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Abstract
In this paper, we investigate Exploratory Conser-
vative Policy Optimization (ECPO), a policy opti-
mization strategy that improves exploration behav-
ior while assuring monotonic progress in a princi-
pled objective. ECPO conducts maximum entropy
exploration within a mirror descent framework, but
updates policies using reversed KL projection. This
formulation bypasses undesirable mode seeking be-
havior and avoids premature convergence to sub-
optimal policies, while still supporting strong the-
oretical properties such as guaranteed policy im-
provement. Experimental evaluations demonstrate
that the proposed method significantly improves
practical exploration and surpasses the empirical
performance of state-of-the art policy optimization
methods in a set of benchmark tasks.

1 Introduction
Deep reinforcement learning (RL) has recently shown to be re-
markably effective in solving challenging sequential decision
making problems [Schulman et al., 2015; Mnih et al., 2015;
Silver et al., 2016]. A central method of deep RL is policy
optimization, which is based on formulating the problem as
the optimization of a stochastic objective (expected return) of
the underlying policy parameters [Williams and Peng, 1991;
Williams, 1992; Sutton et al., 1998]. Unlike standard opti-
mization, policy optimization requires the objective and gra-
dient to be estimated from data, typically gathered from a
process depending on current parameters, simultaneously with
parameter updates. Such an interaction between estimation
and updating complicates the optimization process, and often
necessitates the introduction of variance reduction methods,
leading to algorithms with subtle hyperparameter sensitivity.
Joint estimation and updating can also create poor local op-
tima whenever sampling neglect of some region can lead to
further entrenchment of a current solution. For example, a
non-exploring policy might fail to sample from high reward tra-
jectories, preventing any further improvement since no useful
signal is observed. In practice, it is well known that success-
ful application of deep RL techniques requires a combination
∗Equal contribution

of extensive hyperparameter tuning, and a large, if not im-
practical, number of sampled trajectories. It remains a major
challenge to develop methods that can reliably perform pol-
icy improvement while maintaining sufficient exploration and
avoiding poor local optima, yet do so quickly.

Several ideas for improving policy optimization have
been proposed, generally focusing on the goals of im-
proving stability and data efficiency [Peters et al., 2010;
Van Hoof et al., 2015; Fox et al., 2015; Schulman et al., 2015;
Montgomery and Levine, 2016; Nachum et al., 2017b;
Abdolmaleki et al., 2018; Haarnoja et al., 2018]. Unfortu-
nately, a notable gap remains between empirically successful
methods and their underlying theoretical support. Current anal-
yses typically assume a simplified setting that either ignores
the policy parametrization or only considers linear models.
These assumptions are hard to justify when current practice
relies on complex function approximators, such as deep neural
networks, that are highly nonlinear in their underlying param-
eters. This gulf between theory and practice is a barrier to
wider adoption of model-free policy gradient methods.

In this paper, we consider the maximum entropy reward
objective, which has recently re-emerged as a foundation for
state-of-the-art RL methods [Fox et al., 2015; Schulman et
al., 2017a; Nachum et al., 2017b; Haarnoja et al., 2017;
Neu et al., 2017; Levine, 2018; Deisenroth et al., 2013;
Daniel et al., 2012]. We first reformulate the maximization
of this objective as a lift-and-project procedure, following
Mirror Descent [Nemirovskii et al., 1983; Beck and Teboulle,
2003]. We establish a monotonic improvement guarantee and
the fixed point properties of this setup. The reformulation also
has practical algorithmic consequences, suggesting that mul-
tiple gradient updates should be performed in the projection.
These considerations lead to the Policy Mirror Descent (PMD)
algorithm, which first lifts the policy to the simplex, ignoring
the parametrization constraint, then approximately solves the
projection by gradient updates in the parameter space.

We then investigate additional improvements to mitigate the
potential deficiencies of PMD. The main algorithm we pro-
pose, Exploratory Conservative Policy Optimization (ECPO),
incorporates both an entropy and relative entropy regular-
izer, and uses the mean seeking KL divergence for projection,
which helps avoids poor deterministic policies. The projec-
tion can be efficiently solved to global optimality in certain
non-convex cases, such as one-layer softmax networks. The



entropy exploration is principled. Firstly, in the convex sub-
set setting, the algorithm enjoys sublinear regret. Secondly,
we prove monotonic guarantees for ECPO with respect to a
surrogate objective SR(π). We further study the properties
of SR(π) and provide theoretical and empirical evidence that
SR can effectively guide good policy search. Finally, we also
extend this algorithm using value function approximations,
and develop an actor-critic version that is effective in practice.

1.1 Notation and Problem Setting
We consider episodic settings with finite state and action
spaces. The agent is modelled by a policy π(·|s) that specifies
a probability distribution overs actions given state s. At each
step t, the agent takes an action at by sampling from π(·|st).
The environment then returns a reward rt = r(st, at) and
the next state st+1 = f(st, at), where f is the transition not
revealed to the agent. Given a trajectory, a sequence of states
and actions ρ = (s1, a1, . . . , aT−1, sT ), the policy probability
and the total reward of ρ are defined as π(ρ) =

∏T−1
t=1 π(at|st)

and r(ρ) =
∑T−1
t=1 r(st, at). Given a set of parametrized pol-

icy functions πθ ∈ Π, policy optimization aims to find the
optimal policy π∗θ by maximizing the expected reward,

π∗θ ∈ arg max
πθ∈Π

E
ρ∼πθ

r(ρ), (1)

We use ∆ , {π|
∑
ρ π(ρ) = 1, π(ρ) ≥ 0,∀ρ} to refer to

the probability simplex over all trajectories. Without loss of
generality, we assume that the state transition is deterministic,
and the discount factor γ = 1. All theoretical results for the
general stochastic environment are presented in the appendix.

2 Policy Mirror Descent
We first introduce the Policy Mirror Descent (PMD) strat-
egy, which forms the basis for our algorithms. Consider the
following optimization problem: given a reference policy π̄
(usually the current policy), maximize the proximal regular-
ized expected reward, using relative entropy as the regularizer:

πθ = arg max
πθ∈Π

E
ρ∼πθ

r(ρ)− τDKL(πθ‖π̄). (2)

Relative entropy has been widely studied in online learning
and optimization [Nemirovskii et al., 1983; Beck and Teboulle,
2003], primarily as a component of the mirror descent method.
This regularization makes the policy update in a conservative
fashion, by searching policies within the neighbours of the
current policy. In practice πθ is usually parametrized as a func-
tion of θ ∈ Rd and Π is generally a non-convex set. Therefore,
Eq. (2) is a difficult constrained optimization problem.

One useful way to decompose Eq. (2) is to consider an
alternating lift-and-project procedure.

(Project) arg min
πθ∈Π

DKL(πθ‖π̄∗τ ),

(Lift) where π̄∗τ = arg max
π∈∆

E
ρ∼π

r(ρ)− τDKL(π‖π̄).
(3)

Crucially, Eq. (3) remains equivalent to Eq. (2), in that it
preserves the same solution, as established in Proposition 1.

Proposition 1. Given a reference policy π̄,

arg max
πθ∈Π

E
ρ∼πθ

r(ρ)− τDKL(πθ‖π̄) = arg min
πθ∈Π

DKL(πθ‖π̄∗τ ).

Note this result holds even for the non-convex setting.
Eq. (3) immediately leads to the PMD algorithm: Lift the
current policy πθt to π̄∗τ , then perform multiple steps of gradi-
ent descent in the Project step to update πθt+1

.1
When Π is convex, PMD converges to the optimal policy

[Nemirovskii et al., 1983; Beck and Teboulle, 2003]. For
general Π, PMD still enjoys desirable properties.
Proposition 2. PMD satisfies the following properties for an
arbitrary parametrization Π.

1. (Monotonic Improvement) If the Project step
min
πθ∈Π

DKL(πθ‖π̄∗τ ) can be globally solved, then

Eρ∼πθt+1
r(ρ)− Eρ∼πθt r(ρ) ≥ 0.

2. (Fixed Points) If the Project step is optimized by gradient
descent, then the fixed points of PMD are stationary
points of Eρ∼πθ r(ρ).

