
Problem A
Storing a Mattress
Problem ID: mattress

Time Limit: 3 seconds

You are moving and want your mattress to be stored nicely in a box for the move. Does it fit?

The height of the box is exactly the height of the mattress and does not factor into this problem. Given the
lengths and widths of the box and mattress, can you fit the mattress in the box? You are allowed to rotate
the mattress (i.e. exchange the width and length).

box
mattress

doesn’t fit this way (barely) fits after rotation

Input

Input consists of a single line containing four integers wb, `b, wm, `m in that order. Here, wb and `b are the
width and length of the box; wm and `m are the width and length of the mattress. There will be a single
space separating each of these integers. Each integer lies between 1 and 100 (yes, the mattress might have
strange dimensions).

Output

Output a single line containing a single string yes or no, indicating if the mattress can fit in the box, perhaps
after rotating it.

Tip
Do not output any prompt like enter the mattress dimension. This will be regarded as output
and will not be accepted by the judging platform. When we say all integers will appear on a single line, we
mean it. So do not write code that expects them to be on separate lines.

The output is case sensitive: notice all output in this question should be lowercase. Do not add extra spaces.

UAPC 2018 Problem A: Storing a Mattress 1



Finally, you should end the output line with a newline. This is done by default in Python using print(),
but may need to be made done explicitly in other languages. You can print the single character ’\n’ in
C++ or Java to end the line with a newline. Of course, test before you submit!

Sample Input Sample Output

2 10 2 10 yes

Sample Input Sample Output

2 10 10 2 yes

Sample Input Sample Output

2 10 5 2 yes

Sample Input Sample Output

2 10 5 4 no

UAPC 2018 Problem A: Storing a Mattress 2



Problem B
Hot Potato

Problem ID: potato
Time Limit: 3 seconds

Some children are playing Hot Potato. They are arranged a circle. The child that is initially holding the
potato is numbered 0 and the remaining children are numbered 1 through n− 1 as you go clockwise around
the circle from 0.

They take turns passing the potato around the circle. Each child can pass the potato either to the child on
their left or the child on their right.

Given a sequence of left/right passes, output which child ended up holding the potato.

Input

Input consists of a single line containing an integer n and a string s consisting only of characters L (pass
to the left) and R (pass to the right). Here, 2 ≤ n ≤ 100 is the number of children and the string is the
sequence of passes made by the children. The length of s is between 1 and 1000.

There will be exactly one space between n and the start of s.

For example, if n = 5 and s = RRLLL the potato will pass through the following sequence of children

0
R−→ 4

R−→ 3
L−→ 4

L−→ 0
L−→ 1.

Output

Output consists of a single line with a single integer between 0 and n − 1 indicating which child ended up
with the potato.

Sample Input Sample Output

5 RRLLL 1

Sample Input Sample Output

2 LRRRR 1

Sample Input Sample Output

7 LRRLRRLRLLLLLLLLLRRL 6

UAPC 2018 Problem B: Hot Potato 3



This page is intentionally left blank.



Problem C
I Hate Stairs!

Problem ID: stairs
Time Limit: 3 seconds

Have I ever mentioned that I hate stairs? Well, just going up them. Going down a flight of stairs does not
bother me.

I work in a strange building. There are n rooms that are arranged in a circle and are numbered from 0 to
n − 1 in clockwise order. I am in room 0 and I have to go to a meeting in room m (some room number
between 0 and n − 1). So I can travel either clockwise from 0 until I reach m or counter-clockwise from 0
until I reach m.

The rooms are all at integer heights and adjacent rooms on the circle are connected by stairs. The number
of stairs connecting two rooms is the difference in their height and, obviously, ascend from the lower room
to the higher room. Help me determine the minimum number of stairs I must ascend to reach room m.

For example, if there are 7 rooms with heights

4, 5,−1, 3, 2, 2, 7

and the meeting is in room number 3 (which also has height three), then there are two ways I can reach room
3 from room number 0. The clockwise direction has me traverse rooms with heights:

4 −→ 5 −→ −1 −→ 3.

I climb 5 steps in total (1 for the 4→ 5 transition and 4 from the −1→ 3 transition). Note some rooms can
be underground and have negative height.

If I travel counterclockwise, then I traverse rooms with heights:

4→ 7→ 2→ 2→ 3

Here I only climb 4 steps in total (3 for the 4→ 7 transition and 1 for the 2→ 3 transition).

Input

The first line of input contains two integers n (the number of rooms) and m (the location of the meeting)
You are guaranteed 3 ≤ n ≤ 1000 and 0 ≤ m < n.

