Bipartite Graphs and Partially Ordered Sets

Zachary Friggstad

Programming Club Meeting
Bipartite Recognition

An undirected graph $G = (V, E)$ is bipartite if V can be partitioned into two sides L, R where all edges have an endpoint in both L and R.
Bipartite Recognition

An undirected graph $G = (V, E)$ is bipartite if V can be partitioned into two sides L, R where all edges have an endpoint in both L and R.

How to recognize bipartite graphs? Pick a vertex v, add v to L, add its neighbours to R, add their unprocessed neighbours to L, etc.

Now check if any edge has both endpoints on the same side.
typedef vector<vector<int>> graph;

graph g; // assume is already filled
vector<int> mark(g.size(), -1); // -1 means not processed

// uses a depth-first search
bool partition(int v, int side) {
 if (left[v] != -1) return mark[v] == side;
 mark[v] = side;
 for (auto u : g[v])
 if (!partition(u, 1 - side)) return false;
 return true;
}

bool bip = true;
// run the dfs in each component
for (int u = 0; u < n && bip; ++u)
 bip &= (mark[u] != -1 || partition(u, 0));
// if bip == true, then \{u : mark[u] = 0\} is the left side
Bipartite Matchings

Let \(G = (V, E) \) be a graph. A matching is a subset \(M \subseteq E \) such that each vertex \(v \in V \) is the endpoint of at most one edge in \(M \).

i.e. \(M \) pairs up some vertices (\(M \equiv \) thick edges).
Bipartite Matchings

Let $G = (V, E)$ be a graph. A matching is a subset $M \subseteq E$ such that each vertex $v \in V$ is the endpoint of at most one edge in M.

i.e. M pairs up some vertices ($M \equiv$ thick edges).

Optimization Question
Find the largest possible matching M.
Can find in polynomial time for any graph, but the algorithm is a bit too intricate for the contest setting.

However, the question is frequently asked in a programming contest if G is bipartite.
Can find in polynomial time for any graph, but the algorithm is a bit too intricate for the contest setting.

However, the question is frequently asked in a programming contest if G is bipartite.

Basic Approach

Let $n = |V|, m = |E|$. There is a $O(n + m)$-time algorithm that does the following:

Given a matching M, either finds a larger matching or else correctly determines M is a maximum-size matching.
Can find in polynomial time for any graph, but the algorithm is a bit too intricate for the contest setting.

However, the question is frequently asked in a programming contest if \(G \) is bipartite.

Basic Approach
Let \(n = |V|, m = |E| \).

There is a \(O(n + m) \)-time algorithm that does the following:

Given a matching \(M \), either finds a larger matching or else correctly determines \(M \) is a maximum-size matching.

Iterating the procedure starting with \(M = \emptyset \) finds a maximum matching in \(O(mn + n^2) \) time.
Augmenting Paths

Given a matching M, direct all edges e as follows:

- From L to R if $e \notin M$
- From R to L if $e \in M$

Find an M-alternating path P: a path from an unmatched vertex in L to an unmatched vertex in R.

![Diagram showing directed edges and an M-alternating path](image)
Flip the directions of the edges in P: the matching is larger.
Lemma

If M is not a maximum matching, there is an M-alternating path.

Idea:
Let M^* be any matching. Then $M \cup M^*$ (keep doubles) is comprised of paths and cycles that alternate between M and M^*.

If $|M| < |M^*|$, then some path starts and ends with an edge in M^*. This is an M-alternating path.
Lemma

If M is not a maximum matching, there is an M-alternating path.

Idea:
Let M^* be any matching. Then $M \cup M^*$ (keep doubles) is comprised of paths and cycles that alternate between M and M^*.

If $|M| < |M^*$, then some path starts and ends with an edge in M^*. This is an M-alternating path.

Pseudocode:

- $M = \emptyset$
- While there is an M-alternating path P
 - Update $M \leftarrow M \oplus P$ (toggle/flip edges of P)
- Return M
int left; // # nodes on left
graph g; // say L is indexed from 0 to left−1
vector<int> match(g.size(), -1), seen(left, -1);

bool augment(int u, int cno) { // find a path via dfs
 if (seen[u] == cno) return false;
 seen[u] = cno;
 for (auto v : g[u])
 if (match[v] == -1 || augment(match[v], cno)) {
 match[v] = u; match[u] = v; // flip the edges
 return true;
 }
 return false;
}

int match() {
 int cnt = 0;
 // can show we only need to search from each vertex once
 for (int u = 0; u < left; ++u)
 if (augment(u, u)) ++cnt;
 return cnt;
}
Hall’s Theorem.
There is a matching M of size $|L|$ if and only if for every $X \subseteq L$, the number of nodes in R adjacent to some vertex in X is at least $|X|$.