Proposition 2 relies on the condition that the Project step in
PMD is solved to global optimality. It is usually not practical
to achieve such a stringent requirement when Π is not convex,
limiting the applicability of Proposition 2.

Another shortcoming is that PMD typically gets trapped in
poor local optima. The regularizer helps prevent large policy
updates, it also tends to limit exploration. Moreover, mini-
mizing DKL(πθ‖π̄∗τ ) is known to be mode seeking [Murphy,
2012], which can lead to mode collapse during learning. Once
a policy has lost important modes, learning can easily become
trapped at a sub-optimal policy. Unfortunately, at such points,
the regularizer does not encourage further exploration.

3 Exploratory Conservative Policy
Optimization

We propose two modifications to PMD that overcome the
aforementioned deficiencies. These two modifications lead to
our proposed algorithm, Exploratory Conservative Policy Op-
timization (ECPO), which retains desirable theoretical proper-
ties while achieving superior performance to PMD in practice.

The first modification is to add an additional entropy regu-
larizer in the Lift step, to improve the exploration. The second
modification is to use a reversed, mean seeking direction of KL
divergence in the Project step. In particular, the ECPO algo-
rithm solves the following alternating optimization problems:

(Project) arg min
πθ∈Π

DKL(π̄∗τ,τ ′‖πθ),

(Lift) where π̄∗τ,τ ′ = arg max
π∈∆

E
ρ∼π

r(ρ)− τDKL(π‖πθt) + τ ′H(π).
(4)

The effect of minimizing the other KL direction is well
known [Murphy, 2012] and has proved to be effective [Norouzi

1 To estimate this gradient one would need to use self-normalized
importance sampling [Owen, 2013]. We omit the details here since
PMD is not our main algorithm; similar techniques can be found in
the implementation of ECPO.



Algorithm 1 The ECPO algorithm

Input: temperature parameters τ and τ ′, number of samples
for computing gradient K

1: Random initialized πθ
2: For t = 1, 2, . . . do
3: Set π̄ = πθ
4: Repeat
5: Sample a mini-batch of K trajectories from π̄
6: Compute the gradient according to Eq. (6)
7: Update πθ by gradient descent
8: Until t reaches maximum of training steps
9: end For

et al., 2016; Nachum et al., 2017a]. In particular, minimiz-
ing DKL(πθ‖q) usually underestimates the support of q, since
the objective is infinite if q = 0 and πθ > 0. Thus, πθ is
driven to 0 wherever q = 0. The problem is that when q
changes, πθ can have zero mass on trajectories that have non-
zero probability under the new q, hence πθ will never capture
this part of q, leading to mode collapse. By contrast, minimiz-
ing DKL(q‖πθ) is zero-avoiding in πθ, since if q > 0 we must
ensure πθ > 0. Note that by Eq. (5): (a) the q in our method is
nonzero everywhere, (b) we further add entropy in Eq. (4) to
avoid q prematurely converging to a deterministic policy, (c)
DKL(q‖πθ) is zero-avoiding for minimization over πθ. These
ensure that the proposed method does not exhibit the same
mode-seeking behavior as MD. As we will see in Section 5,
ECPO outperforms PMD significantly in experiments.

3.1 Learning Algorithms
We now provide practical learning algorithms for Eq. (4). The
Lift Step has an analytic solution,

π̄∗τ,τ ′(ρ) ,
π̄(ρ) exp

{
r(ρ)−τ ′ log π̄(ρ)

τ+τ ′

}
∑
ρ′ π̄(ρ′) exp

{
r(ρ′)−τ ′ log π̄(ρ′)

τ+τ ′

} . (5)

where we take πθt as the reference policy π̄. The Project Step
in Eq. (4), minπθ∈ΠDKL(π̄∗τ,τ ′‖πθ), can be optimized via
stochastic gradient descent, given that one can sample trajec-
tories from π̄∗τ,τ ′ . The next lemma shows that sampling from
π̄∗τ,τ ′ can be done using self-normalized importance sampling
[Owen, 2013] when it is possible to draw multiple samples
from π̄, following the idea of UREX [Nachum et al., 2017a].

Lemma 1. Let ωk = r(ρk)−τ ′ log π̄(ρk)
τ+τ ′ . Given K i.i.d. sam-

ples {ρ1, . . . , ρK} from the reference policy π̄, we have the
following unbiased gradient estimator,

∇θDKL(π̄∗τ,τ ′‖πθ) ≈ −
K∑
k=1

exp {ωk}∑K
j=1 exp {ωj}

∇θ log πθ(ρk), (6)

The Pseudocode is presented in Algorithm 1. Derivation for
the analytic solution of the Lift step and above Lemma as well
as other implementation details can be found in the appendix.

3.2 Analysis of ECPO
We now present the theoretical analysis of ECPO. Our first
result shows that, ECPO enjoys sublinear regret by a partic-
ularly designed choice of τ and τ ′, when the policy class is

any convex subset of the probabilistic simplex, recovering the
simplex setting as a special case.

Theorem 1. When the policy class Π is a convex subset of
the probabilistic simplex, by choosing τ ′ = 1/

√
T log n, and

τ + τ ′ =
√
T/
√

2 log n, (or τ ′ = 1/
√
t log n, and τ + τ ′ =√

t/
√

2 log n), ∀π ∈ Π,

T∑
t=1

E
ρ∼π

r(ρ)−
T∑
t=1

E
ρ∼πt

r(ρ) ≤ 4
√
T log n.

where πt is defined by Eq. (5) with πt−1 as the reference policy,
and n is the total action/trajectory number.

Our second result shows that ECPO enjoys similar desirable
properties (Proposition 2) to PMD in general settings, with
respect to the surrogate reward SR(πθ).

Theorem 2. ECPO satisfies the following properties for an
arbitrary parametrization Π.

1. (Monotonic Improvement) If the Project step
DKL(π̄∗τ,τ ′‖πθ) can be globally solved, then

SR(πθt+1
)− SR(πθt) ≥ 0,

where

SR(π) , (τ + τ ′) log
∑
ρ

exp

{
r(ρ) + τ log π(ρ)

τ + τ ′

}
. (7)

2. (Fixed Points) If the Project step is optimized by gradient
descent, then the fixed points of ECPO are stationary
points of SR(πθ).

Theorem 2 establishes desirable properties for ECPO of
SR(πθ), but not necessarily Eρ∼πθ r(ρ). However, SR(πθ)
is a reasonable surrogate that can provide good guidance for
learning. By properly adjusting the two temperature parame-
ters τ and τ ′, SR(πθ) recovers existing performance measures.

Lemma 2. Let r̂ = r− τ ′ log π, r̂∞ = ‖r̂‖∞ and η = τ + τ ′.
For any policy π and τ ≥ 0, τ ′ ≥ 0, we have

E
ρ∼π

r(ρ) + τ ′H(π) ≤ SR(π) ≤ E
ρ∼π

r̂(ρ) +
1

2η
E
ρ∼π

[
(r̂(ρ)− r̂∞)

2
]
.

Furthermore,

(i) SR(π)→ maxρ r(ρ), as τ → 0, τ ′ → 0.

(ii) SR(π)→ E
ρ∼π

r(ρ) + τ ′H(π), τ →∞.

A key question is the feasibility of solving the Project step to
global optimality. For a one-layer softmax network policy, the
Project stepDKL(π̄∗τ,τ ′‖πθ) can be solved to global optimality,
affording computational advantages over PMD.

Proposition 3. Suppose πθ(s) = softmax(φ>s θ). Given any
π̄, DKL(π̄‖πθ) is a convex function of θ.

4 An Actor-Critic Extension
Finally, we develop a natural actor-critic extension of ECPO by
incorporating a value function approximator. We refer to this
algorithm as Exploratory Conservative Actor-Critic (ECAC).



The data efficiency of policy-based methods can be gener-
ally improved by adding a value-based critic. Given π̄ and an
initial state s, the objective in the Lift step of ECPO is

OECPO(π, s) = E
ρ∼π

r(ρ)− τDKL(π‖π̄) + τ ′H(π),

where ρ = (s1 = s, a1, s2, a2, . . .). To incorporate value
function, we need temporal consistency for this objective:

OECPO(π, s) = Ea∼π(·|s)[r(s, a) +OECPO(π, s′)

+ τ log π̄(a|s)− (τ + τ ′) log π(a|s)].

