Dynamic Programming

Zachary Friggstad

Programming Club Meeting
Dynamic Programming by Example

Example: Matrix Chain Multiplication

Given matrices M_1, M_2, \ldots, M_n where matrix M_i is an $r_i \times c_i$ matrix and $c_i = r_{i+1}$.

Goal: Compute $M_1 \cdot M_2 \cdot \ldots \cdot M_n$, an $r_1 \times c_k$ matrix.
Dynamic Programming by Example

Example: Matrix Chain Multiplication

Given matrices M_1, M_2, \ldots, M_n where matrix M_i is an $r_i \times c_i$ matrix and $c_i = r_{i+1}$.

Goal: Compute $M_1 \cdot M_2 \cdot \ldots M_n$, an $r_1 \times c_k$ matrix.

Associativity tells us there are many ways to do this:

\[A \cdot (B \cdot C) \quad \text{vs} \quad (A \cdot B) \cdot C \]

or

\[A \cdot (B \cdot (C \cdot D)) \quad \text{vs} \quad (A \cdot B) \cdot (C \cdot D) \quad \text{vs} \quad (A \cdot (B \cdot C)) \cdot D \]
Dynamic Programming by Example

Example: Matrix Chain Multiplication

Given matrices M_1, M_2, \ldots, M_n where matrix M_i is an $r_i \times c_i$ matrix and $c_i = r_{i+1}$.

Goal: Compute $M_1 \cdot M_2 \cdot \ldots \cdot M_n$, an $r_1 \times c_k$ matrix.

Associativity tells us there are many ways to do this:

$$A \cdot (B \cdot C) \quad \text{vs} \quad (A \cdot B) \cdot C$$

or

$$A \cdot (B \cdot (C \cdot D)) \quad \text{vs} \quad (A \cdot B) \cdot (C \cdot D) \quad \text{vs} \quad (A \cdot (B \cdot C)) \cdot D$$

What is the fastest way.
Dynamic Programming by Example

Say the cost of multiplying an $a \times b$ matrix S with a $b \times c$ matrix T is $abc = \#$ of element-by-element multiplications when computing $S \times T$ naively.
Dynamic Programming by Example

Say the cost of multiplying an $a \times b$ matrix S with a $b \times c$ matrix T is $abc = \#$ of element-by-element multiplications when computing $S \times T$ naively.

Example:

- $A : 1 \times 100$
- $B : 100 \times 100$
- $C : 100 \times 100$
- $D : 100 \times 1$

Cost of $(A \cdot (B \cdot C)) \cdot D$ is $100^3 + 100^2 + 100 = 1010100$.

Cost of $(A \cdot B) \cdot (C \cdot D)$ is $2 \cdot 100^2 + 100 = 20100$.

Dynamic Programming by Example

Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?
Dynamic Programming by Example

Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?

Idea:
Let $\text{cost}(i, j)$ be the cheapest way to compute $A_i \cdot \ldots \cdot A_j$.
Dynamic Programming by Example

Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?

Idea:
Let $\text{cost}(i, j)$ be the cheapest way to compute $A_i \cdot \ldots \cdot A_j$.

If $i = j$,

Dynamic Programming by Example

Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?

Idea:
Let $\text{cost}(i, j)$ be the cheapest way to compute $A_i \cdot \ldots \cdot A_j$.

If $i = j$, nothing to compute (answer is 0).
Dynamic Programming by Example

Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?

Idea:
Let $\text{cost}(i, j)$ be the cheapest way to compute $A_i \cdot \ldots \cdot A_j$.

If $i = j$, nothing to compute (answer is 0).

Otherwise
Recall we want to compute $A_1 \cdot \ldots \cdot A_k$ where A_i is an $r_i \times c_i$ matrix.

What order of multiplication/“parenthesizing” results in the cheapest calculation?

Idea:
Let $\text{cost}(i, j)$ be the cheapest way to compute $A_i \cdot \ldots \cdot A_j$.

If $i = j$, nothing to compute (answer is 0).

Otherwise “guess” the outermost multiplication:

$$(A_i \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot \ldots \cdot A_j)$$

$$\text{cost}(i, j) = \min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j.$$
The Recurrence

Concisely,

\[
\text{cost}(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j & \text{if } i < j
\end{cases}
\]
The Recurrence

Concisely,

$$\text{cost}(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j & \text{if } i < j
\end{cases}$$

```c
int cost(int i, int j) {
    if (i == j) return 0; // base case
    int best = INT_MAX;
    for (int k = i; k < j; k++)
        best = min(best,
            cost(i, k) + cost(k+1, j) + r[i]*c[k]*c[j]);
    return best;
}
```
Memoization

This takes exponential time.

