
To Pack or Not to Pack: 
A Generalized Packing 
Analysis and Transformation

Caio S. Rohwedder - Nathan Henderson 
João P. L. de Carvalho - Yufei Chen - J. Nelson Amaral



Motivation

2



High-Performance GEMM: Tiling and Packing

3



High-Performance GEMM: Tiling and Packing

4



High-Performance GEMM: Tiling and Packing

5



High-Performance GEMM: Tiling and Packing

6



High-Performance GEMM: Tiling and Packing

7



High-Performance GEMM: Tiling and Packing

8



High-Performance GEMM: Tiling and Packing

9



High-Performance GEMM: Tiling and Packing

10

Copy



High-Performance GEMM: Tiling and Packing

11

Copy

Transpose



12

Current state of Loop Optimizers



13

Current state of Loop Optimizers

- Tiling
- Unrolling
- Interchanging
- Fusion
- etc.



14

Packing? No.



15

Packing? No.
Except for:

- GEMM-specific



16

Packing? No.

Except for:

- GEMM-specific
- Handcrafted
- Autotuned



We propose:

- Compiler-level packing to generic 
inputs

- Analysis to determine what and 
where to pack

17



18

Packing pros:

- Self-interference misses
- TLB entries
- Vectorization



19

Packing pros:

- Self-interference misses
- TLB entries
- Vectorization



20

Packing cons:

- Copy overhead
- Naive approach ➙ Slowdown



GPAT: Generalized Packing 
Analysis and Transformation

21



22

A Simple Example



3D Tensor Contraction

23



3D Tensor Contraction

24

Pack tensor A 
targeting loop ForJ



3D Tensor Contraction

25

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



3D Tensor Contraction

26

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



3D Tensor Contraction

27

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



3D Tensor Contraction

28

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



3D Tensor Contraction

29

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



3D Tensor Contraction

30

Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)



31

Packing Analysis



Loop-tensor pair: packing candidate

32

Notation



Loop-tensor pair: packing candidate

33

Notation



Loop-tensor pair: packing candidate

34

Notation



Loop-tensor pair: packing candidate

35

Notation



All packing 
candidates

36

Data reuse
filter

Phase 1
Loop nest



37

Overcome copying overhead with reuse

Phase 1 - Data Reuse Filter



All packing 
candidates

38

Data reuse
filter

Phase 1 Phase 2
Loop nest

Cache residency
filter



39

Phase 2 - Cache Residency Filter

Don’t evict T’ from cache



40

Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

Cache



41

Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

A’

Cache



42

Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

A’ Bws

Cache



43

Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

BwsCws

Cache



All packing 
candidates

44

Data reuse
filter

Phase 1

Cache residency
filter

Phase 2

Phase 3

Goal 
fulfilment

Loop nest



45

Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction



46

Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction



Data-layout change 
reduces stride at an
innermost loop?

47

Phase 3 - Innermost Stride Reduction



Data-layout change 
reduces stride at an
innermost loop?

48

Phase 3 - Innermost Stride Reduction



Data-layout change 
reduces stride at an
innermost loop?

- Cache locality
- Vectorization

49

Phase 3 - Innermost Stride Reduction



Data-layout change 
reduces stride at an
innermost loop?

- Cache locality
- Vectorization

50

Phase 3 - Innermost Stride Reduction

What about stride 
reduction at other loops?

- Less TLB entries



51

Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction



Packing reduces TLB entries
in a loop below L1 dTLB capacity?

52

Phase 3 - TLB Miss Reduction



53

Phase 3 - TLB Miss Reduction

…

…

50

100

80



54

Phase 3 - TLB Miss Reduction

…

…

50

100

80

80

100



55

Phase 3 - TLB Miss Reduction

…

…

50

100

80

80

100



1 TLB entry = 50 elements

56

Phase 3 - TLB Miss Reduction

…

…

50

100

80

80

100



1 TLB entry = 50 elements

57

Phase 3 - TLB Miss Reduction

…

…

50

100

80

80

100



1 TLB entry = 50 elements

58

Phase 3 - TLB Miss Reduction

…

…

50

100

80

80

100

100 Entries 2 Entries



Packing reduces TLB entries
in a loop below L1 dTLB capacity?

59

Phase 3 - TLB Miss Reduction A

A

BC

BC

+ +

+ +

Threshold



Packing reduces TLB entries
in a loop below L1 dTLB capacity?

- For all loops affected
- For all tensors accessed
- Given packing and possible data-layout change

60

Phase 3 - TLB Miss Reduction



All packing 
candidates

61

Data reuse
filter

Phase 1

Cache residency
filter

Phase 2

Phase 3

Goal 
fulfilment

Greedy
selection

Phase 4

Loop nest

Packing output



62

Final packing selection:

1. Sort candidates based on cost-benefit
2. Greedy selection

Phase 4 - Greedy Selection



63

GPAT in MLIR Affine

➜ mlir-opt -affine-loop-pack input.mlir



Artifact Available

64

https://doi.org/10.5281/zenodo.7517506



65

Evaluation



Packing Choice Evaluation

66

- Effective combination 
of candidates?



Packing Choice Evaluation

67

- Effective combination 
of candidates?



Packing Choice Evaluation

68

- Effective combination 
of candidates?



Packing Choice Evaluation

69

- Effective combination 
of candidates?



