Unweighted Graphs & Algorithms

Zachary Friggstad

Programming Club Meeting
References

Chapter 4: Graph (Section 4.2)

Chapter 22: Elementary Graph Algorithms
Graphs

Features: vertices/nodes/dots and edges/links/lines between vertices.

Sometimes there are labels or numeric values associated with the items in the graph. The edges may or may not have directions.

We will discuss over a couple of meetings how to model graphs and some graph algorithms.
Unweighted Graphs

Note

Many code snippets here use C++11 features. Compile with the flag
-std=c++11 if using g++.

Throughout, \(n = \# \) vertices, \(m = \# \) edges.
Unweighted Graphs

Note
Many code snippets here use C++11 features. Compile with the flag -std=c++11 if using g++.

Throughout, $n = \# \text{ vertices}$, $m = \# \text{ edges}$.

Adjacency List Representation of a Graph

```cpp
// without c++11 you may need to add a space between >>
typedef vector<vector<int>> graph;
...
graph g(n); // create a graph with n vertices
g[u].push_back(v); // add v as a neighbour of u
```

For undirected graphs, just add both directions of an edge (u, v). Requires $\Theta(n + m)$ space.
Problem: Reachability

Give a vertex v in a graph, find all vertices u that v can reach.

That is, we can reach u by following a sequence of edges (in the right direction, if the graph is directed).

Example
The top, left vertex can only reach the other vertices in the “square”.

![Diagram showing reachability](image)
Depth-First Search

Find all vertices reachable from vertex \(v \).

```cpp
// the vertices that are reached in the search
type vector< bool > reached(n, false);
graph g;

void dfs(int u) {
    if (!reached[u]) {
        reached[u] = true;
        for (auto w : g[u]) dfs(w);
    }
}

... 
dfs(v);
```
Depth-First Search

Find all vertices reachable from vertex \(v \).

```cpp
//the vertices that are reached in the search
vector<bool> reached(n, false);
graph g;

void dfs(int u) {
    if (!reached[u]) {
        reached[u] = true;
        for (auto w : g[u]) dfs(w);
    }
}
...
dfs(v);
```

If we record the vertex that discovered \(u \), we can reconstruct paths.

Runs in \(O(n + m) \) time.
Other Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.
Other Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.
Other Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.

- Begin a DFS. Just before returning from a recursive call (i.e. just after the for loop) push_back the vertex u to the end of a vector.
Other Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.

- Begin a DFS. Just before returning from a recursive call (i.e. just after the for loop) push_back the vertex u to the end of a vector.
- Repeat, starting with an unvisited vertex each time, until all vertices are visited.
vector<int> order; // initially empty

void topo_sort(int u) {
 if (!reached[u]) {
 reached[u] = true;
 for (auto w : g[u]) topo_sort(w);
 order.push_back(u);
 }
}

...

for (int u = 0; u < n; u++)
 if (!reached[u])
 topo_sort(u);
reverse(order.begin(), order.end()); // #include <algorithm>
If u is ordered after w for some edge (u, w), it must be that the recursive call with w was on the call stack when u was being processed. (Why?)
If u is ordered after w for some edge (u, w), it must be that the recursive call with w was on the call stack when u was being processed. (Why?)

If w is on the call stack when u is being processed, there is a path from w to u. Completing this path with the edge (u, w) yields a cycle.
If u is ordered after w for some edge (u, w), it must be that the recursive call with w was on the call stack when u was being processed. (Why?)

If w is on the call stack when u is being processed, there is a path from w to u. Completing this path with the edge (u, w) yields a cycle.

Thus
If the graph has no cycles, this will topologically sort all vertices.
Articulation Points & Bridges

An articulation point in an undirected, connected graph is a vertex whose removal leaves a disconnected graph.

A bridge is an edge whose removal leaves a disconnected graph.
Articulation Points & Bridges

An articulation point in an undirected, connected graph is a vertex whose removal leaves a disconnected graph.

A bridge is an edge whose removal leaves a disconnected graph.

Can find all bridges and articulation points in $O(n + m)$ time via DFS.
A bridge will always be a **tree edge** in a DFS (actually, in any spanning tree): one that is expanded along in the search.

Picture: no edge of a descendent of u in the search reached a non-descendent. So the parent edge of u is a bridge.
Run a DFS, record the order the vertices were discovered.

Return the earliest discovery time of any vertex adjacent to a descendant of \(u\). This indicates if some descendant is adjacent to a non-descendant.

```cpp
vector<int> found(n, -1); // discovery time
int cnt = 0;

int bridges(int u, int p) {
    if (found[u] != -1) return found[u];
    int mn = found[u] = cnt++; // record u's discovery time
    for (auto w : g[u])
        mn = min(mn, bridges(w, u));
    if (mn == found[u] && p != -2)
        // (p, u) is a bridge, process it how you want
        return mn;
    return mn;
}

... shades
bridges(0, -2); // start the search from any vertex
```
Other DFS Applications

- Find all articulation points in a graph (good exercise).
- Find the strongly connected components of a directed graph.
- Compute pre/post order traversals of a tree.
- Deciding if a graph is bipartite.
- Simple code for augmenting a bipartite matching (later lecture).

All of these can be implemented to run in $O(n + m)$ time.
Breadth-First Search

A *breadth-first search* will explore the vertices in increasing order of their *shortest path* distance from the start vertex.

