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Abstract—Image-to-column (Im2col) and column-to-image1

(Col2im) are data transformations extensively used to map convo-2

lution to matrix multiplication. These transformations rearrange3

the inputs of convolution to avoid its strided memory access pat-4

tern, thus providing a friendlier data layout for CPUs and GPUs.5

In artificial intelligence (AI) accelerators, these transformations6

allow convolution to be computed in matrix-multiplier units.7

Implemented in software, however, they impose a significant8

overhead that must be compensated by the efficiency gains of9

matrix multipliers. DaVinci is an AI accelerator architecture that10

introduces instructions to optimize Im2col and Col2im. Another11

core layer of convolutional neural networks that presents a12

strided memory access pattern is pooling. This paper explores the13

specialized Im2col and Col2im instructions to accelerate pooling14

layers in DaVinci. An experimental evaluation reveals that the15

proposed pooling implementations can yield speedups of up to 5.816

times compared to a baseline that does not use these specialized17

instructions. The speedups follow from an improved memory18

layout in the inputs of pooling, as this layout leads to better19

utilization of the vector processing unit in DaVinci.20

Index Terms—CNN, AI Accelerator, Maxpool, Gradient, TVM21

22

I. INTRODUCTION23

With the increasing adoption of convolutional neural net-24

works (CNNs), the optimization of each of its components has25

become fundamental. Convolution has been the main target of26

optimization because it is the most used and expensive layer27

in CNNs. However, many modern CNN architectures also use28

pooling to extract translation-invariant features and to perform29

subsampling. Max-pooling is the main variant of pooling that30

subsamples using the maximum value. While the performance31

impact of pooling is low compared to convolution, a naive im-32

plementation can hinder the overall performance of a CNN [1].33

DaVinci [2] is an AI accelerator architecture that imple-34

ments scalar, vector, and matrix multiplier units. The matrix35

multiplier unit allows efficient computation of convolution and36

other CNN layers, such as the fully connected, that can be37

mapped to matrix multiplication [3]. Convolution is mapped38

to matrix multiplication through the Im2col and Col2im data39

transformations. These transformations are memory-intensive40

and add significant performance overhead to convolution.41

However, highly optimized solutions for matrix multiplication42

both in software (e.g., OpenBLAS and Eigen libraries) and 43

in hardware (e.g., matrix multipliers) overcome this overhead. 44

Still, DaVinci introduced instructions to optimize Im2col and 45

Col2im. First, Im2col is performed during a load instruction 46

(Im2Col) just before data reaches the memory buffers closest 47

to DaVinci’s computational units. As such, this operation uses 48

no temporaries and its memory overhead is only seen in these 49

buffers. Second, Col2Im is vector instruction capable of better 50

vectorizing over the scattered access pattern of Col2im. By 51

using these instructions, convolution is computed in the matrix 52

multiplier unit at a low overhead. 53

Max-pooling also has a strided access pattern, but unlike 54

convolution it cannot be mapped to the matrix multiplier. Even 55

so, its implementation can leverage the specialized Im2Col 56

and Col2Im instructions. This paper thus proposes two key 57

ideas to accelerate pooling in DaVinci: to produce an improved 58

data layout by applying Im2Col instructions to the input of 59

forward pooling, and to apply Col2Im instructions to the 60

backward pooling instead of traditional vector instructions. 61

Previous attempts to accelerate CNNs using FPGAs proposed 62

pooling-specific instructions and computational units [4], [5]. 63

Whereas the proposed approach uses a general-purpose vector 64

computational unit and instructions primarily designed for 65

convolution. Earlier work on improving pooling also overlooks 66

its backward implementation [4], [6], [7], which is essential for 67

training. Lastly, operation fusion, which effectively improves 68

pooling paired with convolution [6], [8], is independent of the 69

Im2col/Col2im based implementation presented in this work. 70

Both optimizations can be applied in conjunction. 71

The main contributions of this paper are: 72

• A description of DaVinci’s Im2Col and Col2Im instruc- 73

tions, showing how they are executed and how they 74

integrate into DaVinci’s datapaths (Section III). 75

• An approach to accelerate pooling with an Im2col-based 76

forward implementation and a Col2im-based backward 77

implementation using the DaVinci-specific Im2Col and 78

Col2Im instructions (Section V). 79

• A rigorous evaluation of multiple pooling implementa- 80

tions in DaVinci, revealing speedups of up to 5.8 times on 81

the Im2col/Col2im based implementations (Section VI). 82
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The remaining sections are organized as follows: founda-83