Denote π̄∗τ,τ ′(·|s) , arg maxπ OECPO(π, s) the optimal
policy on state s. Denote the soft optimal state-value func-
tion OECPO(π̄∗τ,τ ′(·|s), s) by V̄ ∗τ,τ ′(s), and let Q̄∗τ,τ ′(s, a) =

r(s, a) + γV̄ ∗τ,τ ′(s
′) be the soft-Q function. We have,

V̄ ∗τ,τ ′(s) = (τ + τ ′) log
∑
a

exp

{
Q̄∗τ,τ ′(s, a) + τ log π̄(a|s)

τ + τ ′

}
;

π̄∗τ,τ ′(a|s) = exp

{
Q̄∗τ,τ ′(s, a) + τ log π̄(a|s)− V̄ ∗τ,τ ′(s)

τ + τ ′

}
.

(8)

We propose to train a soft state-value function Vφ parame-
terized by φ, a soft Q-function Qψ parameterized by ψ, and a
policy πθ parameterized by θ, based on Eq. (4). The update
rules for these parameters can be derived as follows.

The soft state-value function approximates the soft optimal
state-value V̄ ∗τ,τ ′ , which can be re-expressed by

V̄ ∗τ,τ ′(s) = (τ + τ ′) logEa∼π̄

[
exp

{
Q̄∗τ,τ ′(s, a)− τ ′ log π̄(a|s)

τ + τ ′

}]
.

This suggests a Monte-Carlo estimate for V̄ ∗τ,τ ′(s): by sam-
pling one single action a according to the reference policy π̄,
we have V̄ ∗τ,τ ′(s) ≈ Q̄∗τ,τ ′(s, a)− τ ′ log π̄(a|s). Then, given
a replay buffer D, the soft state-value function can be trained
to minimize the mean squared error,

L(φ) = Es∼D
[

1

2

(
Vφ(s)−

[
Qψ(s, a)− τ ′ log π̄(a|s)

])2]
. (9)

One might note that, in principle, there is no need to include
a separate state-value approximation, since it can be directly
computed from a soft-Q function and reference policy, using
Eq. (8). However, including a separate function approximator
for the state-value can help stabilize the training [Haarnoja et
al., 2018]. The soft Q-function parameters ψ is then trained to
minimize the soft Bellman error using the state-value network,

L(ψ) = E(s,a,s′)∼D

[
1

2
(Qψ(s, a)− [r(s, a) + γVφ(s′)])

2
]
. (10)

The policy parameters are updated by performing the
Project Step in Eq. (4) with stochastic gradient descent,

L(θ) = Es∼D
[
DKL

(
exp

{
Qψ(s, ·) + τ log π̄(·|s)− Vφ(s)

τ + τ ′

}∥∥∥∥πθ(·|s))] , (11)

where we approximate π̄∗τ,τ ′ by the soft-Q and state-value
function approximations.

Finally, we also use a target state-value network [Lillicrap
et al., 2015] and the trick of maintaining two soft-Q functions
[Haarnoja et al., 2018; Fujimoto et al., 2018].

5 Experiments
We evaluate ECPO and ECAC on a number of benchmark
tasks against strong baseline methods. Implementation details
are provided in the appendix.

5.1 Settings
We first investigate the performance of ECPO on a synthetic
bandit problem, which has 10000 distinct actions. The re-
ward of each action i is initialized by ri = s8

i such that si is
randomly sampled from a uniform [0, 1) distribution. Each
action i is represented by a random feature vector ωi ∈ R20

from a standard Gaussian, and it is fixed during training. We
further test ECPO on five algorithmic tasks from the OpenAI
gym [Brockman et al., 2016] library, in rough order of dif-
ficulty: Copy, DuplicatedInput, RepeatCopy, Reverse, and
ReversedAddition [Brockman et al., 2016]. Second, we test
ECAC on continuous-control benchmarks from the OpenAI
Gym, utilizing the MuJoCo environment [Brockman et al.,
2016; Todorov et al., 2012]; including Hopper, Walker2d,
HalfCheetah, Ant and Humanoid.

Only cumulative rewards are used in the synthetic bandit
and algorithmic tasks. Therefore, value-based methods cannot
be applied here, which compels us to compare ECPO against
REINFORCE with entropy regularization (MENT) [Williams,
1992], and under-appreciated reward exploration (UREX)
[Nachum et al., 2017a], which are state-of-the-art policy-based
algorithms for the algorithmic tasks. For the continuous con-
trol tasks, we compare ECAC with deep deterministic policy
gradient (DDPG) [Lillicrap et al., 2015], an efficient off-policy
deep RL method; twin delayed deep deterministic policy gradi-
ent algorithm (TD3) [Fujimoto et al., 2018], a recent extension
of DDPG by using double Q-learning; and Soft-Actor-Critic
(SAC) [Haarnoja et al., 2018], a recent state-of-the-art off-
policy algorithm on a number of benchmarks. All of these
algorithms are implemented in rlkit.2 We do not include TRPO
and PPO in these experiments, as their performances are dom-
inated by SAC and TD3, as shown in [Haarnoja et al., 2018;
Fujimoto et al., 2018].

5.2 Comparative Evaluation
The results on synthetic bandit and algorithmic tasks are in
Fig. 1. ECPO substantially outperforms the baselines. ECPO
is able to consistently achieve a higher score substantially
faster than UREX. We also find the performance of UREX
is unstable. On the difficult tasks, including RepeatCopy,
Reverse and ReversedAddition, UREX only finds solutions a
few times out of 25 runs, which brings the overall scores down.
This observation explains the gap between the results we find
here and those in [Nachum et al., 2017a].3 Note that the
performance of ECPO is still significantly better than UREX
even compared to the results in [Nachum et al., 2017a].

Fig. 2 presents the continuous control benchmarks, report-
ing the mean returns on evaluation rollouts obtained by the

2 https://github.com/vitchyr/rlkit
3 The results reported in [Nachum et al., 2017a] are averaged over

5 runs of random restarting, while our results are averaged over 25
random training runs (5 runs × 5 random seed for neural network
initialization).



Figure 1: Results of MENT (red), UREX (green), and ECPO (blue) on synthetic bandit problem and algorithmic tasks. Plots show average
reward with standard error during training. Synthetic bandit results averaged over 5 runs. Algorithmic task results averaged over 25 random
training runs (5 runs × 5 random seeds for neural network initialization). The x-axis is number of sampled trajectories.

algorithms during learning. The results are averaged over five
instances with different random seeds. The solid curves cor-
responds to the mean and the shaded region to the standard
errors over the five trials. We observe that the reparameter-
ization trick dramatically improve the performance of SAC.
Therefore, to gain further clarity, we also report the result of
SAC with the reparameterization trick, denoted SAC+R. The
results show that ECAC matches or, in many cases, surpasses
all other baseline algorithms in both final performance and
sample efficiency across tasks, except compared to SAC+R
in Humanoid. In Humanoid, although SAC+R outperforms
ECAC, its final performance is still comparable with SAC+R.

5.3 Ablation Study
The comparative evaluations provided before suggest that our
proposed algorithms outperform conventional RL methods on
a number of challenging benchmarks. In this section, we fur-
ther investigate how each novel component of Eq. (4) improves
learning performance, by performing an ablation study on Re-
versedAddition and Ant. The results are presented in Fig. 3,
which clearly indicate all of the three major components of
Eq. (4) are helpful for achieving better performance.
Importance of entropy regularizer. The main difference
between the objective in Eq. (4) and the PMD objective Eq. (3)
is the entropy regularizer. We demonstrate the importance
of this choice by presenting the results of ECPO and ECAC
without the extra entropy regularizer, i.e. τ ′ = 0.
Importance of KL divergence projection. Another impor-
tant difference between Eq. (4) with other RL methods is to
use a Project Step to update the policy, rather than one SGD.
To show the importance of the Project Step, we test ECPO and
ECAC without projection, which only performs one step of
gradient update at each iteration of training.
Importance of direction of KL divergence. We choose
PMD Eq. (3) as another baseline to prove the effectiveness
of using the mean seeking direction of KL divergence in

the project step. Similar to ECPO, we add a separate tem-
perature parameter τ ′ > 0 to the original objective func-
tion in Eq. (3) to encourage policy exploration, which gives
arg maxπθ∈Π Eρ∼πθ r(ρ)− τKL(πθ‖π̄) + τ ′H(πθ). We
name it PMD+entropy. The corresponding algorithms in the
actor-critic setting, named PMD-AC and PMD-AC+entropy,
are also implemented for comparison.

