Pooling Acceleration in the DaVinci Architecture
Using Im2col and Col2im Instructions

Caio S. Rohwedder*, João P. L. de Carvalho†, José Nelson Amaral*,
Guido Araújo*, Giancarlo Colmenares†, Kai-Ting Amy Wang†

*Institute of Computing
University of Campinas (UNICAMP)
Campinas, SP, Brazil
{joao.carvalho, guido} @ic.unicamp.br
{c157754} @dac.unicamp.br

†Dept. of Computing Science
University of Alberta
Edmonton, AB, Canada
{jamaral} @ualberta.ca

†Heterogeneous Compiler Lab.
Huawei Canada Research Centre
Markham, ON, Canada
{kai.ting.wang} @huawei.com
{giancarlo.colmenares} @huawei.com

Abstract—Image-to-column (Im2col) and column-to-image
(Col2im) are data transformations extensively used to map con-
volution to matrix multiplication. These transformations rearrange
the inputs of convolution to avoid its strided memory access pat-
tern, thus providing a friendlier data layout for CPUs and GPUs.
In artificial intelligence (AI) accelerators, these transformations
allow convolution to be computed in matrix-multiplier units.
Implemented in software, however, they impose a significant
overhead that must be compensated by the efficiency gains of
matrix multipliers. DaVinci is an AI accelerator architecture that
introduces instructions to optimize Im2col and Col2im. Another
core layer of convolutional neural networks that presents a
strided memory access pattern is pooling. This paper explores the
specialized Im2col and Col2im instructions to accelerate pooling
layers in DaVinci. An experimental evaluation reveals that the
proposed pooling implementations can yield speedups of up to 5.8
times compared to a baseline that does not use these specialized
instructions. The speedups follow from an improved memory
layout in the inputs of pooling, as this layout leads to better
utilization of the vector processing unit in DaVinci.

Index Terms—CNN, AI Accelerator, Maxpool, Gradient, TVM

I. INTRODUCTION

With the increasing adoption of convolutional neural net-
works (CNNs), the optimization of each of its components has
become fundamental. Convolution has been the main target of
optimization because it is the most used and expensive layer
in CNNs. However, many modern CNN architectures also use
pooling to extract translation-invariant features and to perform
subsampling. Max-pooling is the main variant of pooling that
subsamples using the maximum value. While the performance
impact of pooling is low compared to convolution, a naive im-
plementation can hinder the overall performance of a CNN [1].

DaVinci [2] is an AI accelerator architecture that imple-
ments scalar, vector, and matrix multiplier units. The matrix
multiplier unit allows efficient computation of convolution and
other CNN layers, such as the fully connected, that can be
mapped to matrix multiplication [3]. Convolution is mapped
to matrix multiplication through the Im2col and Col2im data
transformations. These transformations are memory-intensive
and add significant performance overhead to convolution.
However, highly optimized solutions for matrix multiplication
both in software (e.g., OpenBLAS and Eigen libraries) and
in hardware (e.g., matrix multipliers) overcome this overhead.
Still, DaVinci introduced instructions to optimize Im2col and
Col2im. First, Im2col is performed during a load instruction
(Im2Col) just before data reaches the memory buffers closest
to DaVinci’s computational units. As such, this operation uses
no temporaries and its memory overhead is only seen in these
buffers. Second, Co12Im is vector instruction capable of better
vectorizing over the scattered access pattern of Col2im. By
using these instructions, convolution is computed in the matrix
multiplier unit at a low overhead.

Max-pooling also has a strided access pattern, but unlike
convolution it cannot be mapped to the matrix multiplier. Even
so, its implementation can leverage the specialized Im2Col
and Co12Im instructions. This paper thus proposes two key
ideas to accelerate pooling in DaVinci: to produce an improved
data layout by applying Im2Col instructions to the input of
forward pooling, and to apply Co12Im instructions to the
backward pooling instead of traditional vector instructions.
Previous attempts to accelerate CNNs using FPGAs proposed
pooling-specific instructions and computational units [4], [5].
Whereas the proposed approach uses a general-purpose vector
computational unit and instructions primarily designed for
convolution. Earlier work on improving pooling also overlooks
its backward implementation [4], [6], [7], which is essential for
training. Lastly, operation fusion, which effectively improves
pooling paired with convolution [6], [8], is independent of the
Im2col/Col2im based implementation presented in this work.
Both optimizations can be applied in conjunction.