tional concepts for this work appear in Section II. Section IV84

presents the software stack used to implement pooling opera-85

tors for DaVinci. Finally, Section VII presents related works,86

and Section VIII concludes this paper.87

II. BACKGROUND88

A. Convolution, Im2col and Matrix Multiplication89

Convolution is a filtering operation used in image process-90

ing. This operation is the main building block of CNNs [9].91

In them, convolution repeatedly applies a kernel — a multi-92

channel filter composed of trainable weights — over patches of93

the input image. Patches are regions of the input that have the94

same size as the kernel. They are selected based on the stride95

parameters Sh and Sw, and given these parameters may or may96

not overlap. In an application of a kernel, its weights multiply a97

patch of the input. The multiplied results are summed together98

to generate a single output. A kernel is applied over each99

patch to generate a two-dimensional output, which is called100

a feature map. Convolution uses multiple kernels to produce101

multiple feature maps that are stacked as channels into a three-102

dimensional output.103

The memory layout for the input of a convolutional layer is104

commonly described as NCHW , where each character repre-105

sents a dimension of a four-dimensional input: the number of106

images stacked together (N ), channels (C), height (H), and107

width (W ). The character’s order specifies the order in which108

each dimension is arranged in memory. For simplicity, the109

dimension N has a length equal to one throughout the paper.110

Convolution unrolling, also known as Image-to-Column111

(Im2col1), is a data transformation that allows the mapping112

of convolution into matrix-matrix multiplication [11]. This113

transformation, illustrated in Figure 1, consists of creating two114

matrices, OutIn and OutKer , based on the input image and115

the kernels, respectively. Each row of matrix OutIn contains116

all the input needed to compute one element of an output117

feature map linearized into one dimension. Each column of118

matrix OutKer contains the weights of a kernel similarly119

linearized. Thus, multiplying OutIn and OutKer is equivalent120

to performing convolution with its original inputs.121

If the stride sizes (Sh, Sw) are smaller than the kernel’s122

height and width (Kh,Kw), patches will overlap. The over-123

lapping elements will be copied to multiple rows of matrix124

OutIn , resulting in a bigger memory footprint. This is the125

main drawback of the Im2col technique when contrasted with126

direct-convolution based approaches. An example with a single127

channel is shown in Figure 2. The two patches are highlighted128

and they overlap on the elements {3, 8, 13}. As a result, these129

elements appear in both rows of the output of Im2col (on130

the right). Nonetheless, Im2col is used across AI frameworks131

to implement convolution because matrix multiplication offers132

an input with a friendlier memory layout to CPUs and GPUs,133

1The transformation of the input image can also be an image-to-row
transformation if the multiplication is transposed (AB)T = BTAT [10].
The Im2col name will be used to refer to all variants of this transformation.

Fig. 1. Im2col: In (C, Ih, Iw) is transformed into matrix OutIn (Oh ×
Ow, C ×Kh ×Kw) and a single kernel (C,Kh,Kw) is transformed into
the matrix OutKer (C × Kh × Kw, 1), where Oh and Ow represent the
number of patches in the height and width of the input. The bold squares
(2, 2) in In represent patches of the image to which the kernel is applied.
Col2im: the backward operator of Im2col, from OutIn to In .

Fig. 2. Im2col and Col2im performed on two overlapping patches.

making it easier to apply vectorization techniques [11]. The 134

availability of optimized linear algebra libraries such as Open- 135

BLAS [12], ATLAS [13], and Eigen [14], and AI accelerator 136

designed around matrix multiplier units, further incentivizes 137

such a transformation. 138

B. Backward Operators and Col2im 139

To train a neural network, the input values are first propa- 140

gated forward to produce an output. Then, the error between 141

this generated output and the expected output is calculated 142

through a loss function. The gradient of this loss function is 143

propagated backward towards the input so that the network 144

can be tuned. Thus, every forward operator has a dual- 145

operator applied in the backward pass, namely its backward 146

operator [15]. 147

The backward operator of Im2col is called Col2im, and it 148

is also illustrated in Figure 1. Col2im is used in the backward 149

propagation pass of convolutional layers implemented with 150

Im2col. The incoming gradients in the shape of the matrix 151

OutIn are propagated back to the original NCHW layout. If 152

there is no overlap, as in the example of Figure 1, Col2im 153

simply returns the matrix to its original shape. But when 154

patches do overlap, gradients that refer to the same position 155

in the output are summed, as shown in Figure 2. 156

C. Pooling Operators 157

Spatial feature pooling subsamples images to obtain 158

translation-invariant feature maps in computer-vision archi- 159

2

https://ieeexplore.ieee.org/document/9460596


ACCEPTED VERSION AT IPDPSW 2021 – DOI 10.1109/IPDPSW52791.2021.00016

Fig. 3. Forward and backward computation of MaxPool for two overlapping
patches.

tectures [16]. Similar to convolution, pooling is one of the160

building blocks of CNNs. Pooling layers are commonly used in161

modern CNN architectures such as Resnet [17], Inception [18],162

and Xception [19]. Pooling also applies a kernel over patches163

of its NCHW input. But unlike convolution, the kernel has no164

weights, it only selects patches based on the stride parameters.165

A reduction function is applied to the selected patches to166

subsample the input. This reduction is typically applied to167

the height (H) and width (W ) dimensions of the input, op-168

erating on the channels independently. As a result, the output169

of pooling has the same number of channels as the input.170

Different reduction functions can be chosen: the max function171

selects the maximum value (MaxPool), and the avg function172

computes the average of the patch (AvgPool). MaxPool is173

preferred among CNNs as it looks at the maximal activation174

of features, rather than diluting them with an average [20].175

Figure 3 (on top) shows an example of MaxPool forward.176

The implementation of backward pooling depends on the177

reduction function utilized. For Maxpool, each input is mul-178

tiplied by its corresponding Argmax mask, where the position179

of the maximum element in the original patch is set to 1 and180

all the other positions are set to 0. Next, as with Col2im,181

the masks return to the original NCHW shape and the over-182

lapping elements are summed together. This output correlates183

how much a change in each input element of MaxPool forward184

affects its output elements [21]. Figure 3 shows an example of185

Maxpool backward on two overlapping patches. In summary,186

the gradients are only propagated backward to the maximum187

elements [22].188

III. THE DAVINCI ARCHITECTURE189

DaVinci [2] is an AI accelerator architecture used by190

Huawei’s Ascend chips. The following subsections describe191

components of the Ascend 910 chip.192

A. AI Core193

Figure 4 shows a closer view of DaVinci’s main component,194

the AI Core, and its corresponding data paths. The AI Core is195

Fig. 4. Data paths of the AI Core.

