References

Chapter 4: Graph (Section 4.2)

Chapter 22: Elementary Graph Algorithms
Unweighted Graphs

Note
Many code snippets here use C++ 11 features. Compile with the flag
`-std=c++11` if using g++.

Throughout, $n = \#\text{ vertices}$, $m = \#\text{ edges}$.
Unweighted Graphs

Note
Many code snippets here use C++ 11 features. Compile with the flag -std=c++11 if using g++.

Throughout, \(n = \# \) vertices, \(m = \# \) edges.

Adjacency List Representation of a Graph

```cpp
// without c++11 you may need to add a space between >>
typedef vector<vector<int>> graph;
...
graph g(n); // create a graph with n vertices
g[u].push_back(v); // add v as a neighbour of u
```

For undirected graphs, just add both directions of an edge \((u, v)\). Requires \(\Theta(n + m) \) space.
Depth-First Search

Find all vertices reachable from vertex v.

```
// the vertices that are reached in the search
vector<bool> reached(n, false);
graph g;

void dfs(int u) {
    if (!reached[u]) {
        reached[u] = true;
        for (auto w : g[u]) dfs(w);
    }
}
...
dfs(v);
```
Depth-First Search

Find all vertices reachable from vertex \(v \).

```c++
// the vertices that are reached in the search
vector<bool> reached(n, false);

graph g;

void dfs(int u) {
    if (!reached[u]) {
        reached[u] = true;
        for (auto w : g[u]) dfs(w);
    }
}
```

If we record the vertex that discovered \(u \), we can reconstruct paths.

Runs in \(O(n + m) \) time.
Depth-First Search

Example from CLRS (page 542, Figure 22.4)
Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

\[v_1 \rightarrow v_2 \rightarrow v_3 \rightarrow v_4 \rightarrow v_5 \rightarrow v_6 \rightarrow v_7 \rightarrow v_8 \]
Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.
Applications of DFS: Topological Sorting

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.

- Begin a DFS. Just before returning from a recursive call (i.e. just after the for loop) push_back the vertex u to the end of a vector.
Applications of DFS: **Topological Sorting**

Order the vertices so all edges point left-to-right.

Impossible to do if there is a cycle. Otherwise, the following works.

- Begin a DFS. Just before returning from a recursive call (i.e. just after the for loop) push_back the vertex u to the end of a vector.
- Repeat, starting with an unvisited vertex each time, until all vertices are visited.
vector<int> order; // initially empty

void topo_sort(int u) {
 if (!reached[u]) {
 reached[u] = true;
 for (auto w : g[u]) topo_sort(w);
 order.push_back(u);
 }
}

...

for (int u = 0; u < n; u++)
 if (!reached[u])
 topo_sort(u);
reverse(order.begin(), order.end()); // #include <algorithm>
If u is ordered after w for some edge (u, w), it must be that the recursive call with w was on the call stack when u was being processed. (Why?)
If u is ordered after w for some edge (u, w), it must be that the recursive call with w was on the call stack when u was being processed. (Why?)

If w is on the call stack when u is being processed, there is a path from w to u. Completing this path with the edge (u, w) yields a cycle.
If \(u \) is ordered after \(w \) for some edge \((u, w)\), it must be that the recursive call with \(w \) was on the call stack when \(u \) was being processed. (Why?)

If \(w \) is on the call stack when \(u \) is being processed, there is a path from \(w \) to \(u \). Completing this path with the edge \((u, w)\) yields a cycle.

Thus

If the graph has no cycles, this will topologically sort all vertices.
Articulation Points & Bridges

An **articulation point** in an undirected, connected graph is a vertex whose removal leaves a disconnected graph.

A **bridge** is an edge whose removal leaves a disconnected graph.
Articulation Points & Bridges

An articulation point in an undirected, connected graph is a vertex whose removal leaves a disconnected graph.

A bridge is an edge whose removal leaves a disconnected graph.

Can find all bridges and articulation points in $O(n + m)$ time via DFS.
A bridge will always be a **tree edge** in a DFS (actually, in any spanning tree).

Picture: no edge of a descendent of u in the search reached a non-descendent. So the parent edge of u is a bridge.
Run a DFS, record the order the vertices were discovered.

Return the **earliest** discovery time of any vertex adjacent to a descendant of \(u \). This indicates if some descendant is adjacent to a non-descendant.

```cpp
vector<int> found(n, -1); // discovery time
int cnt = 0;

int bridges(int u, int p) {
    if (found[u] != -1) return found[u];
    int mn = found[u] = cnt++;
    // record u’s discovery time
    for (auto w : g[u])
        mn = min(mn, bridges(w, u));
    if (mn == found[u] && p != -2)
        // (p, u) is a bridge, process it how you want
        return mn;
    return mn;
}
...
bridges(0, -2); // start the search from any vertex
```
Other DFS Applications

- Find all articulation points in a graph (good exercise).
- Find the strongly connected components of a directed graph.
- Compute pre/post order traversals of a tree.
- Simple code for augmenting a bipartite matching (later lecture).

All of these can be implemented to run in $O(n + m)$ time.
Breadth-First Search

A breadth-first search will explore the vertices in increasing order of their shortest path distance from the start vertex.

- Load up the start vertex in a queue \(q \).
- While \(q \) is not empty, extract the front vertex and add all of its unvisited neighbours to the back of \(q \).
queue<int> q; // #include <queue>
vector<int> prev(n, -1);

q.push(v); // v is the start vertex in the search
prev[v] = -2; // signals "root of search"

while (!q.empty()) {
 int curr = q.front();
 q.pop();
 for (auto succ : g[curr])
 if (prev[succ] == -1) {
 prev[succ] = curr;
 q.push(succ);
 }
}

Now prev[u] for \(u \neq v \) is the vertex prior to \(u \) on a shortest \(v - u \) path.

Also runs in \(O(n + m) \) time.
A thick arrow from u to w indicates $\text{prev}[w] = u$.

The unique path using thick arrows from the start vertex (dark) to any vertex is a shortest path in the graph.
A thick arrow from u to w indicates $\text{prev}[w] = u$.

The unique path using thick arrows from the start vertex (dark) to any vertex is a shortest path in the graph.

Though we illustrated with an undirected graph, the same algorithm also finds shortest paths in directed graphs.
To Come...

Next week
Algorithms for weighted graphs.
• Dijkstra’s algorithm for shortest paths.
• Floyd-Warshall for all-pairs shortest paths.
• Bellmand-Ford: handling negative weight cycles.
• Minimum Spanning Trees: Kruskal’s Algorithm

Later in the course
• Bipartite matching: unweighted and weighted.
• Network flow: max-flow/min-cut.