6 Related Work
The lift-and-project approach is distinct from the previous
literature on policy search, with the exception of a few re-
cent works: Mirror Descent Guided Policy Search (MDGPS)
[Montgomery and Levine, 2016], Guide Actor-Critic (GAC)
[Tangkaratt et al., 2017], Maxmimum aposteriori (MPO) [Ab-
dolmaleki et al., 2018], and Soft Actor-Critic (SAC) [Haarnoja
et al., 2018]. These approaches also adopt a mirror descent
framework, but differ from the proposed approach in key as-
pects. MDGPS [Montgomery and Levine, 2016] follows a
different learning principle, using the Lift Step to learn mul-
tiple local policies (rather than a single policy) then align-
ing these with a global policy in the Project Step. MDGPS
does not include the entropy term in the Lift objective, which
we have found to be essential for exploration. MPO [Ab-
dolmaleki et al., 2018] also neglects to add the additional
entropy term. Alternatively, MPO imposes a KL constraint
in its projection to avoid entropy collapse in policy update.
Section 5.3 shows that entropy regularization with an ap-
propriate annealing of τ ′ significantly improves learning ef-
ficiency. Both GAC and SAC use the mode seeking KL
divergence in the Project Step, in opposition to the mean
seeking direction we consider here [Tangkaratt et al., 2017;
Haarnoja et al., 2018]. Additionally, SAC only uses entropy
in the Lift Step, neglecting the proximal relative entropy. The
benefits of regularizing with relative entropy has been dis-
cussed in TRPO [Schulman et al., 2015] and MPO [Abdol-
maleki et al., 2018], where it is noted that proximal regulariza-



Figure 2: Learning curves of DDPG (red), TD3 (yellow), SAC (green) and ECAC (blue) on MuJoCo tasks (with SAC+R (grey) added on
Humanoid). Plots show mean reward with standard error during training, averaged over five different instances with different random seeds.
The x-axis is millions of environment steps.

Figure 3: Ablation Study of ECPO and ECAC.

tion significantly improves learning stability. Another point
is the reparameterization trick used in SAC and MPO relies
on the Gaussian represetation for the continuous action space,
which makes them cannot be used in discrete spaces, where
our ECPO performs well. GAC seeks to match the mean of
Gaussian policies under second order approximation in the
Project Step, instead of directly minimizing the KL divergence
with gradient descent. Although one might also attempt to
interpret “one-step” methods in terms of lift-and-project, these
approaches would obliviously still differ from ECPO, given
that we use different directions of the KL divergence for the
Lift and Project steps respectively.

TRPO and PPO have similar formulations to Eq. (2), using
constraints of mean seeking KL divergence [Schulman et al.,
2015; Schulman et al., 2017b]. Our proposed method includes
additional modifications that, as shown in Section 5, signifi-
cantly improve performance. UREX also uses mean seeking
KL for regularization, which encourages exploration but also
complicates the optimization; as shown in Section 5, UREX is
significantly less efficient than the method proposed here.

Trust-PCL adopts the same objective Eq. (4), including
both entropy and relative entropy regularization [Nachum et
al., 2017c]. However, the policy update is substantially differ-
ent: while ECPO uses KL projection, Trust-PCL minimizes a

path inconsistency error between the value and policy along
observed trajectories [Nachum et al., 2017b]. Although policy
optimization by minimizing path inconsistency error can effi-
ciently utilize off-policy data, this approach loses the desirable
monotonic improvement guarantee.

7 Conclusion and Future Work
We have proposed Exploratory Conservative Policy Optimiza-
tion (ECPO) as an effective new approach for policy based
reinforcement learning that also guarantees monotonic im-
provement in a well motivated objective. We show that the
resulting method achieves better exploration than both a di-
rected exploration strategy (UREX) and undirected maximum
entropy exploration (MENT). It will be interesting to further
extend the follow-on ECAC actor-critic framework with fur-
ther development of the value function learning approach.
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A Proofs
A.1 Proof of Proposition 1
Proof. Note that

−τDKL(πθ‖π̄∗τ ) = −τ
∑
ρ

πθ(ρ) log πθ(ρ) + τ
∑
ρ

πθ(ρ)(log π̄(ρ) + r(ρ)/τ)− Zπ̄

= E
ρ∼πθ

r(ρ)− τDKL(πθ‖π̄)− Zπ̄,

where Zπ̄ , τ log
∑
ρ π̄(ρ) exp {r(ρ)/τ} is indenpendent of πθ given the reference policy π̄.

A.2 Proof of Proposition 2
Proof. (Monotonic Improvement) By the definition of πθt+1

, DKL(πθt+1
‖π̄∗τ ) = minπθ∈ΠDKL(πθ‖π̄∗τ ) ≤ DKL(πθt‖π̄∗τ ).

E
ρ∼πθt+1

r(ρ)− E
ρ∼πθt

r(ρ) = τ

[∑
ρ

πθt+1(ρ) · r(ρ)

τ
−
∑
ρ

πθt(ρ) · r(ρ)

τ

]

= τ
∑
ρ

πθt+1(ρ) log


πθt(ρ) exp

{
r(ρ)
τ

}
∑
ρ′
πθt(ρ

′) exp
{
r(ρ′)
τ

}
− πθt+1(ρ) log πθt(ρ)− πθt(ρ) log


πθt(ρ) exp

{
r(ρ)
τ

}
∑
ρ′
πθt(ρ

′) exp
{
r(ρ′)
τ

}
+ πθt(ρ) log πθt(ρ)


= τ

∑
ρ

[
πθt+1(ρ) log π̄∗τ (ρ)− πθt+1(ρ) log πθt(ρ)− πθt(ρ) log π̄∗τ (ρ) + πθt(ρ) log πθt(ρ)

]
= τ

[
DKL(πθt‖π̄

∗
τ )−DKL(πθt+1‖π̄

∗
τ ) +DKL(πθt+1‖πθt)

]
≥ τDKL(πθt+1‖πθt) ≥ 0.

(Fixed Points) The stationary point of Eρ∼πθ r(ρ) is the πθ which satisfies,∑
ρ

r(ρ) · dπθ(ρ)

dθ
= 0

⇐⇒
∑
ρ

[
log πθ(ρ)− log πθ(ρ)− r(ρ)

τ

]
· dπθ(ρ)

dθ
= 0 (τ > 0)

⇐⇒
∑
ρ

[log πθ(ρ)− log {πθ(ρ) exp {r(ρ)/τ}}] · dπθ(ρ)

dθ
= 0.

(12)

On the other hand, the fixed point of PMD indicates at some iteration t,

πθt = πθt+1
,

where πθt
Lift Step−−−−→ π̄∗τ

Project Step−−−−−−→ πθt+1
in Eq. (3),

(13)

which means πθt is the solution of the Project Step,

dDKL(πθ‖π̄∗τ )

dθ

∣∣∣∣
θ=θt

= 0

⇐⇒
∑
ρ

[log πθ(ρ)− log π̄∗τ (ρ) + 1] · dπθ(ρ)

dθ

∣∣∣∣∣
θ=θt

= 0

⇐⇒
∑
ρ

log πθ(ρ)− log

 πθt(ρ) exp {r(ρ)/τ}∑
ρ′
πθt(ρ

′) exp {r(ρ′)/τ}

+ 1

 · dπθ(ρ)

dθ

∣∣∣∣∣∣∣
θ=θt

= 0

(by Lift Step in Eq. (13))

⇐⇒
∑
ρ

[log πθ(ρ)− log {πθt(ρ) exp {r(ρ)/τ}}+ c] · dπθ(ρ)

dθ

∣∣∣∣∣
θ=θt

= 0,

(14)



where we denote c = 1 + log
∑
ρ′
πθt(ρ

′) exp {r(ρ′)/τ}. Note that for c independent of ρ, we have,

∑
ρ

c · dπθ(ρ)

dθ

∣∣∣∣∣
θ=θt

= c ·
d
∑
ρ πθ(ρ)

dθ

∣∣∣∣
θ=θt

= c · d1

dθ

∣∣∣∣
θ=θt

= 0.

