Graph

• Model pairwise relations between objects
 – Objects = “Nodes”
 – Relations = “Edges”

• Examples:
 – Road map
 • Intersections = Nodes
 • Roads = Edges
 – Chess
 • Game board states = Nodes
 • Available moves = Edges
Nodes

• Objects in the graph, related by edges
• Can contain information
• Example: Road map
 – Intersection nodes, number of cars / hr
• Example: Chess
 – Game state nodes, position of all the pieces
Edges

- Can be directed or undirected
- Undirected edges:
 - Drawn as lines
 - Edge from node a to b is same as from b to a
 - No orientation
- Directed edges:
 - Drawn as arrows
 - Edge from node a to b cannot be traversed from b to a
 - Orientation from src to dst
Edges

• Can store information, usually in the form of an edge “weight”.

• Example: Road map
 – Edge weight = length of road from intersection a to intersection b
Graph Representation

• How can we model a collection of pairwise relations in code?
• Edge list: simply list the relations
• Adjacency matrix
• Adjacency list
Edge list

• Simply make a list (or vector) of pairwise relations.

```cpp
struct Edge {
    int a, b;
};

vector<Edge> EdgeList;

// Edge from 0 to 1
Edge e1;
e1.a = 0; e1.b = 1;

// Edge from 1 to 2
Edge e2;
e2.a = 1; e2.b = 2;

EdgeList.push_back(e1);
EdgeList.push_back(e2);
```
Adjacency Matrix

• Make a table. Rows correspond to the source node, columns to the destination node.

• A 1 in row R and column C means that the edge R->C exists.
Adjacency Matrix

• Undirected graph: if a->b exists, so does b->a
 – Therefore, matrix symmetric.

• Weighted graph
 – May replace 1 with the edge weight.

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]
Coordinates are 1-6.
Adjacency Matrix

```c
int Graph[10][10]; // 10 nodes, 0-9

Graph[2][1] = 1; // Create edge 2->1
Graph[3][2] = 1; // Create edge 3->2
```
Adjacency Lists

• Each node stores the edges that extend from that node.

• Example:
 – Node 1 stores:
 • Edge to 5
 • Edge to 1
 • Edge to 2

• For undirected graphs, we need to be careful to add the reverse edges too.
struct Node {
 // Store endpoint of edges from this node
 vector<int> Edges;
};

vector<Node> Graph(10); // 10 nodes, 0-9

// Insert an undirected edge between nodes 0 and 1
Graph[0].Edges.push_back(1); // Edge from 0 to 1
Graph[1].Edges.push_back(0); // Edge from 1 to 0
Special Graphs

• Regular graph: Each node has the same number of neighbours

• Complete graph: Every pair of nodes is joined by an edge; every possible edge exists.

• Connected graph: Always possible to move from a to b for any \{a, b\}.

• Strongly connected graph: Directed path from a to b exists for all \{a, b\}.
Special graphs

- Bipartite graph: Can separate vertices into two groups such that edges only cross between the groups.
Cycle

- A path that leads you back where you started.
- Some graphs contain cycles, others do not.
- Cycle-free graphs are called “acyclic”.
Trees

- Tree: Connected graph with no cycles