The second line of input contains n space-separated integers indicating the heights of the rooms (relative to
the ground), starting from room 0. Each integer lies between −106 and 106.

Output

Output consists of a single line with a single integer indicating the minimum number of stairs that must be
ascended when going from room 0 to room m.

UAPC 2018 Problem C: I Hate Stairs! 5



Sample Input Sample Output

7 3
4 5 -1 3 2 2 7

4

Sample Input Sample Output

8 4
2 8 4 6 3 -1 3 -1

8

Sample Input Sample Output

6 0
5 2 1 7 -2 10

0

UAPC 2018 Problem C: I Hate Stairs! 6



Problem D
Bin Packing

Problem ID: bins
Time Limit: 3 seconds

Your job at the bin packing plant is to pack bins with items. The items come in various sizes, but all bins are
identical: each can hold items with total size at most B.

To reduce shipping costs, you want to pack the items into the fewest bins possible. Unfortunately, this is a
very hard problem: we do not know of an efficient algorithm to solve this problem!

So we resort to heuristics. Suppose the available bins are numbered 1, 2, 3, . . . (you have more than enough
bins). A popular heuristic is to pack the items in order from largest item to smallest item. For each item you
consider, pack the item in the bin with the lowest number among all bins that can still hold the item (i.e.
adding the item to the bin will still have the total size of items in the bin being at most B).

For example, if the items have size 7, 6, 2, 2, 2, 1 and each bin can hold a total size of B = 10, then:

• The item with size 7 goes in bin 1

• The item with size 6 goes in bin 2 (it can’t fit in bin 1).

• The item with size 2 goes in bin 1.

• The next item with size 2 goes in bin 2 (bin 1 is holding a total size of 9 by now so it cannot accom-
modate this item).

• The last item with size 2 goes in bin 2.

• Finally, the item of size 1 can fit in bin 1.

In this case, all bins are packed perfectly. In general, though, this algorithm does not always use the mini-
mum number of bins (see the second sample).

Your job is to simulate the algorithm and report how many bins are used.

Input

The first line of input consists of two integers n,B. Here 1 ≤ n ≤ 1000 and 1 ≤ B ≤ 1000.

The second line consists of n integers indicating the size of the n items you must pack, each between 1 and
B. A single space will separate consecutive integers on each line.

Output

Output a single line containing a single integer. This will be the number of bins used by the algorithm
described above.

UAPC 2018 Problem D: Bin Packing 7



Sample Input Sample Output

6 10
2 1 2 6 2 7

2

Sample Input Sample Output

7 10
5 4 3 2 2 2 2

3

UAPC 2018 Problem D: Bin Packing 8



Problem E
Continued Fractions

Problem ID: continuedfractions
Time Limit: 3 seconds

Continued fractions are very cool! A continued fraction has the following form:

a0 +
1

a1 +
1

a2 +
1

a3 + ...

where each ai is an integer and ai > 0 for i ≥ 1 (the ... may or may not terminate). Every rational number
has a continued fraction representation with a finite number of terms.

In fact, many irrational numbers, which are well-known to have non-terminating and seemingly random
decimal representations, can be expressed very nicely as continued fractions. For example, the square root
of 2 can be expressed as

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 +
1

2 +
1

2 + ...

Even more cool is the tie between continued fractions and Pell’s equation, in which we search for integer
pairs (x, y) that satisfy

x2 − ny2 = 1

To solve the case n = 2, we can consider the series of convergents of the continued fraction for
√
n, formed

by truncating the continued fraction at each point, and then simplifying to the form p/q.

• 1 + 1
2 = [1; 2] = 3

2 ; 32 − 2 · 22 = 1

• 1 + 1
2+ 1

2

= [1; 2, 2] = 7
5 ; 72 − 2 · 52 = −1

• 1 + 1
2+ 1

2+1
2

= [1; 2, 2, 2] = 17
12 ; 172 − 2 · 122 = 1

We see that the convergents 3
2 and 17

12 yield the solutions (3, 2) and (17, 12). It turns out we can generate an
infinite number of solutions in this way. Note that in the above examples we also introduce a more compact

UAPC 2018 Problem E: Continued Fractions 9



notation for writing continued fractions involving square brackets. See the Output section for more details
on this format.

All of this is very cool indeed, but let’s keep things simple for this problem. Given a rational number, can
you output the continued fraction representation?

Input

The input consists of a single line, containing two integers p, q, where 1 ≤ q < 264 and 1 < p < 264. This
represents the rational number p/q.