composed of three processing units (Cube, Scalar, and Vector 196

Unit), a set of private buffers (L0A, L0B, L0C, L1, and Unified 197

Buffer), and a Storage Conversion Unit (SCU). Outside of the 198

AI Core sits the Double Data Rate (DDR) and High Bandwidth 199

Memory (HBM) memories and an L2 Buffer, all of which are 200

shared among the AI Cores of a chip. 201

Both Scalar and Vector Units operate on data loaded from/- 202

stored to the Unified Buffer. The Vector Unit performs basic 203

arithmetic and logic vector operations (e.g., subtracting two 204

vectors). It uses a 128-bit mask register in which every bit 205

represents one element of a vector instruction that may be 206

processed or not. The Scalar Unit has both general and special- 207

purpose registers, which are used to execute control-flow and 208

scalar arithmetic operations, as well as index and address 209

calculations. 210

The Cube Unit is based on a multidimensional systolic 211

array [23], it implements matrix multiplication using an array 212

of processing elements that perform multiply-accumulate op- 213

erations. This unit acts similarly to the Matrix Multiplier Unit 214

(MXU) of Google’s Tensor Processing Unit [24]. Buffers L0A 215

and L0B store the inputs of the Cube Unit, and the L0C buffer 216

stores its output. While the operands for the Vector Unit are 217

vectors, the Cube Unit receives data-fractals from its input 218

buffers. A data-fractal is a small matrix of a constant size of 219

4096 bits. The Cube Unit can multiply two data-fractals per 220

clock cycle. 221

The private buffers of the AI Core (L0A, L0B, L0C, L1, and 222

Unified Buffer) are organized as scratch-pad memories [25]. 223

Data movement between these buffers must be explicitly man- 224

aged by the application, in contrast, hardware-managed caches 225

are transparent to the application and ensure consistency by 226

hardware protocols. Thus, the programmer needs to specify 227

which data should be brought to each buffer, and also needs 228
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to maintain data consistency. In a scratch-pad memory, each229

buffer has its own address space, which is separated from230

the address space of the memory. With this organization,231

more complexity is placed upon the application’s code, but232

it comes with the benefit of not requiring tag bits, dirty bit,233

and the comparison logic that transparent caches need in the234

hardware. From the AI Core’s perspective, all shared memories235

(DDR, HBM, and L2) are considered global memory and are236

represented as 1 in Figure 4. Given that their data-paths are237

the same, they are drawn only once.238

The Storage Conversion Unit (SCU) may perform many239

data-layout transformations when data is transferred between240

buffers. This unit implements Im2col, Col2im, and other241

transformations, out of the scope of this work, such as padding,242

matrix-tile transposition, and sparse-matrix decompression.243

The SCU enables instructions, such as Im2Col, to perform244

fast layout transformations while data is transferred between245

buffers. As a result, the memory overhead that these trans-246

formations may imply appears only on the target buffers.247

Such instructions were specifically designed to operate on the248

memory layout described next.249

B. Fractal Memory Layout250

To avoid memory alignment and padding problems in the251

Cube Unit, DaVinci includes the constant-length dimension252

C0 in the representation of an input image. As a result,253

a slight variation of NCHW is used, called the fractal254

memory layout. This format is represented by NC1HWC0, in255

which C0 represents part of a split in the channel dimension256

(C) of NCHW . To make the conversion from NCHW to257

NC1HWC0, C is split into C1 and C0, where C1 = dC/C0e.258

If the original number of channels (C) is not divisible by C0,259

the C0 dimension must be zero-padded to reach its required260

length. Given a data type, the length of C0 makes the inputs261

of the Cube Unit (data-fractals) always have 4096 bits of data.262

A data-fractal has 16∗C0 elements, thus for Float16, C0 has263

a length of 16. For Unsigned8, C0 has a length of 32. The264

data type Float16 is adopted in this paper.265

C. Im2Col Instruction266

Im2Col is a data-transformation instruction executed in the267

SCU that acts as a load instruction. It may be applied to a268

data-fractal that is loaded from L1 to L0A 2 → 4 and L0B269

2 → 5 , so as to prepare data for computation in the Cube270

Unit. It may also be applied to a data-fractal that is loaded271

from L1 to the Unified buffer 2 → 8 , to prepare data for272

computation in the Vector and Scalar Units.273

There are two main differences when comparing the Im2Col274

instruction to the Im2col transformation shown in Figure 1.275

First, Im2Col is a single instruction, it is only able to load276

and transform one fractal of an image at a time. Even if277

it could operate on a whole image, its target buffers (L0A,278

L0B, Unified Buffer) may not be capable of storing the279

transformed image. For this reason, Im2Col instructions can be280

used to load and transform a tile of an input. Second, Im2Col281

is designed to load an input that is in the fractal memory282

layout NC1HWC0. Therefore, its output will also have a 283

different memory layout when compared to the one shown 284

on the right of Figure 1. The advantage of performing Im2col 285

as load instruction is that the increase in memory overhead 286

from duplicated elements only appears in the target buffers 287

(L0A, L0B, and Unified buffer), which are the buffers closest 288

to the Cube and Vector Units. 289

Im2Col needs the following parameters related to the input 290

image (or tile), which are constant for all instructions loading 291

the same input: 292

• Height (Ih) and width (Iw) of the input image; 293

• Left (Pl), right (Pr), top (Pt), and bottom (Pb) zero 294

padding; 295

• Stride in the height (Sh) and width (Sw) directions; 296

• Kernel height (Kh) and width (Kw). 297

Based on these parameters, the number of patches (Oh, Ow) 298

in the input’s height and width can be calculated by Equa- 299

tion 1. Furthermore, each Im2Col instruction needs the three 300

following positional parameters to choose which elements of 301

the input it will load, in which the parameters (x, y) are 302

coordinates in the height and width (HW ) dimensions of the 303

input. 304

• The starting position in the image (x, y); 305

• Relative position inside of a patch (xk, yk); 306

• Access index of the C1 dimension (c1). 307

Oh =
⌊Ih + Pb + Pt −Kh

Sh

⌋
+ 1

Ow =
⌊Iw + Pl + Pr −Kw

Sw

⌋
+ 1

(1)