Fantastic Idea: Computed each cost\((i, j)\) entry only once!
Memoization

This takes exponential time.

Fantastic Idea: Computed each \(\text{cost}(i,j) \) entry only once!

```c
// table[][] is initialized to contain all -1 entries
int cost(int i, int j) {
    if (table[i][j] == -1) { // first time computing cost(i,j)
        if (i == j) table[i][j] = 0;
        else {
            table[i][j] = INT_MAX;
            for (int k = i; k < j; k++)
                table[i][j] = min(table[i][j],
                                    cost(i,k)+cost(k+1,j) + r[i]*c[k]*c[j]);
        }
    }
    return table[i][j];
}
```
Memoization

\[
\text{cost}(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j & \text{if } i < j
\end{cases}
\]

There are \(O(n^2)\) different subproblems (i.e. \((i, j)\) pairs).
Memoization

\[
\text{cost}(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j & \text{if } i < j
\end{cases}
\]

There are \(O(n^2)\) different subproblems (i.e. \((i, j)\) pairs).

Computing each requires \(O(n)\) time within the current recursive call.
Memoization

$$\text{cost}(i, j) = \begin{cases}
0 & \text{if } i = j \\
\min_{i \leq k \leq j-1} \text{cost}(i, k) + \text{cost}(k + 1, j) + r_i \cdot c_k \cdot c_j & \text{if } i < j
\end{cases}$$

There are $O(n^2)$ different subproblems (i.e. (i, j) pairs).

Computing each requires $O(n)$ time within the current recursive call.

Running time: $O(n^3)$.
General Recipe

Formulate a mathematical *recurrence* that solves the problem.

Ingredients:

- “Base cases” that are trivial to solve.
- A clear way to break larger problems into “smaller” subproblems plus some easy to compute part.

Sort of a “computation by induction”. We can easily compute the solution if we know the solutions to smaller subproblems.
General Recipe

Formulate a mathematical *recurrence* that solves the problem.

Ingredients:

- “Base cases” that are trivial to solve.
- A clear way to break larger problems into “smaller” subproblems plus some easy to compute part.

Sort of a “computation by induction”. We can easily compute the solution if we know the solutions to smaller subproblems.

Running Time Analysis Template:

\[(\text{# of possible subproblems}) \times (\text{time in one recursive call})\]

Sometimes: even faster, this is an upper bound.
Bottom-Up

The approach just shown is **Top-Down**: check a table before completing the calculation to see if it is already done.
Bottom-Up

The approach just shown is **Top-Down**: check a table before completing the calculation to see if it is already done.

Bottom-Up: solve subproblems from “smallest” to “largest”.

```c
for (int len = 1; len <= n; len++)
    for (int i = 0, j = len - 1; j < n; i++, j++) {
        if (i == j) cost[i][j] = 0;
        else {
            cost[i][j] = INT_MAX;
            for (int k = i; k < j; k++)
                cost[i][j] = min(cost[i][j],
                                cost[i][k] + cost[k+1][j] + r[i]*c[k]*c[j]);
        }
    }
```

The loop ordering ensures when cost[i][j] is computed, the relevant cost[i][k] and cost[k+1][j] are already computed.
Comparison

Top-Down Advantage:
• Never have to think about how to cleverly build the table from the bottom up. Just memoize the natural recurrence.

Bottom-Up Advantage:
• Runs a bit faster. Not asymptotically faster, though.
• No concern about filling the call stack by recursing too deep.
• Can sometimes use a smaller table:
 example: if the recurrence has $f[i][j]$ only depending on $f[i-1][k]$ entries then we might only need to keep the single vector $f[i-1]$ when computing vector $f[i]$.

In the vast majority of contest problems, the top-down approach works fine.
Recovering a Solution

This computes the cost of the cheapest way to multiply the chain of matrices. But it doesn’t give the exact sequence!

To recover the sequence, just trace through the DP table.
Recovering a Solution

This computes the cost of the cheapest way to multiply the chain of matrices. But it doesn’t give the exact sequence!

To recover the sequence, just trace through the DP table.