The main contributions of this paper are:
• A description of DaVinci’s Im2Col and Co12Im instruc-
tions, showing how they are executed and how they
integrate into DaVinci’s datapaths (Section III).
• An approach to accelerate pooling with an Im2col-based
forward implementation and a Co12im-based backward
implementation using the DaVinci-specific Im2Col and
Co12Im instructions (Section V).
• A rigorous evaluation of multiple pooling implementa-
tions in DaVinci, revealing speedups of up to 5.8 times
on the Im2col/Col2im based implementations (Section VI).
The remaining sections are organized as follows: foundational concepts for this work appear in Section II. Section IV presents the software stack used to implement pooling operators for DaVinci. Finally, Section VII presents related works, and Section VIII concludes this paper.

II. BACKGROUND

A. Convolution, Im2col and Matrix Multiplication

Convolution is a filtering operation used in image processing. This operation is the main building block of CNNs [9]. In them, convolution repeatedly applies a kernel — a multi-channel filter composed of trainable weights — over patches of the input image. Patches are regions of the input that have the same size as the kernel. They are selected based on the stride parameters \(S_h \) and \(S_w \), and given these parameters may or may not overlap. In an application of a kernel, its weights multiply a patch of the input. The multiplied results are summed together to generate a single output. A kernel is applied over each patch to generate a two-dimensional output, which is called a feature map. Convolution uses multiple kernels to produce multiple feature maps that are stacked as channels into a three-dimensional output.

The memory layout for the input of a convolutional layer is commonly described as \(NCHW \), where each character represents a dimension of a four-dimensional input: the number of images \(N \), channels \(C \), height \(H \), and width \(W \). The character’s order specifies the order in which each dimension is arranged in memory. For simplicity, the dimension \(N \) has a length equal to one throughout the paper.

Convolution unrolling, also known as Image-to-Column (Im2col), is a data transformation that allows the mapping of convolution into matrix-matrix multiplication [11]. This transformation, illustrated in Figure 1, consists of creating two matrices, \(\text{Out}_{\text{In}} \) and \(\text{Out}_{\text{Ker}} \), based on the input image and the kernels, respectively. Each row of matrix \(\text{Out}_{\text{In}} \) contains all the input needed to compute one element of an output feature map linearized into one dimension. Each column of matrix \(\text{Out}_{\text{Ker}} \) contains the weights of a kernel similarly linearized. Thus, multiplying \(\text{Out}_{\text{In}} \) and \(\text{Out}_{\text{Ker}} \) is equivalent to performing convolution with its original inputs.

If the stride sizes \((S_h, S_w) \) are smaller than the kernel’s height and width \((K_h, K_w) \), patches will overlap. The overlapping elements will be copied to multiple rows of matrix \(\text{Out}_{\text{In}} \), resulting in a bigger memory footprint. This is the main drawback of the Im2col technique when contrasted with direct-convolution based approaches. An example with a single channel is shown in Figure 2. The two patches are highlighted and they overlap on the elements \(\{3, 8, 13\} \). As a result, these elements appear in both rows of the output of Im2col (on the right). Nonetheless, Im2col is used across AI frameworks to implement convolution because matrix multiplication offers making it easier to apply vectorization techniques [11]. The availability of optimized linear algebra libraries such as OpenBLAS [12], ATLAS [13], and Eigen [14], and AI accelerator designed around matrix multiplier units, further incentivizes such a transformation.

B. Backward Operators and Col2im

To train a neural network, the input values are first propagated forward to produce an output. Then, the error between this generated output and the expected output is calculated through a loss function. The gradient of this loss function is propagated backward towards the input so that the network can be tuned. Thus, every forward operator has a dual-operator applied in the backward pass, namely its backward operator [15].

The backward operator of Im2col is called Col2im, and it is also illustrated in Figure 1. Col2im is used in the backward propagation pass of convolutional layers implemented with Im2col. The incoming gradients in the shape of the matrix \(\text{Out}_{\text{In}} \) are propagated back to the original \(NCHW \) layout. If there is no overlap, as in the example of Figure 1, Col2im simply returns the matrix to its original shape. But when patches do overlap, gradients that refer to the same position in the output are summed, as shown in Figure 2.

C. Pooling Operators

Spatial feature pooling subsamples images to obtain translation-invariant feature maps in computer-vision archi-
the AI Core, and its corresponding data paths. The AI Core is composed of three processing units (Cube, Scalar, and Vector Unit), a set of private buffers (LOA, LOB, LOC, L1, and Unified Buffer), and a Storage Conversion Unit (SCU). Outside of the AI Core sits the Double Data Rate (DDR) and High Bandwidth Memory (HBM) memories and an L2 Buffer, all of which are shared among the AI Cores of a chip.

