Problem A

Getting Started

Problem ID: gettingstarted
Time Limit: 1

1. on your marks
2. get set

3. *BANG! *

Input

Input consists of a single line with a single integer between 1 and 3.

Output

Output a single line with the corresponding message from above. For example, if the input is 2 then output
get set

The output is case sensitive and must match the message exactly. Do not include any other characters and
do not add extra spaces to the end of the line.

You must end the line in a newline chracter \n. This is put in by default when using print () in Python,
but you have to explicitly include it when using Java or C++ (end1 works with cout in C++ as well).

Sample Input Sample Output
2 get set
Sample Input Sample Output
3 *BANG ! *

UAPC 2019 - Div II Problem A: Getting Started 1

This page is intentionally left blank.

Problem B

Octal Equivalence
Problem ID: octal2
Time Limit: 1

In some programming languages, integer literals that begin with a 0 are actually octal literals (i.e., base 8).
For example, consider the following C++ code.

if (monthName == "August")
monthValue = 008;
else if (monthName == "December")

monthValue = 012;

This will result in monthValue having the correct value of decimal 8 in the case of August, but the
incorrect value of decimal 10 (because 1 x 8! + 2 x 8 = 10) in the case of December!

We could debate the sensibility of this feature from a language design perspective, but for now, let us just
focus on checking our program for possible errors. Assuming we always mean to express our values in
decimal, do the literals in our program represent the correct values even though the compiler will interpret
them as octal numbers?

If you are unfamiliar with octal numbers, here’s a quick tutorial. The usual decimal numbers are based
on powers of 10. For example, the number 4296 can be written as 4296 = 4000 + 200 4+ 90 + 6 =
4x1034+2x10%249x 10" +6 x 10°. Note the 10 used as the base of the exponents. In other bases, we simply
replace this 10 with the corresponding base. So, in octal, which is base 8, the rightmost digit represents 1s,
the next digit represents 8s, the next digits represents 64s, and so on. Then, a number like 61455 (where the
subscript denotes the base) in octal actually has a value of 61455 = 6 x 8% 4+ 1 x 82 4+ 4 x 8! + 5 x 80 =
6 x512+1x64+4%x8+5x1=23173in decimal.

Note, we only use digits between 0 and 7 in octal notation.

Input

The first line of input contains a single positive integer n < 100, denoting the number of test cases. This is
followed by n lines, each containing one integer in octal notation, which will have at least one leading zero
(0) followed by one or more digits. Each integer will have fewer than 9 digits and will consist only of digits
from O to 7.

Output

For each test case, print equivalent if the octal number, when interpreted as a decimal number, has
the same value. Otherwise, print not equivalent. The output for each test case should be on its own
line.

UAPC 2019 - Div II Problem B: Octal Equivalence 3

Sample Input Sample Output

3 equivalent

007 not equivalent
012 not equivalent
00000012

UAPC 2019 - Div II Problem B: Octal Equivalence

Problem C

Set Your Clocks Properly!
Problem ID: clockadjust
Time Limit: 1

Daylight saving time began last week! Hopefully, you managed to set all your clocks properly without any
problems. Sometimes, it’s not the easiest thing to do...

Some digital clocks only offer three buttons for setting the time. In this problem, we’ll call them S, U,
and D, meaning SET, UP, and DOWN, respectively. The function of the SET button (S) is to cycle the
clock between display-mode (for simply displaying the time), hour-setting-mode (for changing the hour
on the clock), and minute-setting-mode (for changing the minute of the clock). In other words, a clock
that is in display-mode will change to hour-setting-mode after pressing SET once, and then will change to
minute-setting-mode after pressing SET again, and then back to display-mode after pressing SET one more
time. The UP (U) and DOWN (D) buttons don’t do anything in display-mode, but in the other modes they
increment or decrement the hour (in hour-setting-mode) or minute (in minute-setting-mode) by one. Note
this is a simple 12-hour clock with no indication of AM or PM, and no counter for the seconds. The hour can
be any value from 1 to 12 inclusive, and the minute can be any value from 00 to 59 inclusive. Of course, the
UP and DOWN buttons wraparound, so that incrementing or decrementing past the valid range will simply
wraparound to the other side of the range.

Phew! That’s complicated, isn’t it? Since we’re programmers, let’s write a program to help us figure out how
to press these buttons. Given a clock in display-mode, the current time, and a target time, can you output
the sequence that makes the clock display the target time and returns it to display-mode in the fewest button
presses? If there exists more than one such shortest sequence, output the one with the most UP presses.