The outermost multiplication in the cheapest way to compute $A_i \cdot \ldots \cdot A_j$ is at the index k achieving the min-value in the recurrence.

For this k, we compute $(A_i \cdot \ldots \cdot A_k) \cdot (A_{k+1} \cdot \ldots \cdot A_j)$.
More Examples
Longest path in a DAG

Let G be a DAG, a Directed Acyclie Graph with vertices V and edges E. Let s be a vertex.

Find the longest path (number of edges) starting at s.
Longest path in a DAG

Let G be a DAG, a Directed Acyclic Graph with vertices V and edges E. Let s be a vertex.

Find the longest path (# of edges) starting at s.

Let $f(v)$ be the length of the longest path starting from v and $N(v)$ all nodes u such that vu is an edge.
Longest path in a DAG

Let G be a DAG, a Directed Acyclic Graph with vertices V and edges E. Let s be a vertex.

Find the longest path (# of edges) starting at s.

Let $f(v)$ be the length of the longest path starting from v and $N(v)$ all nodes u such that vu is an edge.

$$f(v) = \begin{cases}
0 & \text{if } N(v) = \emptyset \\
1 + \max_{u \in N(v)} f(u) & \text{otherwise}
\end{cases}$$
Longest path in a DAG

Let G be a DAG, a Directed Acyclic Graph with vertices V and edges E. Let s be a vertex.

Find the longest path (# of edges) starting at s.

Let $f(v)$ be the length of the longest path starting from v and $N(v)$ all nodes u such that vu is an edge.

$$f(v) = \begin{cases} 0 & \text{if } N(v) = \emptyset \\ 1 + \max_{u \in N(v)} f(u) & \text{otherwise} \end{cases}$$

Running Time: $O(|V|^2)$: $|V|$ vertices, each with $\leq |V|$ neighbours.

Maybe Better Analysis: $O(|V| + |E|)$ if $N(v)$ is stored as an array.
Longest Common Subsequence

Let \(s = s_0 s_1 \ldots s_{n-1} \) and \(t = t_0 t_1 \ldots t_{m-1} \) be two sequences.

Find a longest common subsequence (LCS) between \(s \) and \(t \). For example, a LCS of \(s = \text{human} \) and \(t = \text{chimpanzee} \) is \(\text{hman} \).
Longest Common Subsequence

Let \(s = s_0s_1 \ldots s_{n-1} \) and \(t = t_0t_1 \ldots t_{m-1} \) be two sequences.

Find a *longest common subsequence* (LCS) between \(s \) and \(t \). For example, a LCS of \(s = \text{human} \) and \(t = \text{chimpanzee} \) is \(hman \).

Let \(f(i,j) \) be the length of the LCS of \(s_0 \ldots s_{i-1} \) and \(t_0 \ldots t_{j-1} \).
Longest Common Subsequence

Let $s = s_0 s_1 \ldots s_{n-1}$ and $t = t_0 t_1 \ldots t_{m-1}$ be two sequences.

Find a *longest common subsequence* (LCS) between s and t. For example, a LCS of $s = \text{human}$ and $t = \text{chimpanzee}$ is hman.

Let $f(i, j)$ be the length of the LCS of $s_0 \ldots s_{i-1}$ and $t_0 \ldots t_{j-1}$.

$$f(i, j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
1 + f(i - 1, j - 1) & \text{if } s_i = t_j \\
\max(f(i - 1, j), f(i, j - 1)) & \text{otherwise}
\end{cases}$$
Longest Common Subsequence

Let \(s = s_0s_1\ldots s_{n-1} \) and \(t = t_0t_1\ldots t_{m-1} \) be two sequences.

Find a longest common subsequence (LCS) between \(s \) and \(t \). For example, a LCS of \(s = \text{human} \) and \(t = \text{chimpanzee} \) is \(\text{hman} \).

Let \(f(i,j) \) be the length of the LCS of \(s_0\ldots s_{i-1} \) and \(t_0\ldots t_{j-1} \).

\[
f(i,j) = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
1 + f(i - 1, j - 1) & \text{if } s_i = t_j \\
\max(f(i - 1, j), f(i, j - 1)) & \text{otherwise}
\end{cases}
\]

Running Time: \(O(nm) \)
Subset Sum

Given integers $a_1, \ldots, a_n \geq 0$ and some integer $\alpha \geq 0$, is there some $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} a_i = \alpha$?
Subset Sum

Given integers $a_1, \ldots, a_n \geq 0$ and some integer $\alpha \geq 0$, is there some $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} a_i = \alpha$?