Both Scalar and Vector Units operate on data loaded from/stored to the Unified Buffer. The Vector Unit performs basic arithmetic and logic vector operations (e.g., subtracting two vectors). It uses a 128-bit mask register in which every bit represents one element of a vector instruction that may be processed or not. The Scalar Unit has both general and special-purpose registers, which are used to execute control-flow and scalar arithmetic operations, as well as index and address calculations.

The Cube Unit is based on a multidimensional systolic array [23], it implements matrix multiplication using an array of processing elements that perform multiply-accumulate operations. This unit acts similarly to the Matrix Multiplier Unit (MXU) of Google’s Tensor Processing Unit [24]. Buffers LOA and LOB store the inputs of the Cube Unit, and the LOC buffer stores its output. While the operands for the Vector Unit are vectors, the Cube Unit receives data-fractals from its input buffers. A data-fractal is a small matrix of a constant size of 4096 bits. The Cube Unit can multiply two data-fractals per clock cycle.

The private buffers of the AI Core (LOA, LOB, LOC, L1, and Unified Buffer) are organized as scratch-pad memories [25]. Data movement between these buffers must be explicitly managed by the application, in contrast, hardware-managed caches are transparent to the application and ensure consistency by hardware protocols. Thus, the programmer needs to specify which data should be brought to each buffer, and also needs

III. THE DaVinci ARCHITECTURE

DaVinci [2] is an AI accelerator architecture used by Huawei’s Ascend chips. The following subsections describe components of the Ascend 910 chip.

A. AI Core

Figure 4 shows a closer view of DaVinci’s main component, the AI Core, and its corresponding data paths. The AI Core is composed of three processing units (Cube, Scalar, and Vector Unit), a set of private buffers (LOA, LOB, LOC, L1, and Unified Buffer), and a Storage Conversion Unit (SCU). Outside of the AI Core sits the Double Data Rate (DDR) and High Bandwidth Memory (HBM) memories and an L2 Buffer, all of which are shared among the AI Cores of a chip.

Both Scalar and Vector Units operate on data loaded from/stored to the Unified Buffer. The Vector Unit performs basic arithmetic and logic vector operations (e.g., subtracting two vectors). It uses a 128-bit mask register in which every bit represents one element of a vector instruction that may be processed or not. The Scalar Unit has both general and special-purpose registers, which are used to execute control-flow and scalar arithmetic operations, as well as index and address calculations.

The Cube Unit is based on a multidimensional systolic array [23], it implements matrix multiplication using an array of processing elements that perform multiply-accumulate operations. This unit acts similarly to the Matrix Multiplier Unit (MXU) of Google’s Tensor Processing Unit [24]. Buffers LOA and LOB store the inputs of the Cube Unit, and the LOC buffer stores its output. While the operands for the Vector Unit are vectors, the Cube Unit receives data-fractals from its input buffers. A data-fractal is a small matrix of a constant size of 4096 bits. The Cube Unit can multiply two data-fractals per clock cycle.

The private buffers of the AI Core (LOA, LOB, LOC, L1, and Unified Buffer) are organized as scratch-pad memories [25]. Data movement between these buffers must be explicitly managed by the application, in contrast, hardware-managed caches are transparent to the application and ensure consistency by hardware protocols. Thus, the programmer needs to specify which data should be brought to each buffer, and also needs
to maintain data consistency. In a scratch-pad memory, each buffer has its own address space, which is separated from the address space of the memory. With this organization, more complexity is placed upon the application’s code, but it comes with the benefit of not requiring tag bits, dirty bit, and the comparison logic that transparent caches need in the hardware. From the AI Core’s perspective, all shared memories (DDR, HBM, and L2) are considered global memory and are represented as \(L0B \) in Figure 4. Given that their data-paths are the same, they are drawn only once.

The Storage Conversion Unit (SCU) may perform many data-layout transformations when data is transferred between buffers. This unit implements Im2col, Col2im, and other transformations, out of the scope of this work, such as padding, matrix-tile transposition, and sparse-matrix decompression. The SCU enables instructions, such as Im2col, to perform fast layout transformations while data is transferred between buffers. As a result, the memory overhead that these transformations may imply appears only on the target buffers. Such instructions were specifically designed to operate on the memory layout described next.

B. Fractal Memory Layout

To avoid memory alignment and padding problems in the Cube Unit, DaVinci includes the constant-length dimension \(C_0 \) in the representation of an input image. As a result, a slight variation of \(NCHW \) is used, called the fractal memory layout. This format is represented by \(NC_1HWC_0 \), in which \(C_0 \) represents part of a split in the channel dimension \((C) \) of \(NCHW \). To make the conversion from \(NCHW \) to \(NC_1HWC_0 \), \(C \) is split into \(C_1 \) and \(C_0 \), where \(C_1 = \lceil C/C_0 \rceil \).