Input

Input will consist of two lines. The first line will be the currently shown time in the format HH : MM, where
HH is an integer (possibly with a leading zero, 01 < HH < 12) that denotes the current hour, and MM is an
integer (possibly with a leading zero, 00 < MM < 59) that denotes the current minute. The second line gives
the target time in a similar fashion. It is guaranteed that the current time and target time are not identical.

Output

Print on a single line a string consisting of characters S, U, or D, which gives the shortest possible sequence
that will make the clock show the target time and return it to display-mode. Again, if there exists more than
one such shortest sequence, output the one with the most UP presses.

Sample Input Sample Output
02:00 SUSS
03:00

UAPC 2019 - Div II Problem C: Set Your Clocks Properly! 5

Sample Input Sample Output

10:30 SSUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUS
10:00

Sample Input Sample Output

09:14 SUUUUUUSDDDS

03:11

UAPC 2019 - Div II Problem C: Set Your Clocks Properly!

Problem D

Product Inspector
Problem ID: productinspector
Time Limit: 3 seconds

You are given a sequence of slots along a circular conveyor belt, each of which may contain one or more
items to inspect. On the conveyer belt are slots labeled from 1 to L, and at the start of each second, the belt
rotates so that the slot L moves to where slot 1 used to be, and all other slots ¢ move to where slot 7 4 1 used
to be. In other words, if originally the slots are arranged as 123, then after one second, they will be arranged
as 312. After one more second, they will be arranged as 231. After one more second, they will return to the
original 123.

You are assigned to originally stand in front of slot L at ¢ = 0, and to remain there while the belt moves
items for you to inspect. It takes one second for you to inspect any item in front of you. Note that a slot
could contain multiple items, in which case you can only inspect one of the items before the slot moves past
your position. You need to eventually inspect all items! Furthermore, you must inspect items in the given
order. How long does it take to inspect all of the items?

For example, in sample input 2 below, you must first wait 65 seconds for the item in slot 35 to reach you,
and then inspect it during the one second that it is in front of you. Then, you must wait 88 more seconds for
the item in slot 46 to come back around, and then inspect it for one second. Finally, you must wait another
88 seconds for the item in slot 57 to come back around. It will take one final second to inspect this last item,
for a total of 656 + 1 + 88 + 1 + 88 + 1 = 244 seconds.

Input

The first line contains two integers 1 < L < 230 and 1 < n < 10°, the length of the conveyor belt and the
number of products to inspect, respectively. The second line contains n integers a;, where 1 < a; < L.

Output

Output the amount of time it takes to inspect all of the items in the given order. The answer is guaranteed to
be no greater than 23! — 1.

Sample Input Sample Output
10 5 5

10 9 8 7 6

Sample Input Sample Output
100 3 244

35 46 57

UAPC 2019 - Div Il Problem D: Product Inspector 7

Sample Input Sample Output

100 2 200
11

UAPC 2019 - Div Il Problem D: Product Inspector

Problem E

Stadium

Problem ID: stadium
Time Limit; 8

You just won a government contract to build yet another stadium in Edmonton, but the people of Edmonton
have one concern in mind. After an event, thousands of people will leave the stadium at the same time to get
back to the neighborhood in which they live. This might cause traffic jams. As responsible city planners,
surely you would not build this stadium without first doing a proper study on traffic impact, right? Let’s start
by finding out how much traffic could be routed on the most congested road.

You have access to good data and can predict how many people from each neighbourhood would attend a
typical event. There are n neighborhoods in Edmonton. Since people tend to stick to the major roads, we
know that there will be exactly one path between any two neighborhoods. Assume that, after a stadium
event, all attendees leave simultaneously, and they all take the direct route back to their neighborhood.

Consider the example depicted below with 9 neighbourhoods (numbered 1 through 9) where the stadium
is at neighbourhood 5. The number beside each neighbourhood is the number of attendees who live in
that neighbourhood. The underlined number beside each street is then the number of attendees that will
travel down that street when driving from the stadium to their neighbourhood. We see that the road from
neighbourhood 5 to neighbourhood 3 is used by 900 attendees, and no other road is used by more attendees.
So this road has the maximum traffic load after the event.

500 200

Input

The first line of input contains two integers n, s, which denote the number of neighborhoods (2 < n <
60, 000) and the neighbourhood with the stadium (1 < s < n).

Then n lines follow, each describing a neighborhood. These lines start with the neighborhood number
1 <7 < n, followed by ¢;, the number of neighborhoods connected to neighborhood ¢. This is then followed

UAPC 2019 - Div II Problem E: Stadium 9

by a list of ¢; distinct integers (between 1 and n each and all different than 7) denoting the neighborhoods
connected to neighborhood ¢. Finally, each line ends with p;, the number of people in neighbourhood ¢ that
will leave the stadium after the event. You are guaranteed 0 < p; < 30, 000.