Output

Output consists of a single line that gives the continued fraction representation in the following format:

• The first integer in the list is the whole number part of p/q. This is followed by a semicolon, if
necessary (i.e. p/q is not an integer).

• The next integers represent the values that appear in successive denominators of the continued frac-
tion. These numbers are separated by commas.

• The entire list is enclosed in square brackets

• There are no spaces in the list.

See the problem description and sample input/output for examples of this format. To be clear, the last
number in the list should never be followed by a comma.

Note that we follow the convention that the final integer in the list should never be 1 for rational numbers,
since a list ending in ...n, 1] could instead be written as ...(n+ 1)], since n+ 1

1 = n+ 1.

Sample Input Sample Output

333 106 [3;7,15]

Sample Input Sample Output

18 9 [2]

Sample Input Sample Output

5 12 [0;2,2,2]

UAPC 2018 Problem E: Continued Fractions 10



Problem F
Recording Shows

Problem ID: pvr
Time Limit: 5 seconds

There are too many interesting TV shows these days! Your New Year’s resolution is to watch them all,
eventually.

However, you are stuck in the early 2000s and have not yet signed up for any streaming service. What you
do have is a lot of PVRs (personal video recorders), devices that can record shows even when you are not
watching them.

Each PVR is capable of recording one show at a time. Each show that is recorded has to be recorded
continuously on a single PVR - you cannot change which device is recording a show midway through the
show. However, once a PVR has stopped recording one show it can then record another.

You have listed all of the shows you want to record over the next few months, specified precisely by their
start and end time in seconds from the start of this new year. What is the minimum number of PVRs required
to ensure every show gets recorded?

Note that a PVR is not able to instantly switch from one show to the next. It takes one second to do this. So
if it stops recording a show that ends at second t then any other show it records must start at second t+1 or
greater.

Input

The first line of input is a single integer n indicating the number of shows you want to watch. Then n lines
follow where the ith such line contains two integers si, ti indicating the start and end times of a show.

Bounds: 1 ≤ n ≤ 100, 000 and 0 ≤ si < ti ≤ 31, 536, 000.

Output

Output consists of a single integer b that is the minimum number of PVRs required to ensure all shows are
recorded.

Sample Input Sample Output

4
0 5
2 10
8 14
11 14

2

UAPC 2018 Problem F: Recording Shows 11



Sample Input Sample Output

2
0 1
1 2

2

Sample Input Sample Output

7
0 1
2 3
4 5
6 7
0 3
4 7
0 7

3

UAPC 2018 Problem F: Recording Shows 12



Problem G
Bob’s Burgers
Problem ID: bob

Time Limit: 3 seconds

Bob is taking his friends and family to a camp out and barbeque. Unfortunately for Bob, the weather station
is forecasting heavy rain on the day of their planned barbeque. Bob already spent all his money on food and
can’t afford to buy rain protection for the barbeque. So, Bob plans to get the biggest sheet of waterproof
fabric he can find and to hoist a tent with a triangular cross section over his barbeque.

Bob will build a rectangular grill under the tent and fill it up completely with wood. The more wood he can
burn, the faster the food will cook. Wood will not be stacked higher than the grill, and the grill will be flat
on top (you don’t want burning wood rolling off the grill and into the tent). In addition, Bob can’t build the
grill up to touch the tent or the tent will burn! The rule of thumb is you must leave space above the grill
equal to height of the grill to prevent anything from burning. Help Bob figure out how fast he can cook his
food.

Below is the a sketch of a cross-section of the tent in a valid solution. Notice that the height between the top
corners of the grill and the point of the tent directly above the corners is equal to the height of the grill itself.
Your goal is to create a tent from the a rectangular sheet of fabric of a given size, in order to maximize the
total volume of the grill underneath the tent.

wood

fabric

UAPC 2018 Problem G: Bob’s Burgers 13



Input

Input consists of a single line containing two integers L,W representing the side lengths of the rectangular
sheet of fabric, in mm. These will be separated by a single space. Note both L and W will lie between 1
and 109.

Output

Output the maximum volume of wood that Bob can burn in his tent in mm3. This should be output with
precisely six decimal places of precision even if the answer is an integer. You should consider the actual
grilling surface on top of the grill to have height 0 (it is a very flat cast-iron grill so we can disregard its
height).

Hint: You may consult the language reference for your preferred programming language to see how to print
a particular number of decimal places in fixed-point format.