To load a fractal (16 rows of C0 elements) to a buffer, 308

Im2Col performs the following tasks: (i) process each element 309

of dimension N individually; (ii) access the element c1 of 310

dimension C1; (iii) select the next 16 consecutive patches 311

starting from position (x, y); (iv) select the elements in the 312

(xk, yk) position, relative to each of the 16 patches; (v) load 313

the C0 dimension for the 16 selected elements; (vi) store the 314

loaded elements as a fractal into the target buffer. 315

Figure 5 exemplifies a small image loaded using four 316

Im2Col loads. The input image is in the fractal layout 317

NC1HWC0, but the lengths of N and C1 are 1, so they are 318

not shown. The parameters used in this example correspond 319

to: (Ih, Iw) = (8, 8), (Kh,Kw) = (2, 2), (Sh, Sw) = (2, 2), 320

and (Oh, Ow) = (4, 4). Notice that there is no padding. The 321

input has exactly 16 patches (bold squares), so (x, y) is set to 322

the first position (0, 0) and is not changed afterward. For the 323

first Im2Col (blue squares), (xk, yk) = (0, 0), while for the 324

second (orange squares), (xk, yk) = (0, 1). Two more Im2Col 325

instructions are issued, corresponding to (xk, yk) equal to 326

(1, 0) and (1, 1). This results in four fractals concatenated side 327

by side. If there were more patches in the image, (x, y) would 328

be changed to another position to create a new row of fractals 329

in the output. Bigger inputs are loaded by issuing multiple 330

Im2Col instructions while iterating the positional parameters 331

sequentially. This iteration can be seen as if it composed a 332
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Fig. 5. Four Im2Col loads. The input is HWC0. On the bottom, are the
four resulting fractals of size 16 × C0. The difference between the loads is
the position relative to the patch (xk, yk), which is (0, 0) for the first load
(highlighted in blue) and (0, 1) for the second (highlighted in orange), (1, 0)
for the third, and (1, 1) for the fourth. The resulting fractals are concatenated
in the output buffer.

triple-nested loop with iterator vector in the form of [(x, y),333

c1, (xk, yk)], from the outermost to the innermost loop.334

As with most instructions in the DaVinci architecture,335

Im2Col supports a repetition parameter that causes an in-336

struction to be reissued automatically. For Im2Col there are337

two possible repetition modes. Mode 0 repeats Im2Col for338

the next positions inside the kernel (xk, yk), from (0, 0) to339

(0, 1), for example. If the length of C1 is bigger than 1,340

Im2Col in repetition mode 0 will continue to the next c1341

index and iterate over (xk, yk) again. This repetition mode342

acts as the loops of [c1, (xk, yk)], but multiple Im2Col are343

needed to also change (x, y). Therefore, the input in Figure 5344

can be fully loaded by issuing a single Im2Col starting at345

(xk, yk) = (0, 0) with repeat mode 0 to repeat four times,346

changing (xk, yk) from (0, 0) to (0, 1), (1, 0) and (1, 1). Mode347

1 reissues Im2Col for the next (x, y) position after skipping348

the 16 currently selected patches. In this mode, one Im2Col349

instruction acts as the loop of [(x, y)], and multiple instructions350

are needed to change c1 and (xk, yk), thus, (x, y) becomes351

the innermost loop of the iterator vector. If the nesting order352

of these loops changes, so does the order in which fractals353

are stored in memory. By changing the order from [(x, y),354

c1, (xk, yk)] to [c1, (xk, yk), (x, y)] in mode 1, Im2Col will355

store fractals in a transposed order resulting in an output356

matrix of shape (C1 ×Kh ×Kw × 16, (Oh ×Ow)/16×C0).357

This shape can also be considered as a tensor of dimensions358

(C1,Kh,Kw, Oh, Ow, C0), which is the shape used in the359

accelerated forward pooling implementation in Section V.360

Fig. 6. Single Col2im load with parameters (x, y) = (0, 0) and (xk, yk) =
(0, 0).

