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Copy



High-Performance GEMM: Tiling and Packing

11

Copy

Transpose
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Current state of Loop Optimizers
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Current state of Loop Optimizers

- Tiling
- Unrolling
- Interchanging
- Fusion
- etc.
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Packing? No.
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Packing? No.

Except for:

- GEMM-specific
- Handcrafted
- Autotuned



We propose:

- Compiler-level packing to generic 
inputs

- Analysis to determine what and 
where to pack
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Packing pros:

- Self-interference misses
- TLB entries
- Vectorization
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Packing cons:

- Copy overhead
- Naive approach ➙ Slowdown



GPAT: Generalized Packing 
Analysis and Transformation
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A Simple Example



3D Tensor Contraction
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3D Tensor Contraction
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Pack tensor A 
targeting loop ForJ
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Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)
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3D Tensor Contraction
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Pack tensor A 
targeting loop ForJ:

1. Insert packing loop
2. Substitute A for A’
3. Insert unpacking loop

(data-layout change)
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Packing Analysis



Loop-tensor pair: packing candidate
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Notation
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Notation



Loop-tensor pair: packing candidate
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Notation



All packing 
candidates

36

Data reuse
filter

Phase 1
Loop nest
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Overcome copying overhead with reuse

Phase 1 - Data Reuse Filter



All packing 
candidates
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Data reuse
filter

Phase 1 Phase 2
Loop nest

Cache residency
filter
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Phase 2 - Cache Residency Filter

Don’t evict T’ from cache
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Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

Cache
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Phase 2 - Cache Residency Filter

Don’t evict T’ from cache

A’
Bws

Cws

…

A’

BwsCws

Cache



All packing 
candidates
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Data reuse
filter

Phase 1

Cache residency
filter

Phase 2

Phase 3

Goal 
fulfilment

Loop nest
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Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction
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Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction



Data-layout change 
reduces stride at an
innermost loop?
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Phase 3 - Innermost Stride Reduction
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Phase 3 - Innermost Stride Reduction



Data-layout change 
reduces stride at an
innermost loop?

- Cache locality
- Vectorization
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Phase 3 - Innermost Stride Reduction



Data-layout change 
reduces stride at an
innermost loop?

- Cache locality
- Vectorization
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Phase 3 - Innermost Stride Reduction

What about stride 
reduction at other loops?

- Less TLB entries
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Phase 3 - Goal Fulfilment 

Goals

Innermost stride 
reduction

TLB miss 
reduction



Packing reduces TLB entries
in a loop below L1 dTLB capacity?
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Phase 3 - TLB Miss Reduction
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Phase 3 - TLB Miss Reduction
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1 TLB entry = 50 elements
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1 TLB entry = 50 elements
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Phase 3 - TLB Miss Reduction

…
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Packing reduces TLB entries
in a loop below L1 dTLB capacity?
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Phase 3 - TLB Miss Reduction A

A

BC

BC

+ +

+ +

Threshold



Packing reduces TLB entries
in a loop below L1 dTLB capacity?

- For all loops affected
- For all tensors accessed
- Given packing and possible data-layout change
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Phase 3 - TLB Miss Reduction



All packing 
candidates
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Data reuse
filter

Phase 1

Cache residency
filter

Phase 2

Phase 3

Goal 
fulfilment

Greedy
selection

Phase 4

Loop nest

Packing output
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Final packing selection:

1. Sort candidates based on cost-benefit
2. Greedy selection

Phase 4 - Greedy Selection
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GPAT in MLIR Affine

➜ mlir-opt -affine-loop-pack input.mlir



Artifact Available
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https://doi.org/10.5281/zenodo.7517506
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Evaluation



Packing Choice Evaluation
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- Effective combination 
of candidates?
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Packing Choice Evaluation
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- Effective combination 
of candidates?



Packing Choice Evaluation - 2mm
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Packing Choice Evaluation - 2mm
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where



Packing Choice Evaluation - 2mm
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- L1 dTLB: miss
- L2 TLB: hit

(lower is better)



Packing Choice Evaluation - 2mm
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- Instruction count

(lower is better)



- GPAT compared to 
other approaches?