Picture: No way to match all three highlighted nodes in L.
Hall’s Theorem.
There is a matching M of size $|L|$ if and only if for every $X \subseteq L$, the number of nodes in R adjacent to some vertex in X is at least $|X|$.

Picture: No way to match all three highlighted nodes in L.

To find such an X, if max matching $|M| < |L|$ let X be all nodes on L reachable from M-alternating paths from unmatched nodes.

Exercise: Prove such X has $< |X|$ neighbours.
A vertex cover is a set C of nodes so each edge e has at least one endpoint in C.

Finding a minimum-size vertex cover is NP-hard in general, but easy in bipartite graphs.
A vertex cover is a set C of nodes so each edge e has at least one endpoint in C.

![Diagram of a graph with vertex cover highlighted]

Finding a minimum-size vertex cover is NP-hard in general, but easy in bipartite graphs.

Theorem (Vizing)

*If C is a min vertex cover and M a max matching in a bipartite graph, then $|C| = |M|$.***
Again, let M be a max-matching.

Let S be the set of all vertices reachable by an M-alternating path starting at the unmatched nodes on the left.

Let $C = (L - S) \cup (R \cap S)$. This is a vertex cover.
Again, let M be a max-matching.

Let S be the set of all vertices reachable by an M-alternating path starting at the unmatched nodes on the left.

Let $C = (L - S) \cup (R \cap S)$. This is a vertex cover.

Side Note: Can show $L \cap S$ is a “Hall Set” (i.e. fewer than $|L \cap S|$ neighbours) if $|M| < |L|$.

red \equiv reachable, blue halo \equiv C
Steps to the proof.

Showing C is a vertex cover

Show no edge $e = uv$ has $u \in L \cap S$, $v \in R - S$ using definition of “reachability” for S (two cases, if $e \in M$ or $e \not\in M$).
Steps to the proof.

Showing C is a vertex cover
Show no edge $e = uv$ has $u \in L \cap S$, $v \in R - S$ using definition of “reachability” for S (two cases, if $e \in M$ or $e \not\in M$).

Each $e \in M$ is covered by only one vertex in C
Otherwise a contradiction to reachability for S.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Steps to the proof.

Showing C is a vertex cover
Show no edge $e = uv$ has $u \in L \cap S, v \in R - S$ using definition of “reachability” for S (two cases, if $e \in M$ or $e \not\in M$).

Each $e \in M$ is covered by only one vertex in C
Otherwise a contradiction to reachability for S.

No unmatched $u \in L$ is in C
Because unmatched $u \in L$ are trivially reachable.
Steps to the proof.

Showing \(C \) is a vertex cover
Show no edge \(e = uv \) has \(u \in L \cap S, v \in R - S \) using definition of “reachability” for \(S \) (two cases, if \(e \in M \) or \(e \notin M \)).

Each \(e \in M \) is covered by only one vertex in \(C \)
Otherwise a contradiction to reachability for \(S \).

No unmatched \(u \in L \) is in \(C \)
Because unmatched \(u \in L \) are trivially reachable.

No unmatched \(v \in R \) is in \(C \)
Otherwise there is an \(M \)-augmenting path, so \(M \) is not maximum.

Therefore \(|C| = |M| \).
Steps to the proof.

Showing C is a vertex cover
Show no edge $e = uv$ has $u \in L \cap S$, $v \in R - S$ using definition of “reachability” for S (two cases, if $e \in M$ or $e \notin M$).

Each $e \in M$ is covered by only one vertex in C
Otherwise a contradiction to reachability for S.

No unmatched $u \in L$ is in C
Because unmatched $u \in L$ are trivially reachable.

No unmatched $v \in R$ is in C
Otherwise there is an M-augmenting path, so M is not maximum.

Therefore $|C| = |M|$. But any vertex cover needs $\geq |M|$ vertices just to cover M, so C is a minimum vertex cover.
Edge Colouring

Problem: Colour each edge of a graph so every colour is a matching.
Degree Bounds

Obvious Bound: If Δ is the maximum “degree” of a vertex (number of incident edges), then we need $\geq \Delta$ colours.