Therefore, Eq. (14) is equivalent with,

⇐⇒
∑
ρ

[log πθ(ρ)− log {πθt(ρ) exp {r(ρ)/τ}}] · dπθ(ρ)

dθ

∣∣∣∣∣
θ=θt

= 0. (15)

Comparing Eq. (15) with Eq. (12), we have the fixed point condition of PMD is the same as the definition of the stationary point
of Eρ∼πθ r(ρ).

A.3 Proof of Theorem 1
Suppose Π is a convex subset of the probabilistic simplex, the policy update is as follows,

π̄t+1 (ρ) =
πt (ρ) · exp

{
r(ρ)−τ ′ log πt(ρ)

τ+τ ′

}
∑
ρ
πt (ρ) · exp

{
r(ρ)−τ ′ log πt(ρ)

τ+τ ′

} , ∀ρ,

πt+1 = arg min
π∈Π

DKL (π̄t+1‖π).

We firstly prove several useful lemmas. For conciseness, we use vector notations.
Lemma 3. ∀π ∈ Π, DKL (π‖πt+1) ≤ DKL (π‖π̄t+1), ∀t ≥ 0.

Proof. Since the KL divergence is convex, and Π is convex, according to the first order optimality condition,(
− π̄t+1

πt+1

)>
(πt+1 − π) = π>

(
π̄t+1

πt+1
− 1

)
≤ 0.

On the other hand, by log x ≤ x− 1, ∀x ∈ R,

DKL (π‖πt+1)−DKL (π‖π̄t+1) = π> (log π̄t+1 − logπt+1) ≤ π>
(
π̄t+1

πt+1
− 1

)
.

Combining the two inequalities above completes the proof.

Lemma 4.

DKL(πt‖π̄t+1) ≤ 1

2 (τ + τ ′)
2 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt.

Proof. By the `1 norm strongly convex property of the negative entropy, the assumption that ‖r‖∞ ≤ 1 without loss of generality,
and ax− bx2 ≤ a2

4b , ∀a, b > 0, we have,

DKL(πt‖π̄t+1) = π>t logπt − π̄>t+1 log π̄t+1 − (πt − π̄t+1)
>

log π̄t+1

≤ (πt − π̄t+1)
>

logπt −
1

2
‖πt − π̄t+1‖21 − (πt − π̄t+1)

>
log π̄t+1

= (πt − π̄t+1)
>

(logπt − log π̄t+1)− 1

2
‖πt − π̄t+1‖21

=
1

τ + τ ′
(π̄t+1 − πt)

>
r +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt −

1

2
‖πt − π̄t+1‖21

≤ 1

τ + τ ′
‖π̄t+1 − πt‖1 · ‖r‖∞ −

1

2
‖πt − π̄t+1‖21 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt

≤ 1

τ + τ ′
‖π̄t+1 − πt‖1 −

1

2
‖πt − π̄t+1‖21 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt

≤ 1

2 (τ + τ ′)
2 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt.



Lemma 5.

DKL(π̄t+1‖πt) ≤
1

2τ (τ + τ ′)
+
τ ′

τ
log n.

Proof.

DKL(π̄t+1‖πt) = π̄>t+1 log π̄t+1 − π>t logπt − (π̄t+1 − πt)
>

logπt

≤ (π̄t+1 − πt)
>

log π̄t+1 −
1

2
‖πt − π̄t+1‖21 − (π̄t+1 − πt)

>
logπt

= (π̄t+1 − πt)
>

(log π̄t+1 − logπt)−
1

2
‖πt − π̄t+1‖21

=
1

τ + τ ′
(π̄t+1 − πt)

>
r +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt −

1

2
‖πt − π̄t+1‖21

≤ 1

τ + τ ′
‖π̄t+1 − πt‖1 · ‖r‖∞ −

1

2
‖πt − π̄t+1‖21 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt

≤ 1

τ + τ ′
‖π̄t+1 − πt‖1 −

1

2
‖πt − π̄t+1‖21 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt

≤ 1

2 (τ + τ ′)
2 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt.

Therefore,

DKL(π̄t+1‖πt) ≤
1

2 (τ + τ ′)
2 +

τ ′

τ + τ ′
(πt − π̄t+1)

>
logπt

=
1

2 (τ + τ ′)
2 +

τ ′

τ + τ ′
(
DKL(π̄t+1‖πt)− π̄>t+1 log π̄t+1 + π>t logπt

)
.

Rearranging,

DKL(π̄t+1‖πt) ≤
1

2τ (τ + τ ′)
+
τ ′

τ

(
π>t logπt − π̄>t+1 log π̄t+1

)
≤ 1

2τ (τ + τ ′)
+
τ ′

τ
log n.

Now we prove Theorem 1,

Proof. According to Lemma 3 and Lemma 4, ∀π ∈ Π,

(π − πt)
>

r = (π − πt)
>

[(τ + τ ′) (log π̄t+1 − logπt) + τ ′ logπt]

= (τ + τ ′) [DKL(π‖πt)−DKL(π‖π̄t+1) +DKL(πt‖π̄t+1)] + τ ′ (π − πt)
>

logπt

≤ (τ + τ ′) [DKL(π‖πt)−DKL(π‖πt+1) +DKL(πt‖π̄t+1)] + τ ′ (π − πt)
>

logπt

≤ (τ + τ ′) [DKL(π‖πt)−DKL(π‖πt+1)] +
1

2 (τ + τ ′)
+ τ ′ (π − π̄t+1)

>
logπt.

According to Lemma 5,

(π − π̄t+1)
>

logπt = −DKL(π‖πt) + π> logπ +DKL(π̄t+1‖πt)− π̄>t+1 log π̄t+1

≤ DKL(π̄t+1‖πt)− π̄>t+1 log π̄t+1

≤ 1

2τ (τ + τ ′)
+
τ + τ ′

τ
log n.

Combining the above,

(π − πt)
>

r ≤ (τ + τ ′) [DKL(π‖πt)−DKL(π‖πt+1)] +
1

2 (τ + τ ′)
+

τ ′

2τ (τ + τ ′)
+
τ ′ (τ + τ ′)

τ
log n.

Summing up from t = 1 to T , and choosing τ + τ ′ =
√
T√

2 logn
, τ ′ = 1√

T logn
,

T∑
t=1

(π − πt)
>

r ≤ (τ + τ ′)DKL(π‖π1) +
T

2 (τ + τ ′)
+

Tτ ′

2τ (τ + τ ′)
+
Tτ ′ (τ + τ ′)

τ
log n

≤
√

2T log n+
1

√
T√

2 logn
− 1√

T logn

(
1√
2

+ 1

)
+
√
T log n,

by DKL(π‖π1) ≤ log n. Note that choosing τ + τ ′ =
√
t√

2 logn
, τ ′ = 1√

t logn
will lead to the same result.