D. Col2Im Instruction 361

Col2Im is an instruction that is used as the backward 362

operator of Im2Col. It acts as a vector instruction that loads 363

data from and stores data to the Unified Buffer 8 → 8 364

(Figure 4). Col2Im takes fractals as inputs and stores them 365

in the NC1HWC0 format. Because of this, Col2Im receives 366

the same parameters as Im2Col referring to its output. Besides 367

the change in memory layout, if two patches overlap in the 368

output, input elements that refer to the same output position 369

need to be summed. This sum is shown in Figure 2, but it is 370

performed at an instruction level. For that, Col2Im requires 371

its output to be initialized with zeros. 372

Figure 6 shows how a single Col2Im instruction works 373

with an already initialized output. This example uses the same 374

parameters as the first (blue) Im2Col shown in Figure 5. In 375

Figure 6, Col2Im loads the initialized output 1 in an Im2Col 376

manner 2 . Then, it sums the loaded fractal with the input 377

fractal 3 . Finally, it stores the resulting fractal 4 back to its 378

corresponding positions in the output 5 . This example could 379

not be loaded using a repetition because the only repetition 380

mode available for Col2Im is mode 1. It works as in Im2Col 381

by changing the (x, y) parameters and thus requires an input 382

with more than 16 patches. 383

IV. SOFTWARE STACK 384

A C-like language called CCE (Cube-based Compute En- 385

gine) C is used to write code for DaVinci chips. Because it 386

is a very low-level language, implementing and optimizing 387

multiple AI operators manually is a cumbersome and error- 388

prone task. The Automatic Kernel Generator (AKG), a tool 389

for operator design and also a library of operators, is used 390

to enable the design of AI operators in CCE C. AKG uses 391

TVM’s [26] domain-specific language (DSL) to design its 392

5

https://ieeexplore.ieee.org/document/9460596


ACCEPTED VERSION AT IPDPSW 2021 – DOI 10.1109/IPDPSW52791.2021.00016

operators, which are lowered to CCE C by its compiler passes.393

For every operator that is defined with AKG, its backward394

operator is also needed to allow training.395

A. Scheduling for DaVinci396

TVM’s DSL is based on the Halide language [27]. The main397

idea of both languages is to decouple the execution definition398

(the algorithm) from the execution strategy (the algorithm’s399

schedule). With this separation, the programmer is free to400

test multiple optimization strategies by rewriting a schedule401

without changing the algorithm. The schedule allows the use of402

techniques such as function inlining and loop transformations403

(e.g., tiling, fusion, unrolling, and loop vectorization). The404

decoupling of the algorithm from its schedule is possible405

because Halide’s and TVM’s DSLs are tailored respectively406

for image processing and deep learning algorithms. There407

is a high degree of data parallelism in applications from408

these fields [27] as their algorithms are mainly composed409

of loops with no dependencies between iterations, known as410

DOALL loops [28]. In this scenario, the loop transformations411

previously mentioned are trivial.412

TVM allows code generation for other backends besides413

CPUs. Hence, schedules can explicitly refer to a backend-414

specific construct. For example, schedules allow binding loops415

in the algorithm to blocks and threads, which are constructs416

found in GPUs. AKG uses the same principle to generate417

code for DaVinci devices. A DaVinci-specific schedule is418

responsible for controlling the movements of data between419

the scratch-pad buffers and for specifying computations that420

are local to a buffer. Together with the backend-specific421

schedule primitives, it is possible to apply other optimization422

techniques (e.g., tiling) to improve the locality of memory423

accesses. Between all the possible primitives, two are handled424

automatically by AKG: vectorization and parallelization. First,425

the inner loops of computations are vectorized (minimally on426

the C0 dimension) so that the Vector Unit is utilized automat-427

ically. When possible, the vector instructions are also issued428

with repeat factors. Second, the outer loops are parallelized429

between the AI Cores available on the target device. These430

default behaviors are similar to those taken by Halide’s auto-431

scheduler [29]. AKG also has a polyhedral framework that432

automatically schedules computation on DaVinci, but it does433

not support all instructions (e.g., Col2Im).434

V. IM2COL/COL2IM BASED POOLING435

The Vector Unit computes pooling in DaVinci. The perfor-436

mance of vector instructions running in it depends mostly on437

two factors. First, the vector mask should be saturated so that438

all vector lanes are utilized and parallelism is maximized. Sec-439

ond, the repetition parameter should be employed, thus remov-440

ing loops and barriers around vector instructions, and taking441

pressure off instruction fetching. Ideally, a single instruction442

should operate over an entire tensor (or tile) present in the443

Unified buffer. This Section describes the Im2col/Col2im444

based pooling implementations in comparison to their standard445

1 input = placeholder ((N, C1 , Ih , Iw , C0 ),
2 name=" input ")
3 red_h = reduce_axis ((0 , Kh ), " red_h ")
4 red_w = reduce_axis ((0 , Kw ), " red_w ")
5 output = compute ((N, C1 , Oh , Ow , C0),
6 lambda n, c1 , h, w, c0:
7 max( input [n, c1 ,
8 h*Sh +red_h ,
9 w*Sw +red_w ,

10 c0],
11 axis =[ red_h , red_w ]))