For each neighbourhood, you are also guaranteed there is a unique path from the stadium to that neighbour-
hood.

Output

Output on a single line indicating the greatest number of people that could end up on any single road.

Sample Input Sample Output
9 5 900

112 100

2 21 3 200

33245100

41 3 500

5336 7 600

6 1 5 700

7 358 9 300

8 1 7 200

9 1 7 100

Sample Input Sample Output
31 300

122 3 100

2 11 200

311 300

UAPC 2019 - Div II Problem E: Stadium 10

Problem F
Sharing Among Children

Problem ID: sharing

Time Limit: 1 second
The University of Alberta Programmes for Children (UAPC) is a rather unpopular summer camp, contrary
to the predictions made by the university’s most advanced deep reinforcement learning algorithms. This was

overwhelmingly disappointing for the organiser, Ladner. While there was capacity for 50 000 participants,
only 8 people registered for the camp.

Ladner doesn’t let this get him down (too much) and decides to reward the curious minds that did join the
camp with cookies...

... a lot of cookies.

Unfortunately, given his compromised emotional state, he forgot to check if he ordered an appropriate
number of cookies to share evenly among all children. You are here for the free pizza, but in the meantime
could you help him out?

Input

The input consists of a single line “c cookies” where 0 < ¢ < 10197 s an integer counting the number
of cookies Ladner purchased. That is, the integer may have up to 107 digits.

Be careful! Casting this to an integer may be too slow...

Output

Output “Yes ! (without quotes) if he can distribute the c cookies evenly among the children in the UAPC.
Otherwise, output “This camp has been nothing but a failure.”

Sample Input Sample Output

200 cookies Yes!

Sample Input Sample Output

5 cookies This camp has been nothing but a failure.

UAPC 2019 - Div Il Problem F: Sharing Among Children 11

This page is intentionally left blank.

Problem G

Brush Pivot
Problem ID: brush
Time Limit: 3 second

In the land of Uncannily Asymmetric Polygonal Creations (UAPC), Savitch realised that all of the walls of
his house are the same colour. This simply cannot do, so he pulls out his trusty paintbrush from space. His
paintbrush is actually quite famous for its ability to cover a lot of space, and people in UAPC like to call
it PSPACE. Savitch prefers it be called NPSPACE because of how nifty it is, but there doesn’t seem to be
much use in making the distinction—it’s the same thing, after all.

Anyway, some carelessness resulted in the brush being reduced to handlelessness. Instead of fretting over
this, Savitch sees this as an opportunity to improve its space bound. He wants to attach a handle to PSPACE
so that when pivoting about this handle, he can paint the maximum area. In other words, Savitch’s brush is
a two-dimensional polygon that is placed flat on the wall to be painted, and a pivot point is chosen where
the handle will be attached. By rotating the entire brush around this pivot point, some area of the wall will
be covered by the brush. Nifty, isn’t it?

Savitch is a fairly independent guy and already figured out where to put the handle optimally. Given optimal
placement of the handle, how much area can he paint with (N)PSPACE after a single full spin?

Below is an illustration of the first sample input and one possible placement of the handle on the brush/poly-
gon to maximize the resulting painted area if the brush is spun about the handle.

handle
0,1 1,1

spin around the handle
>

BRUSH

BRUSH

0,0 1,0

painted area

Input

The first line contains an integer 3 < p < 1000 denoting the number of vertices on Savitch’s brush.

The next p lines contain two space-separated real numbers —1000 < x;,y; < 1000 indicating that the ith
vertex is at position (x;, y;). The coordinates are given in centimetres.

UAPC 2019 - Div II Problem G: Brush Pivot 13

Output

Output the maximum area (in cm?) that PSPACE can cover, rounded down to exactly five decimal points.

Sample Input Sample Output

6.28319
.00000
.00000
.00000
.00000

.00000
.00000
.00000
.00000

O P P O B
R R O O

Sample Input Sample Output

314.15927
.00000 5.00000
.00000 0.00000
.00000 =5.00000
.00000 0.00000

N O O B

UAPC 2019 - Div II Problem G: Brush Pivot 14

Problem H
Lockpick
Problem ID: lockpick
Time Limit: 3 second

Congratulations! You are the 49992nd student to register for Unlawful Access to Prohibited Containers
(UAPC) summer school! Your prize is a locked box labeled “Proof that P = NP”. This proof is worth
US$1,000,000 and probably also a lot of cryptocurrency!

As a highly skilled programmer you are inherently very lazy so you're dreading having to present the proof
in order to claim your US$1,000,000. Why couldn’t they just put the money in the box??