A.4 Proof of Theorem 2
Proof. (Monotonic Improvement) Using DKL(π̄∗τ,τ ′‖πθt+1

) = minπθ∈ΠDKL(π̄∗τ,τ ′‖πθ) ≤ DKL(π̄∗τ,τ ′‖πθt) and Jensen’s
inequality,

SR(πθt+1
)− SR(πθt) = (τ + τ ′) log

∑
ρ

exp
{
r(ρ)+τ log πθt+1

(ρ)

τ+τ ′

}
∑
ρ

exp
{
r(ρ)+τ log πθt (ρ)

τ+τ ′

}

= (τ + τ ′) log
∑
ρ

exp
{
r(ρ)+τ log πθt (ρ)

τ+τ ′

}
∑
ρ

exp
{
r(ρ)+τ log πθt (ρ)

τ+τ ′

} · exp

{
τ log πθt+1

(ρ)− τ log πθt(ρ)

τ + τ ′

}

= (τ + τ ′) log
∑
ρ

π̄∗τ,τ ′(ρ) · exp

{
τ log πθt+1

(ρ)− τ log πθt(ρ)

τ + τ ′

}

≥ (τ + τ ′)
∑
ρ

π̄∗τ,τ ′(ρ) log exp

{
τ log πθt+1(ρ)− τ log πθt(ρ)

τ + τ ′

}

= τ
∑
ρ

π̄∗τ,τ ′(ρ) log
πθt+1(ρ)

πθt(ρ)
= τ

[
DKL(π̄∗τ,τ ′‖πθt)−DKL(π̄∗τ,τ ′‖πθt+1)

]
≥ 0.

(Fixed Points) The stationary point of SR(πθ) is the πθ which satisfies,
dSR(πθ)

dθ
= 0

⇐⇒ (τ + τ ′) ·

∑
ρ

exp
{
r(ρ)+τ log πθ(ρ)

τ+τ ′

}
· τ
τ+τ ′ ·

1
πθ(ρ) ·

dπθ(ρ)
dθ∑

ρ′ exp
{
r(ρ′)+τ log πθ(ρ′)

τ+τ ′

} = 0

⇐⇒ −
∑
ρ

πθ(ρ) exp
{
r(ρ)−τ ′ log πθ(ρ)

τ+τ ′

}
∑
ρ′ πθ(ρ

′) exp
{
r(ρ′)−τ ′ log πθ(ρ′)

τ+τ ′

} · 1

πθ(ρ)
· dπθ(ρ)

dθ
= 0. (τ > 0)

(16)

On the other hand, the fixed point of ECPO indicates at some iteration t,
πθt = πθt+1

,

where πθt
Lift Step−−−−→ π̄∗τ,τ ′

Project Step−−−−−−→ πθt+1 in Eq. (4),
(17)

which means πθt is the solution of the Project Step,
dDKL(π̄∗τ,τ ′‖πθ)

dθ

∣∣∣∣
θ=θt

= 0

⇐⇒ −
∑
ρ

π̄∗τ,τ ′(ρ) · 1

πθ(ρ)
· dπθ(ρ)

dθ

∣∣∣∣∣
θ=θt

= 0

⇐⇒ −
∑
ρ

πθt(ρ) exp
{
r(ρ)−τ ′ log πθt (ρ)

τ+τ ′

}
∑
ρ′ πθt(ρ

′) exp
{
r(ρ′)−τ ′ log πθt (ρ

′)

τ+τ ′

} · 1

πθ(ρ)
· dπθ(ρ)

dθ

∣∣∣∣∣∣
θ=θt

= 0.

(by Lift Step in Eq. (17))

(18)

Comparing Eq. (18) with Eq. (16), we have the fixed point condition of ECPO is the same as the definition of the stationary point
of SR(πθ).

A.5 Proof of Proposition 3

Proof. Note that πθ =
exp{Φ>θ}

1> exp{Φ>θ} , where Φ is the feature matrix and θ is the policy parameter. Simply compute the Hessian
matrix of the objective,

d2DKL(π̄‖πθ)
dθ2

= Φ(∆(πθ)− πθπ>θ )Φ> � 0.

Thus DKL(π̄‖πθ) is convex in θ.



A.6 Proof of Lemma 2
Proof. According to the definition of SR,

SR(π) = max
π′∈∆

E
ρ∼π′

r(ρ)− τDKL(π′‖π) + τ ′H(π′)

= η log
∑
ρ

π(ρ) · exp

{
r̂(ρ)

η

}
.

The lower bound is trivial by directly plugging π into the optimization problem. For the upper bound,

exp

{
r̂(ρ)

η

}
= exp

{
r̂∞
η

}
exp

{
r̂(ρ)− r̂∞

η

}
≤ exp

{
r̂∞
η

}(
1 +

1

η
(r̂(ρ)− r̂∞) +

1

2η2
(r̂(ρ)− r̂∞)

2

)
,

where the inequality follows by ex ≤ 1 + x+ x2

2 for x ≤ 0. Therefore,

∑
ρ

π(ρ) exp

{
r̂(ρ)

η

}
≤ exp

{
r̂∞
η

}∑
ρ

π(ρ)

(
1 +

1

η
(r̂(ρ)− r̂∞) +

1

2η2
(r̂(ρ)− r̂∞)

2

)

= exp

{
r̂∞
η

}(
1 +

1

η

∑
ρ

π(ρ)(r̂(ρ)− r̂∞) +
1

2η2

∑
ρ

π(ρ) (r̂(ρ)− r̂∞)
2

)

≤ exp

{
r̂∞
η

}
exp

{
1

η

∑
ρ

π(ρ) (r̂(ρ)− r̂∞) +
1

2η2

∑
ρ

π(ρ) (r̂(ρ)− r̂∞)
2

}

= exp

{
1

η

∑
ρ

π(ρ)r̂(ρ) +
1

2η2

∑
ρ

π(ρ) (r̂(ρ)− r̂∞)
2

}
,

where the second inequality follows by 1 + x ≤ ex. Therefore,

SR(π) ≤ E
ρ∼π

r̂(ρ) +
1

2η
E
ρ∼π

[
(r̂(ρ)− r̂∞)

2
]
.

To prove (i), note that as τ → 0, SR(πθ)→ τ ′ log
∑
ρ exp

{
r(ρ)
τ ′

}
, the standard softmax value. Taking limit on τ ′ gives the

hardmax value maxρ r(ρ) as τ ′ → 0.
To prove (ii), we have ,

lim
τ→∞

(τ + τ ′) log
∑
ρ

exp

{
r(ρ) + τ log πθ(ρ)

τ + τ ′

}
= lim
τ→∞

∑
ρ πθ(ρ) exp

{
r(ρ)−τ ′ log πθ(ρ)

τ+τ ′

}
(r(ρ)− τ ′ log πθ(ρ))∑

ρ πθ(ρ) exp
{
r(ρ)−τ ′ log πθ(ρ)

τ+τ ′

}
=
∑
ρ

πθ(ρ) [r(ρ)− τ ′ log πθ(ρ)]

= E
ρ∼πθ

r(ρ) + τ ′H(πθ).

As τ ′ → 0, SR(πθ)→ Eρ∼πθ r(ρ).

B Details of ECPO Learning
This section provides some of the details of learning algorithms for ECPO. We first show the derivation of the analytic solution
of the Lift Step.

Lemma 6. The lift step of Eq. (4) has the following closed form expression:

π̄∗τ,τ ′(ρ) ,
π̄(ρ) exp

{
r(ρ)−τ ′ log π̄(ρ)

τ+τ ′

}
∑
ρ′ π̄(ρ′) exp

{
r(ρ′)−τ ′ log π̄(ρ′)

τ+τ ′

} . (19)



Proof. Rewrite the objective function defined in Eq. (4),

E
ρ∼π

r(ρ)− τDKL(π‖π̄) + τ ′H(π) = E
ρ∼π

[r(ρ) + τ log π̄(ρ)] + (τ + τ ′)H(π), (20)

which is an entropy regularized reshaped reward objective. The optimal policy of this objective can be obtained by directly
applying Lemma 4 of [Nachum et al., 2017b], i.e.,

π̄∗τ,τ ′(ρ) ∝ exp

{
r(ρ) + τ log π̄(ρ)

τ + τ ′

}
= π̄(ρ) exp

{
r(ρ)− τ ′ log π̄(ρ)

τ + τ ′

}
. (21)

The next lemma provides the derivation of the gradient estimation of ECPO (Lemma 1).

Proof. Note that

DKL(π̄∗τ,τ ′‖πθ) = E
ρ∼π̄∗

τ,τ′

[
log π̄∗τ,τ ′(ρ)− log πθ(ρ)

]
= E
ρ∼π̄

[
π̄∗τ,τ ′(ρ)

π̄(ρ)

(
log π̄∗τ,τ ′(ρ)− log πθ(ρ)

)]
.