If the original number of channels \((C)\) is not divisible by \(C_0 \), the \(C_0 \) dimension must be zero-padded to reach its required length. Given a data type, the length of \(C_0 \) makes the inputs of the Cube Unit (data-fractals) always have 4096 bits of data. A data-fractal has \(16\times C_0 \) elements, thus for Float16, \(C_0 \) has a length of 16. For Unsigned8, \(C_0 \) has a length of 32. The data type Float16 is adopted in this paper.

C. Im2Col Instruction

Im2Col is a data-transformation instruction executed in the SCU that acts as a load instruction. It may be applied to a data-fractal that is loaded from L1 to L0A \(\rightarrow 3 \) and L0B \(\rightarrow 5 \), so as to prepare data for computation in the Cube Unit. It may also be applied to a data-fractal that is loaded from L1 to the Unified buffer \(\rightarrow 8 \), to prepare data for computation in the Vector and Scalar Units.

There are two main differences when comparing the Im2Col instruction to the Im2col transformation shown in Figure 1. First, Im2Col is a single instruction, it is only able to load and transform one fractal of an image at a time. Even if it could operate on a whole image, its target buffers (L0A, L0B, Unified Buffer) may not be capable of storing the transformed image. For this reason, Im2Col instructions can be used to load and transform a tile of an input. Second, Im2Col is designed to load an input that is in the fractal memory layout \(NC_1HWC_0 \). Therefore, its output will also have a different memory layout when compared to the one shown on the right of Figure 1. The advantage of performing Im2Col as load instruction is that the increase in memory overhead from duplicated elements only appears in the target buffers (L0A, L0B, and Unified buffer), which are the buffers closest to the Cube and Vector Units.

Im2Col needs the following parameters related to the input image (or tile), which are constant for all instructions loading the same input:

- Height \((I_h)\) and width \((I_w)\) of the input image;
- Left \((P_l)\), right \((P_r)\), top \((P_t)\), and bottom \((P_b)\) zero padding;
- Stride in the height \((S_h)\) and width \((S_w)\) directions;
- Kernel height \((K_h)\) and width \((K_w)\).

Based on these parameters, the number of patches \((O_h, O_w)\) in the input’s height and width can be calculated by Equation 1. Furthermore, each Im2Col instruction needs the three following positional parameters to choose which elements of the input it will load, in which the parameters \((x, y)\) are coordinates in the height and width \((HW)\) dimensions of the input:

- The starting position in the image \((x, y)\);
- Relative position inside of a patch \((x_k, y_k)\);
- Access index of the \(C_1 \) dimension \((C_1)\).

\[
O_h = \left\lfloor \frac{I_h + P_b + P_t - K_h}{S_h} \right\rfloor + 1
\]
\[
O_w = \left\lfloor \frac{I_w + P_r + P_l - K_w}{S_w} \right\rfloor + 1
\]

To load a fractal (16 rows of \(C_0 \) elements) to a buffer, Im2Col performs the following tasks: (i) process each element of dimension \(N \) individually; (ii) access the element \(c_1 \) of dimension \(C_1 \); (iii) select the next 16 consecutive patches starting from position \((x, y)\); (iv) select the elements in the \((x_k, y_k)\) position, relative to each of the 16 patches; (v) load the \(C_0 \) dimension for the 16 selected elements; (vi) store the loaded elements as a fractal into the target buffer.

Figure 5 exemplifies a small image loaded using four Im2Col loads. The input image is in the fractal layout \(NC_1HWC_0 \), but the lengths of \(N \) and \(C_1 \) are 1, so they are not shown. The parameters used in this example correspond to: \((I_h, I_w) = (8, 8), (K_h, K_w) = (2, 2), (S_h, S_w) = (2, 2)\), and \((O_h, O_w) = (4, 4)\). Notice that there is no padding. The input has exactly 16 patches (bold squares), so \((x, y)\) is set to the first position \((0, 0)\) and is not changed afterward. For the first Im2Col (blue squares), \((x_k, y_k) = (0, 0)\), while for the second (orange squares), \((x_k, y_k) = (0, 1)\). Two more Im2Col instructions are issued, corresponding to \((x_k, y_k)\) equal to \((1, 0)\) and \((1, 1)\). This results in four fractals concatenated side by side. If there were more patches in the image, \((x, y)\) would be changed to another position to create a new row of fractals in the output. Bigger inputs are loaded by issuing multiple Im2Col instructions while iterating the positional parameters sequentially. This iteration can be seen as if it composed a
This example could be repeated to enable the design of AI operators in CCE. AKG uses a C-like language called CCE (Cube-based Compute Engine) C to write code for DaVinci chips. Because it is a very low-level language, implementing and optimizing multiple AI operators manually is a cumbersome and error-prone task. The Automatic Kernel Generator (AKG), a tool for operator design and also a library of operators, is used to enable the design of AI operators in CCE. AKG uses TVM’s [26] domain-specific language (DSL) to design its...
operators, which are lowered to CCE C by its compiler passes. For every operator that is defined with AKG, its backward operator is also needed to allow training.