Sometimes more, here $\Delta = 2$ but 3 colours are needed:
Degree Bounds

Obvious Bound: If Δ is the maximum “degree” of a vertex (# of incident edges), then we need $\geq \Delta$ colours.

Sometimes more, here $\Delta = 2$ but 3 colours are needed:

![Diagram of a graph with 3 vertices and 3 edges showing that 3 colours are needed even though the maximum degree is 2.]

Vizing’s Theorem: $\Delta + 1$ colours always suffice.
Degree Bounds

Obvious Bound: If Δ is the maximum “degree” of a vertex (# of incident edges), then we need $\geq \Delta$ colours.

Sometimes more, here $\Delta = 2$ but 3 colours are needed:

![Diagram of a triangle with three vertices and three edges, one blue and two green, illustrating the obvious bound for $\Delta = 2$.]

Vizing’s Theorem: $\Delta + 1$ colours always suffice.

Unfortunately it is NP-hard to determine if Δ colours suffice.
Degree Bounds

Obvious Bound: If Δ is the maximum “degree” of a vertex (\# of incident edges), then we need $\geq \Delta$ colours.

Sometimes more, here $\Delta = 2$ but 3 colours are needed:

![Diagram](image)

Vizing’s Theorem: $\Delta + 1$ colours always suffice.

Unfortunately it is \textbf{NP}-hard to determine if Δ colours suffice.

König: In a bipartite graph, Δ colours suffice.
Algorithm
Colour the edges one at a time.

When processing $e = uv$, if there is an available colour, use it!
• That is, if some colour has neither u nor v matched by that colour so far, then use that colour for e.

Otherwise, we will modify the current colouring in $O(n)$ time to ensure there is an available colour.
Modifying the Colouring

Say we are trying to colour $e = uv$ but none of the Δ colours are free on both u and v.

We still know some colour, say *blue*, is not used on u and some colour, say *red*, is not used on v.
Modifying the Colouring

Consider the *maximal* path from u that alternates between *blue* and *red* edges.

This path does not contain v since it goes $L \rightarrow R$ along *red* edges.
Modifying the Colouring

Swap the colours of the blue and red on the path from u.

Now we can colour e red.

Running Time: $O(m \cdot n)$.
The colour “swapping” along the path takes $O(n)$ time. Done at most once per edge added.
Partially Ordered Sets

A set of items X with a binary relation \preceq is a POSET if:

- **Reflexivity**: For $a \in X$, $a \preceq a$.
- **Antisymmetry**: For $a, b \in X$, ($a \preceq b$ and $b \preceq a$) \Rightarrow $a = b$.
- **Transitivity**: For $a, b, c \in X$ ($a \preceq b$ and $b \preceq c$) \Rightarrow $a \preceq c$.

Write $a \prec b$ for ($a \preceq b$ and $a \neq b$).

Examples
Partially Ordered Sets

A set of items X with a binary relation \preceq is a POSET if:

- **Reflexivity**: For $a \in X$, $a \preceq a$.
- **Antisymmetry**: For $a, b \in X$, $(a \preceq b$ and $b \preceq a) \Rightarrow a = b$.
- **Transitivity**: For $a, b, c \in X$ $(a \preceq b$ and $b \preceq c) \Rightarrow a \preceq c$.

Write $a \prec b$ for $(a \preceq b$ and $a \neq b)$.

Examples

1. The usual order \le on numbers, or the lexicographic order on strings (these are total orderings).
Partially Ordered Sets

A set of items X with a binary relation \preceq is a POSET if:

- **Reflexivity**: For $a \in X$, $a \preceq a$.
- **Antisymmetry**: For $a, b \in X$, $(a \preceq b$ and $b \preceq a) \Rightarrow a = b$.
- **Transitivity**: For $a, b, c \in X$ $(a \preceq b$ and $b \preceq c) \Rightarrow a \preceq c$.

Write $a \prec b$ for $(a \preceq b$ and $a \neq b)$.

Examples

1. The usual order \leq on numbers, or the lexicographic order on strings (these are total orderings).
2. A set of boxes where $a \prec b$ means a fits in b.
Partially Ordered Sets

A set of items X with a binary relation \leq is a POSET if:

- **Reflexivity**: For $a \in X$, $a \leq a$.
- **Antisymmetry**: For $a, b \in X$, $(a \leq b \text{ and } b \leq a) \Rightarrow a = b$.
- **Transitivity**: For $a, b, c \in X$ $(a \leq b \text{ and } b \leq c) \Rightarrow a \leq c$.