Therefore, taking gradient on both sides,

∇θDKL(π̄∗τ,τ ′‖πθ) ≈ −
1

K

K∑
k=1

π̄∗τ,τ ′(ρk)

π̄(ρk)
∇θ log πθ(ρk)

= − 1

K

K∑
k=1

π̄(ρk) exp
{
r(ρk)−τ ′ log π̄(ρk)

τ+τ ′

}
π̄(ρk)

∑
ρ′ π̄(ρ′) exp

{
r(ρ′)−τ ′ log π̄(ρ′)

τ+τ ′

}∇θ log πθ(ρk) by Eq. (19)

≈ − 1

K

K∑
k=1

exp{ωk}
1
K

∑K
j=1 exp{ωj}

∇θ log πθ(ρk)

= −
K∑
k=1

exp {ωk}∑K
j=1 exp {ωj}

∇θ log πθ(ρk).

Recall that in Algorithm 1 the project step is performed by SGD. In our implementation, the end condition of SGD is controlled
by two parameters: ε > 0 and F STEP ∈ {0, 1}. First, SGD halts if the change of the KL divergence is below or equal to ε.
Second, F STEP decides the maximum number of SGD steps. If F STEP = 1, the maximum number is

√
t at iteration t; while

if F STEP = 0, there is no restriction on the maximum number of gradient steps, and stopping condition only depends on ε.

C Details of ECAC Learning
Recall that in Section 4, the losses for training soft state-value function, soft Q-function and policy are as follows,

L(φ) = Es∼D
[

1

2
(Vφ(s)− [Qψ(s, a)− τ ′ log π̄(a|s)])2

]
, (22)

L(ψ) = E(s,a,s′)∼D

[
1

2
(Qψ(s, a)− [r(s, a) + γVφ(s′)])

2
]
, (23)

L(θ) = Es∼D
[
DKL

(
exp

{
Qψ(s, ·) + τ log π̄(·|s)− Vφ(s)

τ + τ ′

}∥∥∥∥πθ(·|s))] . (24)

To increase the stability of the training, we include a target state value network Vφ̄, where φ̄ is an exponentially moving
average of the value network weights φ. Different from Eq. (23), the soft Q-function parameters ψ is then trained to minimize
the soft Bellman error using the target state value network,

L(ψ) = E(s,a,s′)∼D

[
1

2

(
Qψ(s, a)−

[
r(s, a) + γVφ̄(s′)

])2]
(25)

Our approach also use two soft-Q functions in order to mitigate the overestimation problem caused by value function approxima-
tion [Haarnoja et al., 2018; Fujimoto et al., 2018]. Specifically, we apply two soft-Q function approximations, Qψ1

(s, a) and
Qψ2

(s, a), and train them independently. The minimum of the two Q-functions will be used whenever the soft-Q value is needed.
The next lemma shows that the gradient of Eq. (24) can be computed by importance sampling using the reference policy,



Algorithm 2 The ECAC algorithm

Input: temperature parameters τ and τ ′, lag on target value network α, number of training steps M
1: Initialize πθ, Vφ, Vφ̄, Qψ1

, Qψ2
and replay buffer D

2: For t = 1, 2, . . . do
3: For each environment step do
4: a ∼ πθ(·|s)
5: Observe s′ and r from environment
6: D ← D ∪ {(s, a, r, s′)}
7: end For
8: Set π̄ = πθ
9: For i = 1, . . . ,M do

10: Sample a mini-batch of data {(sj , aj , rj , s′j)}Bj=1 from D
11: Compute gradient∇θL(θ),∇φL(φ),∇ψ1

L(ψ1),∇ψ2
L(ψ2) according to Eqs. (22) to (24)

12: Update parameters θ, φ, ψ1, ψ2 by gradient descent
13: Update φ̄ by αφ+ (1− α)φ̄
14: end For
15: end For

Lemma 7. The gradient of Eq. (24) is,

∇θL(θ) = ∇θEs∼D
[
Ea∼π̄

[
exp

{
Qψ(s, a)− τ ′ log π̄(a|s)− Vφ(s)

τ + τ ′

}
log πθ(a|s)

]]
. (26)

Proof. Let π(a|s) = exp
{
Qψ(s,a)+τ log π̄(a|s)−Vφ(s)

τ+τ ′

}
, then we have,

∇θL(θ) = ∇θEs∼D

[∑
a

π(a|s) log π(a|s)− π(a|s) log πθ(a|s)

]

= ∇θEs∼D

[
−
∑
a

exp

{
Qψ(s, a) + τ log π̄(a|s)− Vφ(s)

τ + τ ′

}
log πθ(a|s)

]

= ∇θEs∼D

[
−
∑
a

π̄(a|s) exp

{
Qψ(s, a)− τ ′ log π̄(a|s)− Vφ(s)

τ + τ ′

}
log πθ(a|s)

]

= ∇θEs∼D
[
Ea∼π̄

[
− exp

{
Qψ(s, a)− τ ′ log π̄(a|s)− Vφ(s)

τ + τ ′

}
log πθ(a|s)

]]

Pseudocode for ECAC is presented in Algorithm 2. The major difference between ECAC and ECAC in the lift step is that
instead of sampling K actions as described in Algorithm 1, ECAC only samples one action to construct π̄∗τ,τ ′ , due to the fact both
the soft-Q and state value function approximations are adopted. The value function approximations also make ECAC capable of
using off-policy data from a reply buffer. Furthermore, in the project step of ECAC, we use a fixed number of iteration for SGD,
which is given by an input parameter of the algorithm.

D Stochastic Transition Setting
In Section 1.1, we assume that the state transition function is deterministic for simplicity. For completeness, we consider the
general stochastic transition setting here.

D.1 Notations and Settings

Recall in Section 1.1, the policy probability of trajectory ρ = (s1, a1, . . . , aT−1, sT ) is denoted as π(ρ) =
∏T−1
t=1 π(at|st). We

define transition probability of ρ as f(ρ) ,
∏T−1
t=1 f(ss+1|st, at). The total probability of ρ under policy π and transition f

is then pπ,f (ρ) , π(ρ)f(ρ) =
∏T−1
t=1 π(at|st)f(ss+1|st, at). We use ∆f , {π|

∑
ρ pπ,f (ρ) =

∑
ρ π(ρ)f(ρ) = 1, π(ρ) ≥

0, f(ρ) > 0,∀ρ} to refer to the probabilistic simplex over all possible trajectories. It is obvious that pπ,f (ρ) = π(ρ) and ∆f = ∆
under deterministic transition setting, i.e., f(ρ) = 1,∀ρ.



D.2 ECPO Optimization Problem

The proposed ECPO algorithm solves Eq. (4) in the deterministic transition setting. In the stochastic setting, the corresponding
problem is,

(Project Step) arg min
πθ∈Π

DKL(pπ̄∗
τ,τ′ ,f

‖pπθ,f ),

(Lift Step) where π̄∗τ,τ ′ = arg max
π∈∆f

E
ρ∼pπ,f

[r(ρ)− τ ′ log π(ρ)]− τDKL(pπ,f‖pπθt ,f ).
(27)

which also recovers Eq. (4) as a special case when f(ρ) = 1,∀ρ.
Like Eq. (4), π̄∗τ,τ ′ in Eq. (27) also has a closed form expression,

Lemma 8. The unconstrained optimal policy of Eq. (27) has the following closed form expression:

π̄∗τ,τ ′(ρ) ,
π̄(ρ) exp

{
r(ρ)−τ ′ log π̄(ρ)

τ+τ ′

}
∑
ρ′ π̄(ρ′)f(ρ′) exp

{
r(ρ′)−τ ′ log π̄(ρ′)

τ+τ ′

} .
Proof. Rewrite the maximization problem in Eq. (27) as (take πθt as the reference policy π̄),

maximize
π

∑
ρ

π(ρ)f(ρ) [r(ρ)− (τ + τ ′) log π(ρ) + τ log π̄(ρ)]

subject to
∑
ρ

π(ρ)f(ρ) = 1.