A. Scheduling for DaVinci

TVM’s DSL is based on the Halide language [27]. The main idea of both languages is to decouple the execution definition (the algorithm) from the execution strategy (the algorithm’s schedule). With this separation, the programmer is free to test multiple optimization strategies by rewriting a schedule without changing the algorithm. The schedule allows the use of techniques such as function inlining and loop transformations (e.g., tiling, fusion, unrolling, and loop vectorization). The decoupling of the algorithm from its schedule is possible because Halide’s and TVM’s DSLs are tailored respectively for image processing and deep learning algorithms. There is a high degree of data parallelism in applications from these fields [27] as their algorithms are mainly composed of loops with no dependencies between iterations, known as DOALL loops [28]. In this scenario, the loop transformations previously mentioned are trivial.

TVM allows code generation for other backends besides CPUs. Hence, schedules can explicitly refer to a backend-specific construct. For example, schedules allow binding loops in the algorithm to blocks and threads, which are constructs found in GPUs. AKG uses the same principle to generate code for DaVinci devices. A DaVinci-specific schedule is responsible for controlling the movements of data between the scratch-pad buffers and for specifying computations that are local to a buffer. Together with the backend-specific schedule primitives, it is possible to apply other optimization techniques (e.g., tiling) to improve the locality of memory accesses. Between all the possible primitives, two are handled automatically by AKG: vectorization and parallelization. First, the inner loops of computations are vectorized (minimally on the C_0 dimension) so that the Vector Unit is utilized automatically. When possible, the vector instructions are also issued with repeat factors. Second, the outer loops are parallelized between the AI Cores available on the target device. These default behaviors are similar to those taken by Halide’s auto-scheduler [29]. AKG also has a polyhedral framework that automatically schedules computation on DaVinci, but it does not support all instructions (e.g., $C_0$2IM).

V. IM2COL/CO2IM BASED POOLING

The Vector Unit computes pooling in DaVinci. The performance of vector instructions running in it depends mostly on two factors. First, the vector mask should be saturated so that all vector lanes are utilized and parallelism is maximized. Second, the repetition parameter should be employed, thus removing loops and barriers around vector instructions, and taking pressure off instruction fetching. Ideally, a single instruction should operate over an entire tensor (or tile) present in the Unified buffer. This Section describes the Im2col/Co2im based pooling implementations in comparison to their standard implementations in TVM. Lowered CCE C code is used to highlight the above-mentioned factors in each implementation.

A. Maxpool Forward

A standard TVM implementation of Maxpool forward is represented in Listing 1. It describes its input and output shapes (Lines 1 and 5, respectively) and its 2D max reduction of each patch (Lines 6 to 10). Using TVM’s schedule, this computation is divided in the C_1 dimension so that a tile of size (I_h, I_w, C_0) is computed at a time, producing an output tile of size (O_h, O_w, C_0) unless further tiling is needed. Each input tile is sent from global memory to the Unified Buffer of an AI Core $\mathbb{1} \rightarrow \mathbb{8}$. If multiple AI Cores are available, multiple tiles can be processed in parallel. After the computation is finished, the output tile is brought back to global memory $\mathbb{8} \rightarrow \mathbb{1}$.

This implementation is lowered to CCE C code where the vmax instruction is executed. vmax computes the maximum between elements of the output and input tiles and writes back to the output tile. For that, the output tile is initialized with the minimum value of the data type in use. In this setting, only 16 of 128 elements of the vector mask are set, accounting for the innermost dimension C_0 of the tiles. Additionally, each vmax uses repetition to obtain the maximum value across the width of a patch K_w (the innermost reduction axis red_w). The vmax instruction is issued $O_h \ast O_w \ast K_w$ times to complete the computation. These suboptimal parameters result from the strided access pattern seen in Lines 8 and 9 of Listing 1.