Anyways, before you can even claim your prize, you need to answer a skill testing question. If you can’t
solve it in polynomial time, then clearly you won’t understand the proof anyway, so Ladner will transfer
you to the University of Alberta Programmes for Children (UAPC) summer camp and give the box to the
49991st student instead. If this is the case then unfortunately you are ineligible to recieve cookies as part of
the summer camp because the registration deadline has already passed.

The lock on the box has n pins. All pins start in the 0 position, and when you “set” a pin, it goes to the 1
position. For the lock to open, all pins must be in the 1 position. Additionally, because you don’t have the
key, you need to set the pins in the correct order.

The fun of it is that you don’t know what order to set the pins in, so you’ll have to keep trying different
orders until you find the correct one. If at any point you set a pin out of order, the lock will jam and you’ll
have to shake it vigorously to reset all the pins back to the 0 position before you can try again.

Your skill testing question is this: given n, what is the expected number of times that the lock will jam
before you get it open, assuming you remember your past mistakes?

Explanation for First Sample:
You have a 50/50 chance of setting the correct pin at the start. If you do, then you will, of course, set the
second pin correctly and open the box.

If you do not, the lock jams and you have to restart. But when you restart, you at least remember which pin
should not be set first. So you start by setting the other pin, and then open the box by setting the last pin.

With probability 0.5 there are no jams. With probability 0.5 there is one jam. So the expected number of
jamsis 0.5-0+0.5-1=0.5.

Input

A single integer n, where 1 < n < 10000.

Output

Print the expected number of times that a lock with n pins will jam before you can open it, specified to
exactly one decimal point.

UAPC 2019 - Div II Problem H: Lockpick 15

Sample Input

Sample Output

2

0.5

Sample Input

Sample Output

5

5.0

UAPC 2019 - Div II Problem H: Lockpick

16

Problem |
Ugh! Albert is a Picky Child

Problem ID: pickychild
Time Limit: 3 second

It looks like somehow you’ve been entrusted with taking care of four-year old Albert for a few hours. At
first, it seemed like a daunting task, but then you remembered what you did to pass the time at that age:
looking at long lists of integers! You figure that babysitting will be easy if you can simply print out a list of
consecutive integers and let Albert stare at it.

Unfortunately, you have just been told that Albert is a somewhat picky child. He only likes integers that
have a repeated digit in two consecutive positions. What a strange child! For example, Albert likes the
integers 33, 77777, and 12344, as there exist consecutive 3s, 7s, and 4s, respectively. Albert does not like
the integers 8 or 49494.

You could print out the integers from some m to some n inclusive, but would it be worth your time? How
many integers would Albert even like? Perhaps you can write a program to help answer this question.

Input

Input consists of one line containing two integers m and n with 1 < m < n < 100, 000, indicating that you
will print all integers from m to n inclusive (i.e., m, m + 1, ... , n).

Output

Output the number of integers that Albert would like in the specified range.

Sample Input Sample Output
10 23 2
Sample Input Sample Output
999 999 1

UAPC 2019 - Div II Problem I: Ugh! Albert is a Picky Child 17

This page is intentionally left blank.

Problem J

RSA Mistake
Problem ID: rsamistake

Time Limit: 5

An RSA number 7 is a composite number that is the product of two distinct odd prime numbers p, g. Such
numbers are used in the RSA public key cryptosystem.

Johnny is working on his crytography assignment and needs to trace the execution of the algorithm that
performs secure encryption. He generates two distinct odd prime numbers p, ¢ and multiplies them to form
a number n and proceeds to finish the rest of his assignment.

Unfortunately, Johnny may have made a mistake. He is worried he formed n incorrectly: that he multi-
plied one of the primes into n twice. Johnny also forgot the original primes! Since factoring integers is
challenging, Johnny needs your help.

Input

Input consists of a single integer 15 < n < 254, You are guaranteed that n is either of the form p - ¢ or p? - ¢
where p and ¢ are distinct odd primes.

Output

If n = p - ¢ for distinct odd primes p, ¢, output a single line with the message RSA OK. Otherwise, if
n = p? - ¢ for distinct odd primes p, ¢, output a single line with the message RSA MISTAKE.

The output for the last example is RSA MISTAKE because n = p? - ¢ where p = 2642239 and ¢ =
2642257.

Sample Input Sample Output
33 RSA OK
Sample Input Sample Output
63 RSA MISTAKE
Sample Input Sample Output
18446724184027494097 RSA MISTAKE

UAPC 2019 - Div II Problem J: RSA Mistake 19

This page is intentionally left blank.