Listing 1. MaxPool defined with TVM’s DSL

implementations in TVM. Lowered CCE C code is used to 446

highlight the above-mentioned factors in each implementation. 447

A. Maxpool Forward 448

A standard TVM implementation of Maxpool forward is 449

represented in Listing 1. It describes its input and output 450

shapes (Lines 1 and 5, respectively) and its 2D max reduction 451

of each patch (Lines 6 to 10). Using TVM’s schedule, this 452

computation is divided in the C1 dimension so that a tile 453

of size (Ih, Iw, C0) is computed at a time, producing an 454

output tile of size (Oh, Ow, C0) unless further tiling is needed. 455

Each input tile is sent from global memory to the Unified 456

Buffer of an AI Core 1 → 8 . If multiple AI Cores are 457

available, multiple tiles can be processed in parallel. After 458

the computation is finished, the output tile is brought back to 459

global memory 8 → 1 . 460

This implementation is lowered to CCE C code where the 461

vmax instruction is executed. vmax computes the maximum 462

between elements of the output and input tiles and writes back 463

to the output tile. For that, the output tile is initialized with the 464

minimum value of the data type in use. In this setting, only 465

16 of 128 elements of the vector mask are set, accounting for 466

the innermost dimension C0 of the tiles. Additionally, each 467

vmax uses repetition to obtain the maximum value across the 468

width of a patch Kw (the innermost reduction axis redw). The 469

vmax instruction is issued Oh ∗ Ow ∗ Kh times to complete 470

the computation. These suboptimal parameters result from the 471

strided access pattern seen in Lines 8 and 9 of Listing 1. 472

The Im2col based implementation is described in Listing 2. 473

Lines 1 and 3 represent the Im2col transformation. In this 474

implementation, the input starts in the global memory with 475

its original shape, which is tiled along the C1 dimension. 476

Next, the input is first loaded to the L1 buffer of an AI 477

Core 1 → 2 and then loaded with Im2Col to its Unified 478

buffer using the repeat mode 1 2 → 8 . The transformed 479

input has the shape shown in Line 3. Its tiles have a shape 480

(Kh,Kw, Oh, Ow, C0) in the Unified buffer. The max re- 481

duction now occurs in the outer (Kh,Kw) dimensions, as 482

shown in Lines 10 and 11. Considering the input and output 483

tiles, (Kh,Kw, Oh, Ow, C0) and (Oh, Ow, C0) respectively, 484

the lowered CCE C code is able to set all 128 elements 485

of the vector mask, and, in conjunction with the repetition 486

parameter, a single vmax computes the max between the entire 487

output tile and the three innermost dimensions of the input tile, 488

which are identical. This instruction is only issued Kh ∗Kw 489
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1 input = placeholder ((N, C1 , Ih , Iw , C0 ),
2 name=" input ")
3 input -ub = placeholder ((N, C1 , Kh , Kw , Oh , Ow , C0),
4 name="input -ub")
5 red_h = reduce_axis ((0 , Kh ), " red_h ")
6 red_w = reduce_axis ((0 , Kw ), " red_w ")
7 output = compute ((N, C1 , Oh , Ow , C0),
8 lambda n, c1 , h, w, c0:
9 max(input - im2col [n, c1 ,

10 red_h ,
11 red_w ,
12 h, w, c0],
13 axis =[ red_h , red_w ]))

Listing 2. MaxPool performed on an input with the resulting shape of using
the Im2Col load

times to finish the computation, effectively improving upon490

the standard implementations of Listing 1.491

For training, it is useful to save an additional result in the492

forward implementation of Maxpool: the argmax mask. This493

mask is used by Maxpool’s backward operator to store the494

position of the maximum element of each patch, as shown495

in Figure 3. This result is obtained by comparing each patch496

of the input with its maximum value. Saving this mask is497

independent of the use of Im2Col instructions. Still, the498

Im2Col output shape of Line 3 in Listing 2 is used to store499

it, as it keeps overlapping patches separated. This shape also500

enables Maxpool backward to use Col2Im instructions, which501

is described next.502

B. Maxpool Backward503

Maxpool backward receives two inputs: the argmax mask504

and the incoming gradients. Listing 3 shows part of its505

implementation. Line 3 defines a computation that multiplies506

the patches in the argmax mask with their corresponding507

gradients. This multiplication is represented on the bottom of508

Figure 3. Next, the multiplied patches need to be merged back509

into the original (N,C1, Ih, Iw, C0) shape by summing values510

in the overlapping areas, which is not shown in Listing 3511

for brevity. This merge step is critical for performance and512

it is depicted on the bottom-left of Figure 3. Its TVM imple-513

mentation requires expanding mask-gradient to a shape of514

(N,C1, Ih, Iw, Oh, Ow, C0), where each patch is copied only515

once in its correct position in Ih and Iw, and other elements are516

set to zero. The expanded representation is then reduced with517

sum on dimensions Oh and Ow, effectively summing up the518

overlapping areas in every patch and obtaining the final shape519

of (N,C1, Ih, Iw, C0). This expansion would be incredibly520

costly due to its size, however, TVM allows it to be inlined521

using a schedule. As a consequence, the patches are merged,522

and the overlapping regions are summed directly to the final523

output shape (from the shape (N,C1,Kh,Kw, Oh, Ow, C0)524

to (N,C1, Ih, Iw, C0)). Besides the mentioned inlining, the525

schedule works similarly to Maxpool forward, loading both526

inputs from the global memory to the Unified buffer 1 → 8527

so that the multiplication is computed in the Vector Unit 9 ,528

and tiling the computation on C1.529

The lowered code uses vmul for the multiplication step,530

and vadd, for the merge step. These instructions work in the531

1 argmax -mask = placeholder ((N, C1 , Kh , Kw , Oh , Ow , C0))
2 gradients = placeholder ((N, C1 , Oh , Ow , C0))
3 mask - gradient = compute ((N, C1 , Kh , Kw , Oh , Ow , C0),
4 lambda n, c1 , kh , kw , oh , ow , c0:
5 argmax -mask(b, c1 , kh , kw , oh , ow , c0)
6 * gradient (b, c1 , oh , ow , c0)
7 )

