
Problem A
Stacking Containers

Problem ID: stacking
Time Limit: 10 seconds

A cargo ship typically organizes its cargo into stacks of shipping containers. You operate a crane that lifts
shipping containers. These days, the process is mostly automated so all you have to do is give the location
of the container you want to pick up and the location where you want it dropped off.

Today is bring your kid to work day! You bring your kid into the “crane control centre” and then step out to
grab a cup of coffee. While you were gone, your kid took the liberty of entering some instructions!

You will be given an r× c grid of numbers indicating the initial placement of the containers (the deck of the
ship is divided into r× c grid cells for placing the containers). The numbers in this grid indicate the number
of containers stacked at the corresponding location.

You are then given a sequence of instructions of the form r1 c1 r2 c2 meaning an instruction was entered to
move a container at the top of the stack at location (r1, c1) to the top of the stack at location (r2, c2). If there
was no container at (r1, c1), this instruction does nothing.

Output the final arrangement of containers!

Input

Input begins with a line containing three integers r, c, d. Here, 1 ≤ r, c ≤ 100 is the number of rows and
columns in the grid and 0 ≤ d ≤ 1000 is the number of instructions that were entered.

The next r lines contain c integers, each between 0 and 10. The i’th integer on the j’th row indicates
the number of containers initially stacked at location (j, i) (all coordinates are given where the first value
indicates the row and the second indicates the column).

Finally, d lines follow where each contains four integers r1, c1, r2, c2 meaning a container at location (r1, c1)
was moved to location (r2, c2). Again, if there was no container at (r1, c1) when the instruction was entered
then this does nothing.

You are guaranteed these are valid coordinates, i.e. 1 ≤ r1, r2 ≤ r and 1 ≤ c1, c2 ≤ c. The computer
receiving the instructions already did the error checking for you and only recorded the valid instructions
entered by your child.

Output

Output consists of r lines containing c integers each describing the final configuration of shipping containers.
Consecutive integers on the same line should be separated by a single space and there should be no trailing
space after the last integer on each line.

Tip: from the terminal in either Linux or Mac, you can check if there are trailing spaces by piping output to
cat -vet.

For example, with a compiled c++ program named stacking the following command will feed the pro-
gram input from inputfile.dat and pipe the output to the cat utility, which will display the output

UAPC 2017 - Div I Problem A: Stacking Containers 1

with a $. This will let you see if there is a trailing space or not.

./stacking < inputfile.dat | cat -vet

Sample Input Sample Output

2 5 1
1 0 0 0 0
0 0 0 0 0
1 1 2 5

0 0 0 0 0
0 0 0 0 1

Sample Input Sample Output

4 4 7
3 0 2 1
4 5 3 0
0 0 0 0
5 4 10 1
1 1 1 1
1 2 3 4
3 3 1 2
1 2 3 3
1 4 1 3
1 4 1 3
4 2 4 3

3 0 3 0
4 5 3 0
0 0 0 0
5 3 11 1

UAPC 2017 - Div I Problem A: Stacking Containers 2

Problem B
Binary Patterns

Problem ID: patternstring
Time Limit: 3 seconds

In the binary string 0010110, the number of times each “pattern” 00, 01, 10, or 11 appears, respectively,
is 1, 2, 2, 1.

You are to reverse engineer this process. Given the counts of these four patterns, determine if there is a
binary string with these counts.

If there is, output the lexicographically least string (i.e. represenging the minimum binary number) having
these counts. For example, 0101100 is also a binary string with the pattern counts 1, 2, 2, 1, but you should
output 0010110 in this case because it is lexicographically smaller.

Input

Input consists of a single line with four space-separated integers. These indicate the number of times the
respective patterns 00, 01, 10, 11 appear in the binary string. Each number will be between 0 and 100 and
at least one will be nonzero.

Output

Output consists of a single line. If there is no such binary string, simply output impossible. Otherwise,
output the lexicographically smallest binary string with the given pattern counts.

Sample Input Sample Output

1 2 2 1 0010110

Sample Input Sample Output

0 2 0 1 impossible

Sample Input Sample Output

1 0 0 0 00

UAPC 2017 - Div I Problem B: Binary Patterns 3

This page is intentionally left blank.

Problem C
Big Sums

Problem ID: bigsums
Time Limit: 3 seconds

An early CMPUT 272 assignment might ask you to determine the “closed form” expression of

a0 + a1 + . . .+ an.

As you probably know, the answer is an+1−1
a−1 if a 6= 1. If a = 1, the answer is, of course, n+ 1.

Well, this is a programming contest and we need actual numbers. Given integers a ≥ 1, n ≥ 0, output the
answer. The answer can be quite big, so we just want you to output it modulo some given value m.

