Outline

• Tries
• Suffix Arrays
• Knuth-Morris-Pratt Pattern Matching
Tries

Given a dictionary D of strings and a query string s, determine if s is in D.

Using a trie, this can be done in $O(|s|)$ time after some preprocessing that takes $O(T)$ time and space where T is the total size of D.

Example
A trie for dictionary \{rat, rate, rant, at\}.
A trie is simply a tree whose children can be quickly indexed by characters.

Each node also stores a boolean value indicating it is a terminal node (i.e. it represents a string in D). Can store other useful info too.

```cpp
struct TrieNode {
    bool word;
    unordered_map<char, TrieNode> child;
    Trie() : word(false) {}
};

//initializing :)
TrieNode root;
```
Building the Trie

Add each dictionary string, one at a time.

To add a string, just go as far in the Trie with the string as possible and then start creating new nodes.

```cpp
void add_string(TrieNode* root, const string& s) {
    // constructs a new TrieNode if the child didn’t exist
    for (auto c : s) root = &root->child[c];
    root->word = true; // record this string
}
```

```cpp
vector<string> dict;
for (const auto& s : dict) add_string(&root, s);
```

Adding one string s takes $O(s)$ time.
So adding all strings takes $O(T)$ time.
Querying

Given a trie representing a dictionary D and given a string s, is $s \in D$?

```cpp
bool query(TrieNode* root, const string& s) {
    for (auto c : s) {
        auto it = root->child.find(c);
        // no child is indexed by c
        if (it == root->child.end()) return false;
        root = &it->second;
    }
    // done traversing, check that we ended at a terminal
    return root->word;
}
```

Other Query Examples
How many strings in D begin with s? Need to keep an int at each node v storing \# of strings represented below v.
Suffix Arrays

Sort all of the *suffixes* of a string lexicographically.

bananaban

- aban
- an
- anaban
- ananaban
- ban
- bananaban
- n
- naban
- nanaban
Obvious how to do it: $O(n^2 \log n)$ - create all suffixes and sort them.

Can actually get $O(n)$ time!

This is overkill and a bit technical, let’s see an $O(n \log^2 n)$ algorithm.

Suffix Array
An array of indices of the start positions of the suffixes in sorted order.

Example
For string bananaban

```
int sarray[] = {5, 7, 3, 1, 6, 0, 8, 4, 2};
```
Idea: For $i = 0, \ldots, \log_2 n$, sort the suffixes just by their first 2^i characters.

- ananaban
- anaban
- aban
- an
- bananaban
- ban
- nanaban
- naban
- n

Can do in $O(n \log n)$ time (recall we are actually just sorting the indices, not the whole suffixes).
Next, sort the suffixes by their length 2 prefixes.

- aban
- anananaban
- anaban
- an
- bananaban
- ban
- n
- nanaban
- naban
Next, sort the suffixes by their length 4 prefixes.

- aban
- an
- anaban
- ananaban
- ban
- bananaban
- n
- naban
- nanaban

To check if nanaban < naban, just look up the 2nd half of the red parts to see how they were ordered last step.
Generally, to sort the suffixes by their length 2^{i+1} prefixes we check $<$ using the ordering based on length 2^i prefixes.

Check how the first 2^i characters of two suffixes a, b compare using the previous ordering. If they are different then just return that result.

If they are the same, check how the second 2^i characters of a, b compare again using the previous ordering.

Example

nanaban vs. naban. Length-2 prefixes are the same (na), but next 2 characters (na vs. ba) show the answer is $>$.

Sorting based on length 2^i prefixes then takes only $O(n \log n)$ time. Since i ranges up to $\log_2 n$, then overall time is $O(n \log^2 n)$.
Can also quickly compute the longest common prefix between adjacent suffixes in the array.

Example

naban and *nanaban* are adjacent suffixes in the suffix array.

Their common prefix length is 2. This information can easily be construct along with the construction of the suffix array itself.
Knuth-Morris-Pratt

Given a source string s and a pattern string p, does p appear as a substring of a?

More generally, record all positions i such that p appears as a substring of a starting at position i.

Example

$s = \text{findmatchingmatches}$

$p = \text{match}$

Then p appears as a substring of s at indices 4 and 12 (highlighted).
An obvious algorithm is to try all locations of \(s\) and linearly scan to see if \(p\) matches there.

Can take \(\Omega(|s| \cdot |p|)\) time. The Knuth-Morris-Pratt (KMP) algorithm only takes \(O(|s| + |p|)\) time!

Main Idea: For each index \(i\) into \(p\), let \(\pi[i]\) denote the length of the longest proper suffix of \(p_0p_1\ldots p_i\) that is also a prefix of \(p\).

Confusing? Example!

\[p = \text{acabaca}\]

The longest proper suffix of acabac that is also a prefix is ac.

\[\pi_i = \{0, 0, 1, 0, 1, 2, 3\};\]
Slide the pattern p “over” s.

```
acabaca
acacabacabaca
```

Match as many symbols as possible

```
acabaca
acacabacabaca
```

When stuck, slide the pattern to the next partial match.

```
acabaca
acacabacabaca
```

Distance to slide encoded by prefix table π.

Continue matching

 acabaca
acacabacabaca

Found a match, record it! Slide pattern over to the next partial match.

 acabaca
acabacaca
acacabacabaca

Continue matching

 acabaca
acabacaca
acacabacabaca

Another match, record it!
Slide pattern over to next partial match.

\[\text{acabaca} \]
\[\text{acacabacabaca} \]

Quit, the pattern is past the end of the string.

Runs in $O(|s| + |p|)$ time because each step increases the “matched” pointer or slides the pattern over. Each slide takes $O(1)$ time using the π values.
```cpp
void kmp(const string& s, const string& p) {
    vector<int> pi;
    compute_prefix(p, pi); // next two slides :)

    // hit = # matched, i = position of pattern
    int hit = 0, i = 0;

    while (i + p.length() < s.length()) {
        // match as much as possible
        while (hit < p.length() && p[hit] == s[i + hit]) ++hit;

        // record a match
        if (hit == p.length()) cout << "Match:" << i << endl;

        // shift pattern
        i += hit - pi[hit];
        hit = pi[hit];
    }
}
```
How to compute π? Basically the same idea!

$p = \text{acabaca}$

Note, a suffix of $\pi[i]$ that is also a prefix of p comes from a suffix of $\pi[i - 1]$ that is a prefix of p.

acabac: Note a is a suffix of $acaba$ that is also a prefix of p.

Overall idea: slide the pattern over itself!

acabaca

acabaca

When computing $\pi[i]$, if the current “slide” matches then nothing to do (see above).

Otherwise shift pattern over until there is a match.
void compute_prefix(const string& p, vector<int>& pi) {
 pi.resize(p.length());
 pi[0] = 0;

 for (int i = 1, hit = 0; i < p.length(); ++i) {
 while (i < p.length()) {
 while (hit > 0 && p[hit] != p[i]) hit = pi[hit];
 if (p[hit] != p[i]) pi[i] = 0; //hit == 0 here
 else p[i] = ++hit;
 }
 }
}
Missing Topics

- Suffix Trees
- Manachar’s Algorithm: find all maximal palindromes in linear time.

Next Week
Bipartite matching and network flow.

Remember to vote on your preferred extra topics for the weeks following!