The Im2col based implementation is described in Listing 2. Lines 1 and 3 represent the Im2col transformation. In this implementation, the input starts in the global memory with its original shape, which is tiled along the C_1 dimension. Next, the input is first loaded to the L1 buffer of an AI Core $\mathbb{1} \rightarrow \mathbb{2}$ and then loaded with Im2Col to its Unified buffer using the repeat mode $\mathbb{2} \rightarrow \mathbb{8}$. The transformed input has the shape shown in Line 3. Its tiles have a shape $(K_h, K_w, O_h, O_w, C_0)$ in the Unified buffer. The max reduction now occurs in the outer (K_h, K_w) dimensions, as shown in Lines 10 and 11. Considering the input and output tiles, $(K_h, K_w, O_h, O_w, C_0)$ and (O_h, O_w, C_0) respectively, the lowered CCE C code is able to set all 128 elements of the vector mask, and, in conjunction with the repetition parameter, a single vmax computes the max between the entire output tile and the three innermost dimensions of the input tile, which are identical. This instruction is only issued $K_h \ast K_w$.

Listing 1. MaxPool defined with TVM’s DSL.

```c
input = placeholder((N, C1, I_h, I_w, C0), 1, name="input")
red_h = reduce_axis((0, K_h), "red_h")
red_w = reduce_axis((0, K_w), "red_w")
output = compute((N, C1, O_h, O_w, C0),
lambda n, cl, h, w, c0: 
max(input[n, cl, h, w, c0], red_h, red_w, c0),
axis=[red_h, red_w]))
```

```c
Listing 2. MaxPool defined with AKG.

```
input = placeholder((N, C, H, W, C0)),
input-ub = placeholder((N, C, H, W, O, C0)),
name="input")
red_h = reduce_axis(((0, K1)), "red_h")
red_w = reduce_axis(((0, K1)), "red_w")
output = compute((N, C1, O, O, C0), lambda n, c1, h, w, c0:
max(input-im2col[n, c1, red_h, red_w, h, w, c0],
axis=[red_h, red_w]))
Listing 2. MaxPool performed on an input with the resulting shape of using the Im2Col load

times to finish the computation, effectively improving upon the standard implementations of Listing 1.
For training, it is useful to save an additional result in the forward implementation of Maxpool: the argmax mask. This
mask is used by Maxpool’s backward operator to store the position of the maximum element of each patch, as shown in
Figure 3. This result is obtained by comparing each patch of the input with its maximum value. Saving this mask is
independent of the use of Im2Col instructions. Still, the Im2Col output shape of Line 3 in Listing 2 is used to store it, as it keeps overlapping patches separated. This shape also enables Maxpool backward to use Col2Im instructions, which is described next.

B. Maxpool Backward
Maxpool backward receives two inputs: the argmax mask and the incoming gradients. Listing 3 shows part of its
implementation. Line 3 defines a computation that multiplies the patches in the argmax mask with their corresponding
gradients. This multiplication is represented on the bottom of Figure 3. Next, the multiplied patches need to be merged back into the original \((N, C1, I_h, I_w, C0)\) shape by summing values in the overlapping areas, which is not shown in Listing 3 for brevity. This merge step is critical for performance and is depicted on the bottom-left of Figure 3. Its TVM implementation requires expanding mask-gradient to a shape of \((N, C1, I_h, I_w, O_h, O_w, C0)\), where each patch is copied only once in its correct position in \(I_h\) and \(I_w\), and other elements are set to zero. The expanded representation is then reduced with \(\text{vmul}\) on dimensions \(O_h\) and \(O_w\), effectively summing up the overlapping areas in every patch and obtaining the final shape of \((N, C1, I_h, I_w, C0)\). This expansion would be incredibly costly due to its size, however, TVM allows it to be inlined using a schedule. As a consequence, the patches are merged, and the overlapping regions are summed directly to the final output shape (from the shape \((N, C1, K_h, K_w, O_h, O_w, C0)\) to \((N, C1, I_h, I_w, C0)\)). Besides the mentioned inlining, the schedule works similarly to Maxpool forward, loading both inputs from the global memory to the Unified buffer \(\text{vadd}\) so that the multiplication is computed in the Vector Unit \(\text{vmax}\), and tiling the computation on \(C1\).
The lowered code uses \text{vmul} for the multiplication step, and \text{vadd}, for the merge step. These instructions work in the
same way as \text{vmax}, but for multiplication and addition. While \text{vmul} works well in multiplying tiles of the gradient with the mask, the scattered access pattern of the merge step leads to very poor usage of the Vector Unit. That is because the \text{vadd} instructions only set 16 elements of the vector mask (vectorizing on \(C0\)) and repetition is not used.