Listing 3. Part of MaxPool backward defined with TVM’s DSL

same way as vmax, but for multiplication and addition. While 532

vmul works well in multiplying tiles of the gradient with the 533

mask, the scattered access pattern of the merge step leads 534

to very poor usage of the Vector Unit. That is because the 535

vadd instructions only set 16 elements of the vector mask 536

(vectorizing on C0) and repetition is not used. 537

The Col2im based implementation comes from the ob- 538

servation that the merge step computes exactly the Col2im 539

operation. As mentioned before, Col2Im uses the Unified 540

buffer to load its input and to store its output 8 → 8 . 541

Therefore, it is possible to use Col2Im instead of vadd. The 542

Col2Im instruction is able to load and store to the scattered 543

elements of the output, summing two fractals at a time, as 544

shown in Figure 6. In comparison with vadd that had 16 (C0) 545

elements of the vector mask set, Col2Im enables vectorization 546

over 16 ∗ 16 elements (a fractal) at a time, and its repetition 547

mode can be used to operate over the entire tile in the Unified 548

buffer. A Col2Im instruction needs to be issued Kh∗Kw times 549

to complete the merge step of a tile. Therefore, switching vadd 550

for Col2Im presents a good opportunity for performance gains. 551

C. Avgpool 552

The forward and backward operators of Avgpool are similar 553

to those described before. But opposed to Maxpool, the 554

forward implementation reduces using sum instead of max. 555

Consequently, its CCE C code uses vadd instead of vmax. But 556

regardless of this change, the access pattern stays the same and 557

can benefit from using Im2Col. Additionally, a new operation 558

is needed to compute an element-wise division before saving 559

the final output. As for the backward operator, there is no need 560

to use the Argmax mask as an input. The equivalent mask for 561

Avgpool contains 1 in all its positions, given that all input 562

elements contribute to the output of a sum. Besides the mask, 563

the backward implementation is the same and it can also use 564

Col2Im instructions. 565

VI. EXPERIMENTAL EVALUATION 566

This evaluation compares the performance of the 567

Im2col/Col2im based Maxpool with the standard TVM 568

Maxpool implementation described in Section V. All the 569

experiments were run on an Ascend 910 chip, which contains 570

32 AI Cores. The cycle count numbers were obtained using 571

the hardware counters of the chip, and they refer to the on- 572

chip execution time running at a frequency of 100 MHz. The 573

cycle count is currently the only metric that could be obtained 574

from the chip. Each evaluation was repeated ten times, and 575

the graphs show the average value and a 95% confidence 576

interval. To use the Im2Col and Col2Im instructions in 577
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(a) Maxpool (b) Maxpool and Argmax Mask (c) Maxpool Backward

Fig. 7. Comparison of Maxpool implementations with and without Im2Col and Col2Im instructions. The graphs show the cycle count in the Ascend 910
chip by the size of the input. The input sizes are from InceptionV3. All tests use a kernel size of (3,3) and a stride of (2,2) with no padding.

TABLE I
MAXPOOL INPUT SIZES IN CNNS

CNN Input 1 Input 2 Input 3 Input 4
InceptionV3 147,147,64 71,71,192 35,35,288 17,17,768

Xception 147,147,128 74,74,256 37,37,728 19,19,1024
Resnet50 112,112,64 - - -
VGG16 224,224,64 112,112,128 56,56,256 28,28,512

TVM, they are declared and manually added to the code as578

custom intrinsics through TVM’s decl tensor intrin579

function. These intrinsics act in TVM’s DSL as an inline580

assembly section in a C source. Instead of implementing a581

single instruction call, the custom intrinsics were defined to582

issue instructions multiple times. By also using the repetition583

parameters, they can operate on a full tile of the input.584

A. InceptionV3 Comparison585

Table I shows multiple CNNs and the input sizes of four586

of their Maxpool layers. The inputs are shown in the HWC587

layout and they were gathered on the Keras framework [30].588

All configurations use a kernel size of (3, 3) and a stride589

of (2, 2), except for VGG16 [31], which has a kernel size590

and stride of (2, 2). To test the implementations of Maxpool,591

three configurations were selected from InceptionV3 [32]592

(highlighted in bold). No padding is used in them, however,593

it is also possible to add padding during the Im2Col load, as594

the other CNNs would require. Given AKG’s current limited595

support for the Im2Col and Col2Im, these configurations were596

chosen to display the effects of different input sizes while597

using the most common parameters of kernel and stride.598

The graphs in Figure 7 show the cycle count of the selected599

Maxpool configurations in the NC1HWC0 layout. Figure 7a600

shows both Maxpool forward implementations. The step of601

saving the Argmax mask is added in Figure 7b. This step adds602

to the computation, as shown by the different ranges in the603

graphs. For the evaluation in Figure 7b, AKG’s polyhedral604

framework schedules the computations, as it can better handle605

computations with multiple outputs of different shapes. Lastly,606

Maxpool backward is evaluated in Figure 7c. In the largest607

input, the accelerated implementations achieve speedups of 608

3.2x, 5x, and 5.8x on the graphs in Figure 7, respectively. The 609

best improvement is on Maxpool backward. Its large speedup 610

is expected, given the scattered access pattern of its merge step 611

and how Col2Im can be used without any extra computations. 612

B. Stride Tests 613

This experiment investigates further different Maxpool for- 614

ward implementations, and their interaction with the stride 615

parameter, as shown in Figure 8. The stride size changes 616

the amount of duplicated elements in Im2col. The kernel 617

size was set at a constant size of (3, 3). Given this kernel 618

size, there is no duplication of data for the (3, 3) stride, 619

and the maximum duplication occurs for the (1, 1) stride. 620

In this experiment, Maxpool and Maxpool with Im2col are 621

the same implementations shown in Figure 7a. The input’s 622

height and width increase in steps of two until the tiling 623

threshold is reached, where this threshold is the maximum size 624

before tiling is required. Bigger sizes would need individual 625

tiling parameters and would trigger parallelization between AI 626

Cores, which is out of the scope of this experiment. Moreover, 627

dimensions N and C1 are set to 1 so that only one AI Core 628

is utilized. 629

In the Maxpool with expansion implementation, reg- 630

ular vector instructions — instead of Im2Col instructions 631

— transform the input to the Im2Col output shape. This 632

transformation happens when the input is already in the 633

Unified buffer, before computing Maxpool. Maxpool with 634

Im2col and Maxpool with expansion achieve superior per- 635

formance in Figures 8b and 8c. These graphs confirm that 636

the Im2col memory layout allows more efficient usage of 637

the Vector Unit, producing speedups that compensate for the 638

overhead of transforming the data. Maxpool with Im2col 639

has the best performance in comparison to Maxpool with 640

expansion due to Im2col occurring while the data is loaded 641

into the Unified buffer, rather than in a separate step. 642

Figure 8a shows different results for a stride of (1, 1). With 643

this parameter, elements in consecutive patches of the original 644

input appear consecutively in memory. This allows the vmax 645

instruction to improve its use of the Vector Unit, combining the 646

mask register set with all 128 elements and its repeat parameter 647
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(a) Stride = (1,1) (b) Stride = (2,2) (c) Stride = (3,3)