Sample Input Sample Output

100 100 31250.000000

Sample Input Sample Output

3 11 11.343750

UAPC 2018 Problem G: Bob’s Burgers 14



Problem H
Emma

Problem ID: emma
Time Limit: 5 seconds

I hate stairs! So let’s make them interesting. Suppose I can climb stairs by stepping up either one or two
steps at a time. How many different ways are there to reach the top?

Well, this might be a bit on the easy side so let’s make it even more interesting. Some steps are broken: I
cannot step on them for fear of falling through. Some steps are essential! For some reason, I have to step on
them.

There are n steps, numbered 1 through n. My goal is to end up exactly on step n and I start just below the
first step (one could think of this as step 0).

The picture below depicts the first sample input. There are precisely two possible ways to get to the top.
Notice both ways ignore step 4 as it is broken, and both ways use step 1 as it is required.

1

2

3

4

5

1

2

3

4

5

Input

The first line of input contains three space-separated integers n, b,m, denoting the total number of steps, the
total number of broken steps, and the total number of essential steps, respectively. The second line contains b
distinct space-separated integers indicating broken steps. The third line contains m distinct space-separated
integers indicating which steps are essential. Each step on these last two lines is represented by an integer
between 1 and n.

Bounds: 1 ≤ n ≤ 20, 000, and 1 ≤ b ≤ n, 1 ≤ m ≤ n.

Output

Let k denote the number of ways to climb these n steps where each essential step is stepped on yet no broken
step is stepped on. The output should consist of a single line with the value k mod 1, 000, 000, 007.

As a special case, if there is no way to reach the top (i.e. k is 0 before reducing mod (109 + 7)) then you
should instead output Impossible on a single line.

UAPC 2018 Problem H: Emma 15



Sample Input Sample Output

5 1 1
4
1

2

Sample Input Sample Output

10 1 1
5
5

Impossible

Sample Input Sample Output

10 5 3
1 3 5 7 9
2 4 6

1

UAPC 2018 Problem H: Emma 16



Problem I
A Friend of My Friend

Problem ID: rc
Time Limit: 10 seconds

Consider a group of people numbered from 1 to n. Think of these values as ranking the people some way.
Then say the people are hierarchically well-connected if the following holds.

Consider any three people, let’s call them A, B, C. If person A is friends with both persons B and C and
both A < B and A < C, then B is also friends with C.

Input

The first line of input contains a single integer 1 ≤ T ≤ 20 indicating the number of groups of people to
process (i.e. the number of test cases).

Each test case begins with a line containing two integers n and m. Here, 1 ≤ n ≤ 100, 000 and 0 ≤ m ≤
200, 000. This means there are n people in the group and m pairs of them are friends.

Following this are m lines, each containing two integers 1 ≤ i, j ≤ n indicating person i and person j are
friends.

You are guaranteed no pair of friends is specified more than once in the input and that i 6= j for every pair.
On every line, the integers are separated by a single space.

Finally, the total number of people over all test cases is at most 300, 000 and the total number of pairs of
friends that are specified over all test cases is at most 600, 000.

Output

For each group, output a single line with YES if the group is hierarchically well-connected and output NO
otherwise.

Sample Input Sample Output

2
5 4
1 2
2 5
1 5
3 4
3 2
1 2
1 3

YES
NO

UAPC 2018 Problem I: A Friend of My Friend 17



This page is intentionally left blank.



Problem J
Modern Art

Problem ID: modernart
Time Limit: 3 seconds

An artist has been commissioned to create some modern art, so she comes up with the following inspired
design. Start with a circular base with radius R centred at the origin, and a rod of length L that lies perfectly
tangent to some point on the top half of the circle at its left endpoint. Then, affix an elastic between the
point (R, 0) and the other endpoint of the rod. The circular base is rotated such that the elastic is perfectly
vertical. Finally, the area bounded by the rod, the elastic, and the circular base is painted, as shown in the
image on the left below.

However, she has enlisted your help as a programmer because she has a problem: she does not have the exact
amount of paint needed to cover the area! Of course, she needs enough paint to cover the area, but she also
does not want to waste any paint by having less area than can be covered by her supply. Her compromise is
to allow a rotation of the entire structure so that the painted area changes. She will only tolerate clockwise
rotations, and the right endpoint of the rod must remain above the x-axis. Your task is to help her determine
an angle of rotation such that the enclosed area can be covered exactly by the supplied paint, if possible.
The image on the right below shows the resulting design after a legal rotation by angle θ.

Note that one end of the elastic is affixed to the exact point (R, 0) even after rotation, and it does not move
with the base. Furthermore, the elastic always retains tension irrespective of rotation, and never falls slack.

