties with target loop depth

- Selects candidates → Candidates Out
- Avoiding conflicting candidates



75

Greedy Selection

- Sorts candidates based on cost/benefit
- Break ties with target loop depth

- Selects candidates → Candidates Out
- Avoiding conflicting candidates



76

Greedy Selection

- Sorts candidates based on cost/benefit
- Break ties with target loop depth

- Selects candidates → Candidates Out
- Avoiding conflicting candidates



77

RebaseDL in LLVM

➜ opt -load-pass-plugin libRebaseDLPass.so -passes=rebasedl input.ll



Artifact Available

78

https://doi.org/10.5281/zenodo.10457086



Evaluation

79



Analysis Results

Total of 71 candidates in SPEC CPU benchmark suites

80



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

81



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

82

Best performing 
region



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

83



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

84

- Keep the same 
behaviour

- Change numf2s



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

85



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

86



- Data reuse affects 
the transformation’s
performance?

Data Reuse Impact Evaluation

87



Transformation Evaluation

88

- Transformation 
performance?



Transformation Evaluation

89

- Transformation 
performance?

- Not all regions 
execute with 
SPEC inputs



Transformation Evaluation

90

- Transformation 
performance?



Transformation Evaluation

91

- Transformation 
performance?



Transformation Evaluation

92

- Transformation 
performance?



Transformation Evaluation

93

- Transformation 
performance?



Transformation Evaluation

94

- Transformation 
performance?



95

Transformation Evaluation



96

Transformation Evaluation



97

Transformation Evaluation



98

Region-Based Data 
Layout via Data Reuse 

Analysis

Caio Salvador Rohwedder
csalvado@ualberta.ca



Extra Slides

99



Transformation Example - Packing

Previous example: 

- Region-based
- structure splitting 
- field reordering

100



Transformation Example - Packing

101



Transformation Example - Packing

- Struct → Array
- Keep access pattern

102



Transformation Example - Packing

- Struct → Array
- Keep access pattern

103



Transformation Example - Packing

- Struct → Array
- Keep access pattern

104



Transformation Example - Packing

- Struct → Array
- Keep access pattern

105



Transformation Example - Packing

Transform f1_layer in 
loop_tj:

1. Create new type
2. Reorder fields
3. Allocate and copy
4. Replace uses
5. Copy back and 

deallocate

106