Input

Input consists of a single line containing three integers a, n,m. Here, 1 ≤ a < 264, 0 ≤ n < 264, and
1 ≤ m < 232.

Output

Output should consist of a single line consisting of a single integer x where x is the remainder of a0 + a1 +
. . .+ an upon division by m.

Sample Input Sample Output

2 5 100 63

Sample Input Sample Output

2 5 63 0

Sample Input Sample Output

3 3 100 40

UAPC 2017 - Div I Problem C: Big Sums 5

This page is intentionally left blank.

Problem D
Link the Mountaineer
Problem ID: mountaineer
Time Limit: 3 seconds

Wake up, sleepyhead! As usual, Link has been sleeping while the land of Hyrule has crumbled around him.
It’s time to go on another adventure to save the realm! This time, the evil Ganondorf has settled at the top
of a very tall mountain. Link has found what seems to be the easiest route to the top. Various ledges are
located at various heights along this route.

Link can climb steadily up the mountain for a while, but he must stop from time to time on a ledge to regain
his stamina. In particular, for some values r, s, Link can climb steadily for up to s seconds. If he stops to
rest, he rests for exactly r seconds (no matter how much time he spent climbing since his last rest), which
completely refills his stamina.

Link is an excellent climber, so he can climb precisely one meter every second! Also, if he reaches a ledge
at the very instant his stamina runs out (i.e. precisely s seconds after the end of his last rest) then he is able
to rest on that ledge. Once Link starts climbing the mountain, he needs to reach the top within T seconds of
the start of his climb or else Ganondorf will notice his ascent and create an avalanche!

Thankfully, Link can start the ascent whenever he pleases. He can spend time doing side activities like
finding lost chickens, bombchu bowling, or being a human cannonball in order to raise his stamina.

For given values r and T , what is the minimum integer s such that Link can reach the top of the mountain
within T seconds?

Input

Input begins with a line containing three integers n, r and T where 1 ≤ n ≤ 50, 000, 0 ≤ r ≤ 106 and
T ≤ 109.

Here, n is the number of ledges, r is the time (in seconds) that Link requires to rest and refill his stamina,
and T is the number of seconds Link has to reach the top of the mountain once he starts climbing.

The second line gives n values, which give the heights h1, h2, . . . , hn of the ledges in meters. You are
guaranteed

0 < h1 < h2 < . . . < hn−1 < hn ≤ T.

The last ledge at height hn is the top of the mountain.

Output

Output the minimum value s such that Link can reach the last ledge at height hn within T seconds.

Explanation of Sample Data

In the first case, Link can reach the top by climbing steadily for 100 seconds without resting. If Link could
only climb for 99 seconds, he would need to rest at the ledge at height 50 for 1 second, so the total climbing
time would be 101 seconds.

UAPC 2017 - Div I Problem D: Link the Mountaineer 7

In the second case, Link can spend 50 seconds to reach the ledge at height 50, rest for 1 second, and then
climb for an additional 49 seconds from this ledge to reach the top. Of course, he cannot reach the top if he
can climb for < 50 seconds at a time because he could not even reach the first ledge.

In the last case, Link can reach the ledge at height 70 in 70 seconds, rest for 10 second, reach the ledge at
height 120 in 50 more seconds, rest for 10 seconds again, and then reach the top in 70 more seconds for a
total climbing time of 210.

Sample Input Sample Output

2 1 100
50 100

100

Sample Input Sample Output

2 1 100
50 99

50

Sample Input Sample Output

5 10 210
30 70 95 120 190

70

UAPC 2017 - Div I Problem D: Link the Mountaineer 8

Problem E
Parityville

Problem ID: parityville
Time Limit: 3 seconds

Parityville is a city that graph theorists find very attractive. All houses are connected using roads in a tree-
like fashion: if any single road was closed for construction there would be some houses that could not reach
some other houses.

Everyone living here has a parity preference: person i wants the number of roads ending at their house to be
bi mod 2 where bi ∈ {0, 1}. You, the road planner, did not know these preferences when you built the roads.

You think of an ingenious way to fix this problem. You will place additional pavement to placate their parity
propensities! To maintain the simplicity of the road network, you will only pave new roads that run parallel
to existing roads.

For example, the left figure is the current layout of Parityville. The solid vertices prefer to be the endpoint
of an odd number of edges and the empty vertices prefer to be the endpoint of an even number of edges. The
right figure depicts a way to pave extra copies of existing roads to satisfy these preferences.

Each road has a cost for paving additional copies. What is the cheapest way you can pave copies of the
current roads to ensure all parity preferences are satisfied?

Input

Input begins with a line containing a single integer 1 ≤ n ≤ 105 indicating the number of people who live
in Parityville. The residents will be numbered 0 through n− 1.