R

L

ROD

ELASTIC
(initially vertical)

θ

ROD

ELASTIC

Input

The input consists of a single line, containing three numbers R,L,A, where 0.0 < R ≤ 100.0, R < L ≤
10000.0, and A > 0.0. These denote the radius of the circular base in cm, the length of the tangential rod
in cm, and the area that the artist can cover with the current paint supply in cm2.

UAPC 2018 Problem J: Modern Art 19



Output

Output consists of a single value, giving the angle θ, in rad, by which the artist should rotate the circular
base clockwise, subject to the aforementioned constraints, so that she can perfectly cover the desired area
with the paint supply that she has.

If multiple angles of rotation can satisfy this condition, output the smallest. If no rotation under the con-
straints can satisfy this condition, simply output impossible (with no punctuation).

Your answer will be considered correct if it is within a relative or absolute error of 10−6.

Sample Input Sample Output

10.0 27.0 111.578533738495551 0.8

Sample Input Sample Output

1.0 1.0 0.2 0.2532742561

Sample Input Sample Output

1.0 1.0 0.05 impossible

UAPC 2018 Problem J: Modern Art 20



Problem K
Rectangle Coverage

Problem ID: rectarea
Time Limit: 10 seconds

It is time for more geometry!

You know that the area of a rectangle with side lengths w and h is w · h. Computing the area of the
intersection of two rectangles is slightly more annoying, but not so bad: their intersection (if not empty)
forms a rectangle and this can be easily computed too.

But what about the area of the union of two rectangles. More annoyingly, what about the area of the union
of many rectangles!

This is what you have to compute in this problem. But we’ll make it slightly easier: the top edge of each
rectangle lies no lower than the x axis and the bottom edge of each rectangle lies no higher than the x axis.

The picture depicts the second example below. The dashed line is the x-axis. The solid image below
indicates the total area that has to be calculated for this problem.

Input

The first line of input consists of a single integer 1 ≤ n ≤ 105 indicating the number of rectangles.
Then n lines follow, each describing a rectangle. Each rectangle is given by four space-separated integers
x1, y1, x2, y2 where:

UAPC 2018 Problem K: Rectangle Coverage 21



• −109 ≤ x1 < x2 ≤ 109

• −109 ≤ y1 < 0 < y2 ≤ 109

This means the bottom-left corner of the rectangle is at (x1, y1) and the top-right corner of the rectangle is
at (x2, y2).

Output

Output consists of a single line with a single integer indicating the total are covered by at least one rectan-
gle.

Sample Input Sample Output

2
-1 -1 1 2
-1 -1 2 1

8

Sample Input Sample Output

4
-10 -1 10 1
-9 -2 -2 3
-8 -5 1 2
9 -3 12 5

116

UAPC 2018 Problem K: Rectangle Coverage 22



Problem L
Generating Minimum Rotations

Problem ID: genmin
Time Limit: 10 seconds

A cyclic rotation of the string s0s1 . . . sk−1 is a string we can obtain by repeatedly moving the leftmost
character to the right of the string.

For example, the cyclic rotations of BCAB are

BCAB, CABB, ABBC, BBCA

For another example, the cyclic rotations of ABCABC are simply

ABCABC, BCABCA, CABCAB

Say that a string is canonical if it is lexicographically smallest among all of its cyclic rotations.

So ABBC and ABCABC are canonical wherease BCAA and CABCAB are not canonical.

Your task is the following. Given two integers n and k you should print all canonical strings of length
exactly k that use the first n uppercase characters of the alphabet (i.e. the first n characters among A, B, C,
etc.)

Input

The input consists of a single line containing the two integers n, k. Here, 1 ≤ n ≤ 26 and 1 ≤ k ≤ 104.

Output

Output consists of all length-k canonical strings using the first n letters of the alphabet (A through Z). These
should be printed in lexicographic order.

Note, you are also guaranteed in that the total number of characters of all canonical strings will not exceed
107 for any given test case.

Sample Input Sample Output

2 2 AA
AB
BB

UAPC 2018 Problem L: Generating Minimum Rotations 23



Sample Input Sample Output

3 4 AAAA
AAAB
AAAC
AABB
AABC
AACB
AACC
ABAB
ABAC
ABBB
ABBC
ABCB
ABCC
ACAC
ACBB
ACBC
ACCB
ACCC
BBBB
BBBC
BBCC
BCBC
BCCC
CCCC

UAPC 2018 Problem L: Generating Minimum Rotations 24