Let $f(k, b)$ be a boolean value that is true if and only if there is some $A \subseteq \{1, \ldots, k\}$ with $\sum_{i=1}^{k} a_i = b$.

Running Time: $\mathcal{O}(n \cdot \alpha)$
Subset Sum

Given integers $a_1, \ldots, a_n \geq 0$ and some integer $\alpha \geq 0$, is there some $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} a_i = \alpha$?

Let $f(k, b)$ be a boolean value that is true if and only if there is some $A \subseteq \{1, \ldots, k\}$ with $\sum_{i=1}^{k} a_i = b$.

$$f(k, b) = \begin{cases}
\text{TRUE} & \text{if } k = 0, b = 0 \\
\text{FALSE} & \text{if } k = 0, b \geq 1 \\
f(k - 1, b) & \text{if } k \geq 1, b \leq a_k - 1 \\
f(k - 1, b) \text{ OR } f(k - 1, b - a_k) & \text{if } k \geq 1, b \geq a_k
\end{cases}$$

Running Time: $O(n \cdot \alpha)$
Subset Sum

Given integers $a_1, \ldots, a_n \geq 0$ and some integer $\alpha \geq 0$, is there some $S \subseteq \{1, \ldots, n\}$ with $\sum_{i \in S} a_i = \alpha$?

Let $f(k, b)$ be a boolean value that is true if and only if there is some $A \subseteq \{1, \ldots, k\}$ with $\sum_{i=1}^{k} a_i = b$.

$$f(k, b) = \begin{cases}
\text{TRUE} & \text{if } k = 0, b = 0 \\
\text{FALSE} & \text{if } k = 0, b \geq 1 \\
 f(k - 1, b) & \text{if } k \geq 1, b \leq a_k - 1 \\
 f(k - 1, b) \text{ OR } f(k - 1, b - a_k) & \text{if } k \geq 1, b \geq a_k
\end{cases}$$

Running Time: $O(n \cdot \alpha)$
Example Problem: Kattis - uxuhulvoting

https://open.kattis.com/problems/uxuhulvoting
Example Problem: Kattis - uxuhulvoting

https://open.kattis.com/problems/uxuhulvoting

Basic idea: index the priests $i = 0 \ldots m - 1$ from youngest to oldest.
- For a priest i and a “configuration” of stones c, let $f(i, c)$ be the final configuration of if priest i plays optimally when presented with configuration c.
- As a base case, let $f(m, c) = c$ (here m signals “no more priests”).
- Let $\alpha(c)$ be the set of 3 possible configurations we can get from c by flipping one stone.
- For $0 \leq i < m$ we have $f(i, c)$ is the best of $f(i + 1, c')$ over all $c' \in \alpha(c)$.

Implementation detail: let c be an integer between 0 and 7 (the binary string representing set of flipped stones). The bitwise XOR of c with 1, 2, and 4 gives the three values in $\alpha(c)$.
Example Problem: Kattis - pebblesolitaire2

https://open.kattis.com/problems/pebblesolitaire2
Example Problem: Kattis - pebblesolitaire2

https://open.kattis.com/problems/pebblesolitaire2

Basic idea:

• For a subset of positions S, let $f(S)$ be the minimum possible number that can be left if positions S have pebbles.

• Recurrence
 ○ if no moves from S the answer is $|S|$
 ○ otherwise, $f(S)$ is the minimum of $f(S')$ over all S' that can be obtained by one move from S

• For n holes, 2^n states and $O(n)$ moves/state so this takes $O(n \cdot 2^n)$ time.

• Don’t reset the memo table between inputs to save time.

Implementation detail: Represent S by a single integer whose bits indicate the members of S.
Example Problem: Kattis - race

https://open.kattis.com/problems/race
Example Problem: Kattis - race

https://open.kattis.com/problems/race

Basic idea:

- Similar to before, for a set of points S and some point $v \in S$, let $f(S, v)$ be the minimum time to complete S with v being the last thing completed in S. This is ∞ if it is impossible.

- In the recurrence, compute $f(S, v)$ by guessing what task u immediately preceded v.

- Quite a few simple low-level details to work out.

- $O(n2^n)$ subproblems, each with $O(n)$ recursive calls: $O(n^2 \cdot 2^n)$ time in total.