- Beyond gemm?
- Robust to prior

transformations?
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Polybench Evaluation
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Polybench Evaluation

All polybench benchmarks



- GPAT compared to 
other approaches?

- Beyond gemm?
- Robust to prior

transformations?
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Polybench Evaluation

Tiling engine:

- Affine tiling



- Speedup over Clang -O3
- Benchmark + Tiling target
- Only benchmarks that 

were packed
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Polybench Evaluation - Affine Tiling



- Speedup over Clang -O3
- Benchmark + Tiling target
- Only benchmarks that 

were packed
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Polybench Evaluation - Affine Tiling
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Polybench Evaluation - Affine Tiling
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Polybench Evaluation - Affine Tiling
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Polybench Evaluation - Affine Tiling

- Polybench
is designed to 
evaluate polly
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Polybench Evaluation - Affine Tiling

- Affine tiling is 
very simplistic
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Polybench Evaluation - Affine Tiling

- Even when no tiling
“X”
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Polybench Evaluation - Affine Tiling

- GPAT improves
GEMM-like and
GEMM-unalike
computations



- Implemented in MLIR
- Evaluated in 

Polybench against 
Polly and Pluto
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Candidate (ForJ, A):

- All accesses of A
must be invariant
to j

Phase 1 - Data Reuse Filter
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Candidate (L, T):

- All accesses of T
must be invariant
to the IV of L

Phase 1 - Data Reuse Filter
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Candidate (L, T):

- All accesses of T
must be invariant
to the IV of L,
and any IVs that 
depend on the IV of L

Phase 1 - Data Reuse Filter



Ensure A’ remains resident:

- Footprint of A’
- Footprint of working 

set of B and C in one 
iteration of ForJ
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Phase 2 - Cache Residency Filter 
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Ensure A’ remains resident:

- Iter j=0
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Ensure A’ remains resident:
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Phase 2 - Cache Residency Filter 

A’ Bws Cws



Ensure A’ remains resident:

- Iter j=1

101

Phase 2 - Cache Residency Filter 
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- Twice the footprint of working 

set of B and C in one 
iteration of ForJ
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Phase 2 - Cache Residency Filter 

A’ Bws+1 Cws+

1
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Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ
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Phase 2 - Cache Residency Filter 

A’ Bws+2 Cws+

2



Ensure A’ remains resident:

- Footprint of A’
- Twice the footprint of working 

set of B and C in one 
iteration of ForJ
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Phase 2 - Cache Residency Filter 

A’ Bws+2 Cws+

2



Ensure T’ remains resident:

- Footprint of T’
- Twice the footprint of working 

set of all tensors in one 
iteration of L
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Phase 2 - Cache Residency Filter 
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1. Sort cost-benefit of candidates:

Phase 4 - Greedy Selection

TLB Improvement
Footprint of T’ (x2)
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Phase 4 - Greedy Selection

TLB Improvement
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1. Sort cost-benefit of candidates:

Phase 4 - Greedy Selection
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Footprint of T’ (x2)

…

…

50

100

80

80

100

100 Entries 2 Entries



113

2. Greedy selection, checking:
- Redundant packings
- Candidates benefit in presence of previous selection

Phase 4 - Greedy Selection
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2. Greedy selection, checking:
- Redundant packings
- Candidates benefit in presence of previous selection

Phase 4 - Greedy Selection

Goals

Innermost stride 
reduction

TLB miss 
reduction
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Packing Choice Evaluation - gemm



- gemm interchanged
to BLIS loop ordering
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Packing Choice Evaluation - gemm BLIS
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Polybench Evaluation - Polymer Tiling

- Speedup over Clang -O3
- Polly



gemm
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Polybench Evaluation - Polymer Tiling



2mm
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Polybench Evaluation - Polymer Tiling



3mm
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Polybench Evaluation - Polymer Tiling