Packing Choice Evaluation

70

- Effective combination 
of candidates?



Packing Choice Evaluation - 2mm

71



Packing Choice Evaluation - 2mm

72

where



Packing Choice Evaluation - 2mm

73

- L1 dTLB: miss
- L2 TLB: hit

(lower is better)



Packing Choice Evaluation - 2mm

74

- Instruction count

(lower is better)



- GPAT compared to 
other approaches?

- Beyond gemm?
- Robust to prior

transformations?

75

Polybench Evaluation



- GPAT compared to 
other approaches?

- Beyond gemm?
- Robust to prior

transformations?

76

Polybench Evaluation

All polybench benchmarks



- GPAT compared to 
other approaches?

- Beyond gemm?
- Robust to prior

transformations?

77

Polybench Evaluation

Tiling engine:

- Affine tiling



- Speedup over Clang -O3
- Benchmark + Tiling target
- Only benchmarks that 

were packed

78

Polybench Evaluation - Affine Tiling



- Speedup over Clang -O3
- Benchmark + Tiling target
- Only benchmarks that 

were packed

79

Polybench Evaluation - Affine Tiling



80

Polybench Evaluation - Affine Tiling



81

Polybench Evaluation - Affine Tiling



82

Polybench Evaluation - Affine Tiling



83

Polybench Evaluation - Affine Tiling

- Polybench
is designed to 
evaluate polly



84

Polybench Evaluation - Affine Tiling

- Affine tiling is 
very simplistic



85

Polybench Evaluation - Affine Tiling

- Even when no tiling
“X”



86

Polybench Evaluation - Affine Tiling

- GPAT improves
GEMM-like and
GEMM-unalike
computations



- Implemented in MLIR
- Evaluated in 

Polybench against 
Polly and Pluto

87

To Pack or Not to Pack:
A Generalized Packing 
Analysis and 
Transformation

Caio Salvador Rohwedder
csalvado@ualberta.ca



More Slides

88



89

Candidate (ForJ, A):

- All accesses of A
must be invariant
to j

Phase 1 - Data Reuse Filter



90

Candidate (ForJ, A):

- All accesses of A
must be invariant
to j

Phase 1 - Data Reuse Filter



91

Candidate (ForJ, A):

- All accesses of A
must be invariant
to j

Phase 1 - Data Reuse Filter



92

Candidate (L, T):

- All accesses of T
must be invariant
to the IV of L

Phase 1 - Data Reuse Filter



93

Candidate (L, T):

- All accesses of T
must be invariant
to the IV of L,
and any IVs that 
depend on the IV of L

Phase 1 - Data Reuse Filter



Ensure A’ remains resident:

- Footprint of A’
- Footprint of working 

set of B and C in one 
iteration of ForJ

94

Phase 2 - Cache Residency Filter 



Ensure A’ remains resident:

- Footprint of A’
- Footprint of working 

set of B and C in one 
iteration of ForJ

95

Phase 2 - Cache Residency Filter 



Ensure A’ remains resident:

- Iter j=0

96

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=0

97

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=0

98

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=0

99

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=0

100

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=1

101

Phase 2 - Cache Residency Filter 



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

102

Phase 2 - Cache Residency Filter 



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

103

Phase 2 - Cache Residency Filter 

A’



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

104

Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

105

Phase 2 - Cache Residency Filter 

A’ Bws+1 Cws+

1



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

106

Phase 2 - Cache Residency Filter 

A’ Bws+1 Cws+

1



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

107

Phase 2 - Cache Residency Filter 

A’ Bws+2 Cws+

2



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ

108

Phase 2 - Cache Residency Filter 

A’ Bws+2 Cws+

2



Ensure T’ remains resident:

- Footprint of T’
- Twice the footprint of working 

set of all tensors in one 
iteration of L

109

Phase 2 - Cache Residency Filter 



110

1. Sort cost-benefit of candidates:

Phase 4 - Greedy Selection

TLB Improvement
Footprint of T’ (x2)



111

1. Sort cost-benefit of candidates:

Phase 4 - Greedy Selection

TLB Improvement
Footprint of T’ (x2)

…

…

50

100

80

80

100

100 Entries 2 Entries



112

1. Sort cost-benefit of candidates:

Phase 4 - Greedy Selection

TLB Improvement
Footprint of T’ (x2)

…

…

50

100

80

80

100

100 Entries 2 Entries



113

2. Greedy selection, checking:
- Redundant packings
- Candidates benefit in presence of previous selection

Phase 4 - Greedy Selection



114

2. Greedy selection, checking:
- Redundant packings
- Candidates benefit in presence of previous selection

Phase 4 - Greedy Selection



115

2. Greedy selection, checking:
- Redundant packings
- Candidates benefit in presence of previous selection

Phase 4 - Greedy Selection

Goals

Innermost stride 
reduction

TLB miss 
reduction



116

Packing Choice Evaluation - gemm



- gemm interchanged
to BLIS loop ordering

117

Packing Choice Evaluation - gemm BLIS



118

Polybench Evaluation - Polymer Tiling

- Speedup over Clang -O3
- Polly



gemm

119

Polybench Evaluation - Polymer Tiling



2mm

120

Polybench Evaluation - Polymer Tiling



3mm

121

Polybench Evaluation - Polymer Tiling