Write $a \prec b$ for $(a \leq b \text{ and } a \neq b)$.

Examples

1. The usual order \leq on numbers, or the lexicographic order on strings (these are total orderings).
2. A set of boxes where $a \prec b$ means a fits in b.
3. Let $G = (X; E)$ be a directed, acyclic graph. Say $u \preceq v$ if there is a $u - v$ path.
Partially Ordered Sets

A set of items X with a binary relation \preceq is a POSET if:

- **Reflexivity**: For $a \in X$, $a \preceq a$.
- **Antisymmetry**: For $a, b \in X$, $(a \preceq b$ and $b \preceq a) \Rightarrow a = b$.
- **Transitivity**: For $a, b, c \in X$ $(a \preceq b$ and $b \preceq c) \Rightarrow a \preceq c$.

Write $a \prec b$ for $(a \preceq b$ and $a \neq b)$.

Examples

1. The usual order \leq on numbers, or the lexicographic order on strings (these are total orderings).
2. A set of boxes where $a \prec b$ means a fits in b.
3. Let $G = (X; E)$ be a directed, acyclic graph. Say $u \preceq v$ if there is a $u - v$ path.
4. Let $G = (X; E)$ be a graph with nonzero edge distances. Fix $r \in V$. Say $u \preceq v$ if some shortest $r - v$ path passes through u.
Can view as a directed, acyclic graph. We can omit missing edges inferred by transitivity (a Hasse diagram).
Can view as a directed, acyclic graph. We can omit missing edges inferred by transitivity (a Hasse diagram).

A chain is a set $C \subseteq X$ that can be totally ordered: i.e. every pair $a, b \in C$ has $a \preceq b$ or $b \preceq a$. (e.g. solid black nodes)
Can view as a directed, acyclic graph. We can omit missing edges inferred by transitivity (a Hasse diagram).

A chain is a set $C \subseteq X$ that can be totally ordered: i.e. every pair $a, b \in C$ has $a \preceq b$ or $b \preceq a$. (e.g. solid black nodes)

An antichain is a set $A \subseteq X$ where no two $a, b \in X$ have $a \prec b$ or $b \prec a$. i.e. no two items in A are comparable. (e.g. thick red outline)
Theorem

Longest chain = minimum \# of antichains to cover all nodes.

Figure: longest chain ≡ black nodes.
Theorem

Longest chain = minimum # of antichains to cover all nodes.

Let $\ell[v]$ be the length of the longest chain starting at v (dynamic programming). **Figure**: longest chain \equiv black nodes.
Theorem

Longest chain = minimum # of antichains to cover all nodes.

Let $\ell[v]$ be the length of the longest chain starting at v (dynamic programming). **Figure**: longest chain \equiv black nodes.

Then for all $k \in \mathbb{Z}$, $\{v : \ell[v] = k\}$ is an antichain.
Theorem

Longest chain = minimum # of antichains to cover all nodes.

Let \(\ell[v] \) be the length of the longest chain starting at \(v \) (dynamic programming). **Figure**: longest chain \(\equiv \) black nodes.

Then for all \(k \in \mathbb{Z} \), \(\{ v : \ell[v] = k \} \) is an antichain.

Can compute in \(O(|V| + |E|) \) time.
Theorem (Dilworth’s Theorem)

\[\text{Largest antichain} = \text{minimum \# of chains to cover all nodes.} \]

Figure

Nodes with a red outline form a maximum antichain. The colours filling the nodes partition the nodes into three chains.
Form an auxiliary bipartite graph: a copy of X on each side.

Add edge $u \in L$ to $v \in R$ if $u \prec v$ (but **NOT** $u = v$).

If starting with a Hasse diagram, don’t forget edges implied by transitivity!
Bipartite matching of size $k \equiv$ chain cover of size $n - k$.

Note a singleton node $v \in X$ forms its own chain: this corresponds to no copy of v being matched.

So find a maximum bipartite matching to find minimum \# of chains to cover all nodes.

Running time: $O(n \cdot m)$ where m is the number of $u \prec v$ pairs.
Finally, Maximum Antichains

In the bipartite graph, let C be a min. vertex cover (thick vertices).

Can show minimality of C and transitivity means no $v \in X$ has both copies in C.

Back in the poset, C covers all directed edges and has size $|M|$.