The Col2Im based implementation comes from the observation that the merge step computes exactly the Col2Im operation. As mentioned before, Col2Im uses the Unified buffer to load its input and to store its output \(\text{vadd} \rightarrow \text{vmax}\). Therefore, it is possible to use Col2Im instead of \text{vadd}. The Col2Im instruction is able to load and store to the scattered elements of the output, summing two fractals at a time, as shown in Figure 6. In comparison with \text{vadd} that had 16 \((C0)\) elements of the vector mask set, Col2Im enables vectorization over 16 * 16 elements (a fractal) at a time, and its repetition mode can be used to operate over the entire tile in the Unified buffer. A Col2Im instruction needs to be issued \(K_h \times K_w\) times to complete the merge step of a tile. Therefore, switching \text{vadd} for Col2Im presents a good opportunity for performance gains.

C. Avgpool
The forward and backward operators of Avgpool are similar to those described before. But opposed to Maxpool, the forward implementation reduces using \text{vmul} instead of \text{max}. Consequently, its CCE C code uses \text{vadd} instead of \text{vmax}. But regardless of this change, the access pattern stays the same and can benefit from using Im2Col. Additionally, a new operation is needed to compute an element-wise division before saving the final output. As for the backward operator, there is no need to use the Argmax mask as an input. The equivalent mask for Avgpool contains 1 in all its positions, given that all input elements contribute to the output of a \text{vmul}. Besides the mask, the backward implementation is the same and it can also use Col2Im instructions.

VI. EXPERIMENTAL EVALUATION
This evaluation compares the performance of the Im2Col/Col2Im based Maxpool with the standard TVM Maxpool implementation described in Section V. All the experiments were run on an Ascend 910 chip, which contains 32 AI Cores. The cycle count numbers were obtained using the hardware counters of the chip, and they refer to the on-chip execution time running at a frequency of 100 MHz. The cycle count is currently the only metric that could be obtained from the chip. Each evaluation was repeated ten times, and the graphs show the average value and a 95% confidence interval. To use the Im2Col and Col2Im instructions in
input, the accelerated implementations achieve speedups of 3.2x, 5x, and 5.8x on the graphs in Figure 7, respectively. The best improvement is on Maxpool backward. Its large speedup is expected, given the scattered access pattern of its merge step and how Co12Im can be used without any extra computations.

B. Stride Tests

This experiment investigates further different Maxpool forward implementations, and their interaction with the stride parameter, as shown in Figure 8. The stride size changes the amount of duplicated elements in Im2col. The kernel size was set at a constant size of (3,3). Given this kernel size, there is no duplication of data for the (3,3) stride, and the maximum duplication occurs for the (1,1) stride. In this experiment, Maxpool and Maxpool with Im2col are the same implementations shown in Figure 7a. The input’s height and width increase in steps of two until the tiling threshold is reached, where this threshold is the maximum size before tiling is required. Bigger sizes would need individual tiling parameters and would trigger parallelization between AI Cores, which is out of the scope of this experiment. Moreover, dimensions N and C1 are set to 1 so that only one AI Core is utilized.

In the Maxpool with expansion implementation, regular vector instructions — instead of Im2col instructions — transform the input to the Im2col output shape. This transformation happens when the input is already in the Unified buffer, before computing Maxpool. Maxpool with Im2col and Maxpool with expansion achieve superior performance in Figures 8b and 8c. These graphs confirm that the Im2col memory layout allows more efficient usage of the Vector Unit, producing speedups that compensate for the overhead of transforming the data. Maxpool with Im2col has the best performance in comparison to Maxpool with expansion due to Im2col occurring while the data is loaded into the Unified buffer, rather than in a separate step.

Figure 8a shows different results for a stride of (1,1). With this parameter, elements in consecutive patches of the original input appear consecutively in memory. This allows the vmmax instruction to improve its use of the Vector Unit, combining the mask register set with all 128 elements and its repeat parameter.
to compute the max between the \((O_w, C_0)\) dimensions of the
input and the initialized output. By also having no overhead to
transform the data, and no data duplication, the direct Maxpool
implementation is the fastest in this case.

Pooling can also be implemented with an X-Y split by first
calculating the reduction function on the width and then on the
height of each patch. As a result, the first reduction is reused
while computing the second. Lai et al. [7] use the X-Y split as
a performant alternative to direct pooling. In their work, the
(undesirable) intermediate results are avoided by computing
the result in-place. In TVM, all computations generate a
new tensor, and thus the in-place approach is not possible.

However, this experiment increases input sizes only until the
tiling threshold is reached, therefore avoiding extra tiling steps
needed because of the increase in memory use. Figure 8b
shows the performance of a TVM version of the X-Y split
(with intermediate results) compared to the other Maxpool
implementations. Even though the X-Y split has a lower
computational cost, it underperforms other implementations
than Im2Col because it does not overcome the scattered
memory problems of pooling.