The second line contains n space-separated integers. The i’th such integer bi ∈ {0, 1} (for 0 ≤ i ≤ n − 1)
indicates the parity preference for person i.

Finally n− 1 lines follow, each containing three integers u, v, c. Here, u, v are endpoints of a road segment
and it costs c dollars to pave a road parallel to this one (i.e. to pave an additional road connecting u and v
directly). Here 1 ≤ c < 232 and, of course, 0 ≤ u < v ≤ n− 1.

It is guaranteed that for any pair of points u, v, there is precisely one path from u to v using the given roads.

UAPC 2017 - Div I Problem E: Parityville 9

Output

If there is no way to build copies of the roads so that every point i has their parity preference satisfied simply
output a single line with the message impossible.

If it is possible, then you are to output a series of lines. The first line contains two space-separated integers:
the first is the cheapest possible cost and the second is the number of edges that will be duplicated (a
moments thought reveals we will never want to install more than one additional copy of any road). Following
this are m lines where m is the number of edges you indicated on the first line of output, each containing a
single pair of numbers u and v with u < v corresponding to an edge from the input. These m edges describe
the roads that should be duplicated in the minimum-cost solution.

The roads must be output in lexicographical order of the pair (u, v). See the examples below for further
clarification. If there is more than one minimum-cost solution, output any.

Sample Input Sample Output

8
1 1 0 0 1 1 0 0
0 1 7
0 2 5
1 3 6
1 4 5
2 5 5
5 6 3
5 7 10

26 4
0 1
1 3
5 6
5 7

Sample Input Sample Output

3
0 0 1
0 1 12
1 2 14

impossible

Sample Input Sample Output

2
1 1
0 1 5

0 0

UAPC 2017 - Div I Problem E: Parityville 10

Problem F
Series/Parallel Graphs
Problem ID: seriesparallel

Time Limit: 3 seconds

Consider the following procedure for generating a graph.

1. Start with two nodes connected by a single edge.

2. Repeatedly do the following for some number of steps

• Pick an edge uv and add edges uw,wv where w is a new node (introduced in this step).

3. Finally, delete a subset of edges.

Here is an example of a graph generated this way.

0

1

23

4

5

It was generated with the following steps, beginning with just the edge (0, 1).

• The first iteration picks edge (0, 1) and adds edges (0, 2), (1, 2) (this is when node 2 is introduced).

• The second iteration again picks edge (0, 1) and adds (0, 3), (1, 3)

• The third iteration picks (1, 2) and adds (1, 4), (2, 4)

• The final iteration picks (0, 2) and adds (0, 5), (2, 5)

Finally, edges (2, 4), (0, 3), (1, 3) and (0, 5) (depicted as dashed) are deleted. The four solid nodes constitute
an optimal solution to the question below.

Graphs constructed this way include so-called series-parallel graphs that are commonly seen in electrical
engineering: with many circuits the graph whose edges are components and nodes are junctions can be
generated using this process (and, perhaps, adding parallel edges). It is fairly easy to compute effective
resitances between the original two terminals in such circuits.

From the combinatorialist’s point of view, many problems that are NP-hard on general graphs become easier
on graphs constructed this way. For example, what is the largest set of nodes S such that no two nodes in S
are connected by an edge? In the example above, one such maximum-size set is depicted with solid nodes.

UAPC 2017 - Div I Problem F: Series/Parallel Graphs 11

Input

The first line of the input consists of two integers n,m. Here, 0 ≤ n ≤ 20, 000 is the number of times
the iterative part of the procedure is repeated when constructing the graph G, and 0 ≤ m ≤ 2n + 1 is the
number of edges that will be deleted.

Then n lines follow, each consisting of three integers u, v, w. Here, u < v and the pair u, v refers to an edge
that was constructed in a previous step (with the initial edge that is given at the start being 0, 1) and w is the
new vertex. In particular, we guarantee w will be i+ 1 if this is the i’th instruction so it really doesn’t need
to be specified, but it is included for clarity.

Finally, m lines follow each containing two integers u < v denoting an edge of the graph. You are guaran-
teed this edge does appear in the graph and no edge will be listed more than once. These m edges are the
ones that should be deleted once the n steps of the iterative part of the construction are completed.

Output

Output consists of a single integer k indicating the maximum possible size of a subset S of nodes where no
two u, v ∈ S form an edge in G.

Sample Input Sample Output

4 4
0 1 2
0 1 3
1 2 4
0 2 5
2 4
0 3
1 3
0 5

4

Sample Input Sample Output

0 1
0 1

2

Sample Input Sample Output

2 0
0 1 2
0 2 3

2

UAPC 2017 - Div I Problem F: Series/Parallel Graphs 12

Problem G
Convex Holes

Problem ID: convexhole
Time Limit: 10 seconds

There are many ways to define the convex hull of a set of points P in the plane. Intuitively, suppose you
have a rubber band and the points are nails in a board. If you stretch the rubber band around all of P and
then let go, the polygon it forms is the convex hull of P . The lines of the convex hull are the line segments
of the rubber band between consecutive points of P on the hull.