Therefore, $X - C$ (middle nodes in the poset above) is an antichain of size $n - |M| = (\# \text{ of chains in cover})$.
Draw an example of when a claw decomposition is possible. Are there edges between centres of claws? Are there edges between "nails" of the claws?

If G is bipartite, then the set of nodes on one side form centres of claws in a decomposition. Conversely, if there is a claw decomposition then the centres of claws form one side and the "nails" form the other side of a bipartite. So just check if G is bipartite!
Draw an example of when a claw decomposition is possible.
Draw an example of when a claw decomposition is possible.

Are there edges between centres of claws? Are there edges between “nails” of the claws?
Draw an example of when a claw decomposition is possible.

Are there edges between centres of claws? Are there edges between “nails” of the claws?

If G is bipartite, then the set of nodes on one side form centres of claws in a decomposition. Conversely, if there is a claw decomposition then the centres of claws form one side and the “nails” form the other side of a bipartite.
UVa 11396 - Claw Decomposition

Draw an example of when a claw decomposition is possible.

Are there edges between centres of claws? Are there edges between “nails” of the claws?

If G is bipartite, then the set of nodes on one side form centres of claws in a decomposition. Conversely, if there is a claw decomposition then the centres of claws form one side and the “nails” form the other side of a bipartite.

So just check if G is bipartite!
The graph has to be bipartite: \(O(a + b + c) \) check.

In each component, there are only two ways to do it: cows on the left, bulls on the right or vice-versa.

Dynamic programming!

Built this table:

\[
f[i, b] = \text{true} \text{ if it is possible to assign precise } b \text{ bulls to the first } i \text{ components, false otherwise.}
\]

Can fill in \(O((b+c)^2) \) time.
UVa 11331 - Joys of Farming

The graph has to be bipartite: $O(a + b + c)$ check.
UVa 11331 - Joys of Farming

The graph has to be bipartite: $O(a + b + c)$ check.

In each component, there are only two ways to do it: cows on the left, bulls on the right or vice-versa.
The graph has to be bipartite: $O(a + b + c)$ check.

In each component, there are only two ways to do it: cows on the left, bulls on the right or vice-versa.

Dynamic programming!
The graph has to be bipartite: $O(a + b + c)$ check.

In each component, there are only two ways to do it: cows on the left, bulls on the right or vice-versa.

Dynamic programming!

Built this table:
$f[i, b] = \text{true}$ if it is possible to assign precise b bulls to the first i components, false otherwise.

Can fill in $O((b + c)^2)$ time.
A form of Bipartite matching?

Calculate minimum time for person \(p \) to reach endpoint \(e \). If line \(pe \) has endpoints \(e' \) below it, rotate the line to pass through \(e, e' \) and repeat until no endpoints below it.

Now find a bipartite matching minimizing the maximum edge cost.

Binary search!

Running Time

\(O(N^3) \) time to build the graph, \(O(N^3 \cdot \log N) \) to binary search (just search over the \(O(N^2) \) different edge values).

Unnecessary Exercise: Add edges in increasing order until there is a matching. A careful approach can process each edge in \(O(N) \) time.
A form of Bipartite matching?

UVa 10122 - **Mysterious Mountain**

Calculate minimum time for person p to reach endpoint e. If line pe has endpoints e' below it, rotate the line to pass through e, e' and repeat until no endpoints below it. Now find a bipartite matching minimizing the maximum edge cost. Binary search!

Running Time: $O(N^3)$ time to build the graph, $O(N^3 \cdot \log N)$ to binary search (just search over the $O(N^2)$ different edge values).

Unnecessary Exercise: Add edges in increasing order until there is a matching. A careful approach can process each edge in $O(N)$ time.
UVa 10122 - Mysterious Mountain

A form of Bipartite matching?

Calculate minimum time for person p to reach endpoint e. If line pe has endpoints e' below it, rotate the line to pass through e, e' and repeat until no endpoints below it.

Running Time: $O(N^3)$ time to build the graph, $O(N^3 \cdot \log N)$ to binary search (just search over the $O(N^2)$ different edge values).

Unnecessary Exercise: Add edges in increasing order until there is a matching. A careful approach can process each edge in $O(N)$ time.
UVa 10122 - Mysterious Mountain

A form of Bipartite matching?

Calculate minimum time for person p to reach endpoint e. If line pe has endpoints e' below it, rotate the line to pass through e, e' and repeat until no endpoints below it.