• Load up the start vertex in a queue q.
• While q is not empty, extract the front vertex and add all of its unvisited neighbours to the back of q.
queue<int> q; // #include <queue>
vector<int> prev(n, -1);

q.push(v); // v is the start vertex in the search
prev[v] = -2; // signals "root of search"

while (!q.empty()) {
 int curr = q.front();
 q.pop();
 for (auto succ : g[curr])
 if (prev[succ] == -1) {
 prev[succ] = curr;
 q.push(succ);
 }
}

Now prev[u] for u \neq v is the vertex prior to u on a shortest v – u path.

Also runs in $O(n + m)$ time.
A thick arrow from u to w indicates $\text{prev}[w] = u$.

The unique path using thick arrows from the start vertex (dark) to any vertex is a shortest path in the graph.
A thick arrow from u to w indicates $\text{prev}[w] = u$.

The unique path using thick arrows from the start vertex (dark) to any vertex is a shortest path in the graph.

Though we illustrated with an undirected graph, the same algorithm also finds shortest paths in directed graphs.
Next week
Algorithms for weighted graphs.
• Dijkstra’s algorithm for shortest paths.
• Floyd-Warshall for all-pairs shortest paths.
• Bellmand-Ford: handling negative weight cycles.
• Minimum Spanning Trees: Kruskal’s Algorithm.
• Eulerian Circuits

Later in the term
• Bipartite matching: unweighted.
• Network flow: max-flow/min-cut.
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast
View as a graph: vertices are squares and edges between adjacent squares.
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast

View as a graph: vertices are squares and edges between adjacent squares.

• Run a dfs from an “outside” vertex.
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast

View as a graph: vertices are squares and edges between adjacent squares.

- Run a dfs from an “outside” vertex.
- Return the number of coastlines seen from each recursive call.
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast

View as a graph: vertices are squares and edges between adjacent squares.

- Run a dfs from an “outside” vertex.
- Return the number of coastlines seen from each recursive call.
- Do not continue the search if you try to cross to a land vertex, just return 1.
Example Problem: Kattis - coast

https://open.kattis.com/problems/coast
View as a graph: vertices are squares and edges between adjacent squares.

• Run a dfs from an “outside” vertex.
• Return the number of coastlines seen from each recursive call.
• Do not continue the search if you try to cross to a land vertex, just return 1.
• **Tip**: Pad the grid with water tiles on each edge, so you know (0, 0) is a water tile and you only have to run 1 dfs.

Running time: $O(N \cdot M)$, which is linear in the size of the grid.
Example Problem: Kattis - eulerianpath

https://open.kattis.com/problems/eulerianpath

Let δ_v be the difference between the outdegree and indegree of v.

- Start a search at some s with $\delta_s = +1$ (pick any vertex s if there is no such vertex).
- When processing v in the search, do the following. While there is an unused outgoing edge vw, recursively search from w.
- When all edges exiting v are used, append v to the tour and return.

Check that the tour contains $m + 1$ nodes (so all edges are traversed). If so, reverse it to get an Eulerian tour starting at s.

Running time: $O(n + m)$.

Tip: Emulate the DFS with a stack if the recursion can go too deep.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.

- For each set of vertices, determine if S is *independent* (no edge between nodes). Can be done in $O(n \cdot 2^n)$ time.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.

- For each set of vertices, determine if \(S \) is *independent* (no edge between nodes). Can be done in \(O(n \cdot 2^n) \) time.
- Next, for each \(S \) determine the fewest colours to colour \(S \) by trying each independent set as one colour, removing it, and recursing.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.

- For each set of vertices, determine if S is independent (no edge between nodes). Can be done in $O(n \cdot 2^n)$ time.
- Next, for each S determine the fewest colours to colour S by trying each independent set as one colour, removing it, and recursing.
- i.e. $\chi(\emptyset) = 0$ and for $S \neq \emptyset$

$$\chi(S) = 1 + \min_{T \text{ independent set}} \chi(S - T).$$

If in step 1 we only keep maximal independent sets (i.e. not contained in a larger ind. set), the running time reduces to $O(2^{4n/3})$ because # of maximal independent sets in any graph is $O(2^{n/3})$.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.

• For each set of vertices, determine if S is independent (no edge between nodes). Can be done in $O(n \cdot 2^n)$ time.
• Next, for each S determine the fewest colours to colour S by trying each independent set as one colour, removing it, and recursing.
• i.e. $\chi(\emptyset) = 0$ and for $S \neq \emptyset$

$$\chi(S) = 1 + \min_{T \text{ independent set}} \chi(S - T).$$

Running time $O(2^{2^n})$.
Example Problem: Kattis - coloring

https://open.kattis.com/problems/coloring

A dynamic programming over subsets approach.

• For each set of vertices, determine if S is independent (no edge between nodes). Can be done in $O(n \cdot 2^n)$ time.
• Next, for each S determine the fewest colours to colour S by trying each independent set as one colour, removing it, and recursing.
• i.e. $\chi(\emptyset) = 0$ and for $S \neq \emptyset$

$$\chi(S) = 1 + \min_{T \text{ independent set} \, T \neq \emptyset} \chi(S - T).$$

Running time $O(2^{2n})$.

If in step 1 we only keep maximal independent sets (i.e. not contained in a larger ind. set), the running time reduces to $O(2^{4n/3})$ because # of maximal independent sets in any graph is $O(2^{n/3})$.