You may or may not already be familiar with convex hulls, but what about convex holes?

Given a set of points P in the plane, we say a subset S ⊆ P with |S| ≥ 3 is a convex hole if no point of P
lies strictly inside the convex hull of S. Note this requires all points of S to touch the convex hull of S.

In the above example, the points on the convex hull do not form a convex hole because of the interior point.
Two convex holes are depicted below.

Your job is to find the largest convex hole. This is the convex hole that encloses the largest area.

The leftmost convex hole depicted above is the best convex hole for this set. This example corresponds to
the second sample input below.

Input

Input begins with a single line containing a single integer 3 ≤ n ≤ 50 indicating the number of points in P .
The next n lines each describe a point by giving its coordinates x, y. You are guaranteed x, y are integers,
|x|, |y| ≤ 106, no two points are equal, and no three points in the input are collinear.

UAPC 2017 - Div I Problem G: Convex Holes 13

Output

Output a single value giving the maximum area of a convex hole for the input point set. This should be
output with precisely one decimal place of precision even if the answer is an integer.

Sample Input Sample Output

4
0 1
1 0
0 0
1 1

1.0

Sample Input Sample Output

7
0 1
1 3
0 0
3 3
3 0
2 1
5 2

6.5

Sample Input Sample Output

6
1 2
5 9
6 9
7 14
3 12
1 5

24.0

UAPC 2017 - Div I Problem G: Convex Holes 14

Problem H
Call Centres

Problem ID: callcentre
Time Limit: 3 seconds

You just became the manager of a call centre. There are many variables to take into account to run an
efficient call centre. To make these decisions, you need good data.

Your call centre is huge. Typically, many new calls are made every second. Your system logs each incoming
call.

To get started with “data analytics”, you want to answer simple questions like “between time s and time t,
how many new calls were made to our call centre?”

Input

The first line of input consists of two integers n and q. Here, 1 ≤ n ≤ 86, 400 is the number of seconds
your call centre is open for each day and 1 ≤ q ≤ 50, 000 is the number of queries you want to make.

The next line contains n integers, each between 0 and 100. Consecutive integers will be separated by a
single space. The i’th integer on this line indicates how many new calls were received by your call centre
yesterday in the i’th second of operation.

Finally, q lines follow. Each consists of two integers 1 ≤ s ≤ t ≤ n separated by a single space.

Output

Output consists of q lines, one for each query. For each query with integers s, t, you should output the total
number of calls your call centre received yesterday between the s’th and t’th second of operation (including
the calls received exactly at second s and at second t).

Sample Input Sample Output

13 7
5 3 13 0 0 1 4 3 12 1 0 0 17
1 3
1 4
1 13
3 3
4 4
2 7
8 11

21
21
59
13
0
21
16

UAPC 2017 - Div I Problem H: Call Centres 15

This page is intentionally left blank.

Problem I
Baby Names

Problem ID: babynames
Time Limit: 5 seconds

Books of baby names can be quite big. Quite a few names are the concatenation of two more common
names. For example, johnmark, sallyann, or billybob.

You decide to publish a minimalist list of names. Given a query name, decide if it is in the list of names or
if it can be formed by concatenating two names in the list.

Input

Input begins with two positive integers n, q where n is the number of names in the list and q is the number
of names to query.

The next n lines contain n strings. Each string will have at least one character, will only be formed of
lowercase letters (i.e. a through z) with no spaces, and the total length of all strings is at most 106.

Then q lines follow containing q query strings. Again, each will have at least one character, will only be
formed of lowercase letters with no spaces, and the total length of all query strings is at most 106.

Output

For each query string, output a single line. If the string is in the list, output simple name. Otherwise, if
the string can be formed by concatenating precisely two strings in the list (they do not necessarily have to
be distinct strings), output compound name. If neither of the previous two cases apply, output unknown
name.

UAPC 2017 - Div I Problem I: Baby Names 17

Sample Input Sample Output

10 13
vishal
anya
wei
ann
john
reza
mark
bob
bobbob
rebecca
johnmark
reza
petr
anyarebecca
vishalbob
bobann
bob
bobbob
bobbobbob
bobbobbobbob
bobbobbobbobbob
johnmarkbobbob
fhqwhgads

compound name
simple name
unknown name
compound name
compound name
compound name
simple name
simple name
compound name
compound name
unknown name
unknown name
unknown name

UAPC 2017 - Div I Problem I: Baby Names 18