Now find a bipartite matching minimizing the maximum edge cost.
UVa 10122 - **Mysterious Mountain**

A form of Bipartite matching?

Calculate minimum time for person p to reach endpoint e. If line pe has endpoints e' below it, rotate the line to pass through e, e' and repeat until no endpoints below it.

Now find a bipartite matching minimizing the maximum edge cost.

Binary search!

Running Time: $O(N^3)$ time to build the graph, $O(N^3 \cdot \log N)$ to binary search (just search over the $O(N^2)$ different edge values).

Unnecessary Exercise: Add edges in increasing order until there is a matching. A careful approach can process each edge in $O(N)$ time.
Again, try seeing a bipartite graph? Does the desired solution relate to any topic we discussed?

Let \(G = (L \cup R; E) \) be a bipartite graph where:

- \(L \equiv \text{rows} \)
- \(R \equiv \text{columns} \)
- \(E \equiv \text{asterisks} \)

Compute a minimum edge colouring in \(O(N^3) \) time.

See also UVa 12668 for a related problem.
Again, try seeing a bipartite graph?
Again, try seeing a bipartite graph?

Does the desired solution relate to any topic we discussed?

Let \(G = (L \cup R; E) \) be a bipartite graph where:

- \(L \equiv \) rows
- \(R \equiv \) columns
- \(E \equiv \) asterisks

Compute a minimum edge colouring in \(O(N^3) \) time.

See also UVa 12668 for a related problem.
Again, try seeing a bipartite graph?

Does the desired solution relate to any topic we discussed?

Let $G = (L \cup R; E)$ be a bipartite graph where:
- $L \equiv$ rows
- $R \equiv$ columns
- $E \equiv$ asterisks

Compute a minimum edge colouring in $O(N^3)$ time.
Again, try seeing a bipartite graph?

Does the desired solution relate to any topic we discussed?

Let $G = (L \cup R; E)$ be a bipartite graph where:

- $L \equiv$ rows
- $R \equiv$ columns
- $E \equiv$ asterisks

Compute a minimum edge colouring in $O(N^3)$ time.

See also UVa 12668 for a related problem.
UVa 11368 - Nested Dolls

This time, think partially ordered set. For dolls with indices i, j, say $i \preceq j$ if doll i fits in doll j. Sequence of dolls can be nested iff they form a chain in this poset. By Dilworth's, we just find the maximum antichain size. But the input is too large for an $O(m^3)$ algorithm! If we sort the dolls in increasing order of width and break ties by descending in height, the heights of an antichain are a nonincreasing sequence. Solution: Compute the longest nonincreasing sequence of heights in this sequence in $O(m \log m)$ time!
UVa 11368 - Nested Dolls

This time, think partially ordered set.
UVa 11368 - **Nested Dolls**

This time, think partially ordered set.

For dolls with indices i, j say $i \prec j$ if doll i fits in doll j.
UVa 11368 - Nested Dolls

This time, think partially ordered set.

For dolls with indices i, j say $i \prec j$ if doll i fits in doll j.

Sequence of dolls can be nested iff they form a chain in this poset. By Dilworth's, we just find the maximum antichain size.
UVa 11368 - **Nested Dolls**

This time, think partially ordered set.

For dolls with indices i, j say $i \prec j$ if doll i fits in doll j.

Sequence of dolls can be nested iff they form a chain in this poset. By Dilworth's, we just find the maximum antichain size.

But the input is too large for an $O(m^3)$ algorithm!
This time, think partially ordered set.

For dolls with indices i, j say $i \prec j$ if doll i fits in doll j.

Sequence of dolls can be nested iff they form a chain in this poset. By Dilworths, we just find the maximum antichain size.

But the input is too large for an $O(m^3)$ algorithm!

If we sort the dolls in increasing order of width and break ties by descending in height, the heights of an antichain are a nonincreasing sequence.
UVa 11368 - Nested Dolls

This time, think partially ordered set.

For dolls with indices i, j say $i \prec j$ if doll i fits in doll j.

Sequence of dolls can be nested iff they form a chain in this poset. By Dilworths, we just find the maximum antichain size.

But the input is too large for an $O(m^3)$ algorithm!

If we sort the dolls in increasing order of width and break ties by descending in height, the heights of an antichain are a nonincreasing sequence.

Solution: Compute the longest nonincreasing sequence of heights in this sequence in $O(m \log m)$ time!