Fig. 8. Comparison of different Maxpool implementations. The graphs show the cycle count in the Ascend 910 board and the height and width of the input.
In all tests, the N and C1 sizes are 1, kernel size is (3,3), with no padding. The x-axis goes up to the tiling threshold. An additional implementation of the
X-Y split is shown for the stride of (2,2).

to compute the max between the (Ow, C0) dimensions of the648

input and the initialized output. By also having no overhead to649

transform the data, and no data duplication, the direct Maxpool650

implementation is the fastest in this case.651

Pooling can also be implemented with an X-Y split by first652

calculating the reduction function on the width and then on the653

height of each patch. As a result, the first reduction is reused654

while computing the second. Lai et al. [7] use the X-Y split as655

a performant alternative to direct pooling. In their work, the656

(undesirable) intermediate results are avoided by computing657

the result in-place. In TVM, all computations generate a658

new tensor, and thus the in-place approach is not possible.659

However, this experiment increases input sizes only until the660

tiling threshold is reached, therefore avoiding extra tiling steps661

needed because of the increase in memory use. Figure 8b662

shows the performance of a TVM version of the X-Y split663

(with intermediate results) compared to the other Maxpool664

implementations. Even though the X-Y split has a lower665

computational cost, it underperforms other implementations666

that use Im2Col because it does not overcome the scattered667

memory problems of pooling.668

VII. RELATED WORK669

Convolutional layers have been the focus of extensive liter-670

ature in optimizing CNN layers because they are responsible671

for most of the computation time of CNNs. Other layers such672

as pooling receive less attention, but when left unoptimized,673

they can be obstacles that lead to slowdowns in CNNs [1].674

FPGA implementations for CNNs. In their implementa-675

tion of CNN layers for OpenCL-based FPGA accelerators,676

Suda et al. propose to unroll pooling at the hardware level677

so that multiple outputs are computed in a single cycle [5].678

However, their optimizer chooses an unrolling factor of 1 for679

the CNNs evaluated, which is equal to no unrolling. Given680

an (FPGA, CNN) pair, Sharma et al. automatically synthe-681

size a CNN accelerator where the computation of pooling682

modules overlaps with convolution modules. This overlap683

is used to hide latency and to take advantage of the fact684

that a pooling layer usually follows convolutional layers [6].685

Sharma et al. do not consider the backward operators used686

in training. In contrast to these pooling-specific hardware 687

solutions, Im2col/Col2Im based pooling in DaVinci leverages 688

a general-purpose vector unit and the Im2Col and Col2Im 689

instructions, which are primarily designed for convolution. The 690

improvements to the pooling layer afforded by Im2col/Col2im 691

could be combined with fusion in DaVinci, but this is not yet 692

supported. 693

Kernel acceleration for CNNs. LightNet is a Matlab-based 694

framework for Deep Learning [33]. Its Maxpool implementa- 695

tion uses Im2col to transform pooled regions into vectors to 696

benefit from vector instructions. Their proposition is similar to 697

the Im2col based forward pooling, however, no performance 698

results are presented to justify their implementation. CMSIS- 699

NN is a collection of efficient neural network layers targeting 700

IoT edge devices that uses X-Y splitting for pooling [7]. 701

However, the results in Figure 8b show that the X-Y split is 702

not the best alternative for DaVinci. Additionally, CMSIS-NN 703

does not consider backward operators because its target edge 704

devices only perform inference. The Im2col/Col2im based 705

pooling accelerates both inference and training devices, as 706

DaVinci edge chips also feature Im2Col instructions. 707

Li et al. use two optimizations for pooling [34]. First, the 708

use of the CHWN layout instead of NCHW to prevent un- 709

coalesced strided memory accesses caused by HW as the 710

innermost dimensions. Second, the reduction of the off-chip 711

memory requests by tuning the number of outputs calculated 712

by each thread during pooling. The memory layout used in 713

DaVinci (NC1HWC0) is a variant of the NCHW layout. 714

However, the Im2col-based pooling transforms this layout 715

into NC1KhKwOhOwC0, where the accesses can also be 716

performed consecutively in memory, thus resulting in the 717

performance speedups shown in Section VI. The outer loops 718

are automatically parallelized in DaVinci among the available 719

AI Cores, where each core calculates a share of the output. 720

Suita et al. focus on fusing convolution with pooling in 721

GPUs [8]. They only consider Avgpool because it can be 722

mapped to convolution where the kernel’s weights are equal 723

to 1/(Kh ∗ Kw), and then further fused with its preceding 724

convolution. As a result, the Im2col transformation can also 725
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be used to implement the fused convolution-pooling. However,726

CNNs tend to use Maxpool, which cannot be fused in the same727

way.728

VIII. CONCLUSION729

This work presents DaVinci’s Im2Col and Col2Im instruc-730

tions. It is shown that they can be used to implement not731

only convolution, targeting the Cube Unit, but also pooling,732

targeting memory layout improvements for the Vector Unit.733

Accelerated Im2col/Col2im based implementations are de-734

scribed for the forward and backward operators of Maxpool735

and Avgpool. An experimental evaluation was run on the736

Ascend 910 chip with the parameters and three input sizes737

used in InceptionV3. The results show speedups of up to 5.8x738

for the accelerated Maxpool implementations, compared to739

baselines that do not use the Im2Col and Col2Im instructions.740

Although the stride parameter can impact the Im2col and741

Col2im operations drastically, the proposed acceleration ap-742

proach achieved improved performance for all but (1, 1) stride.743

The Im2col/Col2im based pooling also proves superior to other744

strategies of optimization, such as the X-Y split. Further work745

could evaluate the proposed approach in other architectures,746

and also consider the fusion techniques described by Suita et747

al. [8] to execute Avgpool together with convolution as matrix748

multiplication in the Cube Unit.749
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