VII. RELATED WORK

Convolutional layers have been the focus of extensive litera-
ture in optimizing CNN layers because they are responsible
for most of the computation time of CNNs. Other layers such
as pooling receive less attention, but when left unoptimized,
they can be obstacles that lead to slowdowns in CNNs [1].

FPGA implementations for CNNs. In their implementa-
tion of CNN layers for OpenCL-based FPGA accelerators,
Suda et al. propose to unroll pooling at the hardware level
so that multiple outputs are computed in a single cycle [5].

However, their optimizer chooses an unrolling factor of 1 for
the CNNs evaluated, which is equal to no unrolling. Given
an (FPGA, CNN) pair, Sharma et al. automatically synthe-
size a CNN accelerator where the computation of pooling
modules overlaps with convolution modules. This overlap
is used to hide latency and to take advantage of the fact
that a pooling layer usually follows convolutional layers [6].

Sharma et al. do not consider the backward operators used
in training. In contrast to these pooling-specific hardware
solutions, Im2col/Col2Im based pooling in DaVinci leverages
a general-purpose vector unit and the Im2Col and Co12Im
instructions, which are primarily designed for convolution.
The improvements to the pooling layer afforded by Im2col/Col2im
could be combined with fusion in DaVinci, but this is not yet
supported.

Kernel acceleration for CNNs. LightNet is a Matlab-based
framework for Deep Learning [33]. Its Maxpool implementa-
tion uses Im2col to transform pooled regions into vectors to
benefit from vector instructions. Their proposition is similar
to the Im2col based forward pooling, however, no performance
results are presented to justify their implementation. CMSIS-
NN is a collection of efficient neural network layers targeting
IoT edge devices that uses X-Y splitting for pooling [7].

However, the results in Figure 8b show that the X-Y split is
not the best alternative for DaVinci. Additionally, CMSIS-NN
does not consider backward operators because its target edge
deVICES only perform inference. The Im2col/Col2im based
pooling accelerates both inference and training devices, as
DaVinci edge chips also feature Im2Col instructions.

Li et al. use two optimizations for pooling [34]. First, the
use of the \(CHWN\) layout instead of \(NCHW\) to prevent un-
coalesced strided memory accesses caused by \(HW\) as the
innermost dimensions. Second, the reduction of the off-chip
memory requests by tuning the number of outputs calculated
by each thread during pooling. The memory layout used in
DaVinci \((NC_1HWC_0)\) is a variant of the \(NCHW\) layout.

However, the Im2col-based pooling transforms this layout
into \(NC_1K_hK_wO_hO_wC_0\), where the accesses can also be
performed consecutively in memory, thus resulting in the
performance speedups shown in Section VI. The outer loops
are automatically parallelized in DaVinci among the available
AI Cores, where each core calculates a share of the output.

Suida et al. focus on fusing convolution with pooling in
GPUs [8]. They only consider Avgpool because it can be
mapped to convolution where the kernel’s weights are equal
to \(1/(K_h * K_w)\), and then further fused with its preceding
convolution. As a result, the Im2col transformation can also
be used to implement the fused convolution-pooling. However, CNNs tend to use \texttt{Maxpool}, which cannot be fused in the same way.

VIII. CONCLUSION

This work presents Da Vinci’s \texttt{Im2Col} and \texttt{Col2Im} instructions. It is shown that they can be used to implement not only convolution, targeting the Cube Unit, but also pooling, targeting memory layout improvements for the Vector Unit. Accelerated \texttt{Im2Col}/\texttt{Col2Im} based implementations are described for the forward and backward operators of \texttt{Maxpool} and \texttt{Avgpool}. An experimental evaluation was run on the Ascend 910 chip with the parameters and three input sizes used in InceptionV3. The results show speedups of up to 5.8x for the accelerated \texttt{Maxpool} implementations, compared to baselines that do not use the \texttt{Im2Col} and \texttt{Col2Im} instructions. Although the stride parameter can impact the \texttt{Im2col} and \texttt{Col2im} operations drastically, the proposed acceleration approach achieved improved performance for all but (1, 1) stride. The \texttt{Im2col}/\texttt{Col2im} based pooling also proves superior to other strategies of optimization, such as the X-Y split. Further work could evaluate the proposed approach in other architectures, and also consider the fusion techniques described by Suita et al. [8] to execute \texttt{Avgpool} together with convolution as matrix multiplication in the Cube Unit.

REFERENCES