The KKT condition of the above problem is,

f(ρ) [r(ρ)− (τ + τ ′) log π(ρ) + τ log π̄(ρ) + λ− (τ + τ ′)] = 0, ∀ρ∑
ρ

π(ρ)f(ρ) = 1.

Using f(ρ) > 0,∀ρ and solving the KKT condition, we obtain the expression of π̄∗τ,τ ′ .

Lemma 8 recovers Lemma 6 as a special case when f(ρ) = 1,∀ρ.

D.3 Theoretical Analysis

In stochastic transition setting, we define the follow softmax approximated expected reward of πθ

SRf (πθ) , (τ + τ ′) log
∑
ρ

f(ρ) exp

{
r(ρ) + τ log πθ(ρ)

τ + τ ′

}
,

which recovers SR(πθ) when f(ρ) = 1,∀ρ. The monotonic improvement property is for SRf (πθ).

Theorem 3. Assume that πθt is the update sequence of the ECPO algorithm in Eq. (27), then

SRf (πθt+1
)− SRf (πθt) ≥ 0.



Proof. Using DKL(pπ̄∗
τ,τ′ ,f

‖pπθt+1
,f ) = minπθ∈ΠDKL(pπ̄∗

τ,τ′ ,f
‖pπθ,f ) ≤ DKL(pπ̄∗

τ,τ′ ,f
‖pπθt ,f ) and Jensen’s inequality,

SRf (πθt+1
)− SRf (πθt) = (τ + τ ′) log

∑
ρ

f(ρ) exp
{
r(ρ)+τ log πθt+1

(ρ)

τ+τ ′

}
∑
ρ
f(ρ) exp

{
r(ρ)+τ log πθt (ρ)

τ+τ ′

}

= (τ + τ ′) log
∑
ρ

f(ρ) exp
{
r(ρ)+τ log πθt (ρ)

τ+τ ′

}
∑
ρ
f(ρ) exp

{
r(ρ)+τ log πθt (ρ)

τ+τ ′

} · exp

{
τ log πθt+1

(ρ)− τ log πθt(ρ)

τ + τ ′

}

= (τ + τ ′) log
∑
ρ

π̄∗τ,τ ′(ρ)f(ρ) · exp

{
τ log πθt+1

(ρ)− τ log πθt(ρ)

τ + τ ′

}

≥ (τ + τ ′)
∑
ρ

π̄∗τ,τ ′(ρ)f(ρ) · log exp

{
τ log πθt+1(ρ)− τ log πθt(ρ)

τ + τ ′

}

= τ
∑
ρ

π̄∗τ,τ ′(ρ)f(ρ) · log
πθt+1(ρ)

πθt(ρ)

= τ
∑
ρ

π̄∗τ,τ ′(ρ)f(ρ) · log
πθt+1

(ρ)f(ρ)

πθt(ρ)f(ρ)

= τ
[
DKL(pπ̄∗

τ,τ′ ,f
‖pπθt ,f )−DKL(pπ̄∗

τ,τ′ ,f
‖pπθt+1

,f )
]
≥ 0.

SRf (πθ) also recovers corresponding performance measures in the stochastic transition setting.

Proposition 4. SRf (πθ) satisfies the following properties:

(i) SRf (πθ)→ maxρ r(ρ), as τ → 0, τ ′ → 0.

(ii) SRf (πθ)→ E
ρ∼pπθ,f

r(ρ), as τ →∞, τ ′ → 0.

Proof. To prove (i), note that as τ → 0, SRf (πθ)→ τ ′ log
∑
ρ f(ρ) exp

{
r(ρ)
τ ′

}
. Taking limit on τ ′ gives the hardmax value

maxρ r(ρ) as τ ′ → 0.
To prove (ii), we have

lim
τ→∞

(τ + τ ′) log
∑
ρ

f(ρ) exp

{
r(ρ) + τ log πθ(ρ)

τ + τ ′

}
= lim
τ→∞

∑
ρ πθ(ρ)f(ρ) exp

{
r(ρ)−τ ′ log πθ(ρ)

τ+τ ′

}
(r(ρ)− τ ′ log πθ(ρ))∑

ρ πθ(ρ)f(ρ) exp
{
r(ρ)−τ ′ log πθ(ρ)

τ+τ ′

}
=
∑
ρ

πθ(ρ)f(ρ) [r(ρ)− τ ′ log πθ(ρ)]

= E
ρ∼pπθ,f

r(ρ)− τ ′ · E
ρ∼pπθ,f

log πθ(ρ)

As τ ′ → 0, SRf (πθ)→ Eρ∼pπθ,f r(ρ).

D.4 Learning
The ECPO learning process is intact under the stochastic transition setting. Similar with Appendix B, we can estimate the KL
divergence in the projection step of Eq. (27) by drawing K i.i.d. samples {ρ1, . . . , ρK} from pπ̄,f , i.e., the mixture of π̄ and f ,
which is exactly the process of sampling from π̄ and interacting with the environment,

DKL(pπ̄∗
τ,τ′ ,f

‖pπθ,f ) = E
ρ∼pπ̄∗

τ,τ′
,f

[
log π̄∗τ,τ ′(ρ)− log πθ(ρ)

]
= E
ρ∼pπ̄,f

π̄∗τ,τ ′(ρ)

π̄(ρ)

[
log π̄∗τ,τ ′(ρ)− log πθ(ρ)

]
.

(28)

We can then approximate the gradient of DKL(pπ̄∗
τ,τ′ ,f

‖pπθ,f ) by averaging these K samples according to Eq. (28).



Theorem 4. Let ωk = r(ρk)−τ ′ log π̄(ρk)
τ+τ ′ . Given K i.i.d. samples {ρ1, . . . , ρK} from the reference policy π̄, we have the

following unbiased gradient estimator,

∇θDKL(pπ̄∗
τ,τ′ ,f

‖pπθ,f ) ≈ −
K∑
k=1

exp {ωk}∑K
j=1 exp {ωj}

∇θ log πθ(ρk), (29)

Proof. See the proof of Lemma 1.

Similar argument could be applied for ECAC learning objectives.

E Experiments Details
We describe the algorithmic and mujoco tasks we experimented on as well as details of experimental setup in this section.

E.1 Algorithmic and Mujoco Tasks
In each algorithmic task, the agent operates on a tape of characters or digits. At each time step, the agent read one character or
digit, and then decide to either move the read pointer one step in any direction of the tape, or write a character or digit to output.
The total reward of each sampled trajectory is only observed at the end. The goal of each task is:
• Copy: Copy a sequence of characters to output.
• DuplicatedInput: Duplicate a sequence of characters.
• RepeatCopy: Copy a sequence of characters, reverse it, then forward the sequence again.
• Reverse: Reverse a sequence of characters.
• ReversedAddition: Observe two numbers in base 3 in little-endian order on a 2× n grid tape. The agent should add the

two numbers together.
The Mujoco library contains various of continuous control tasks [Todorov et al., 2012]. The specific action dimensions of

each problem is summarized in Table 1.

Table 1: Action Dimensions of Mujoco Tasks

Task Action Dimensions
Hopper 3

Walker2d 6
HalfCheetah 6

Ant 8
Humanoid 17

E.2 Implementation Details
For the synthetic bandit problem, we parameterize the policy by a weight vector θ ∈ R20. Let Ω = (ω1, . . . , ω10,000) be the
feature matrix. The policy is defined by softmax(Ω>θ). The ECPO parameters used in Fig. 1 are summarized in Table 2.

Table 2: ECPO Hyperparameters in Synthetic Bandit

Parameter Values
τ 0.1
τ ′ 0.0
learning rate 0.01
ε 5 · 10−4

F STEP 0

For the algorithmic tasks, policy is parameterized by a recurrent neural network with LSTM cells of hidden dimension 256. In
all algorithms, N distinct environments are used to generate samples. On each environment, K random trajectories are sampled
using the agent’s policy to estimate gradient according to Eq. (6), which gives the batch size N ×K in total. We apply the same
batch training setting as in UREX [Nachum et al., 2017a], where N = 40 and K = 10. F STEP of REMPD is set to 1 in all
tasks (See Appendix B). The ECPO parameters used in Fig. 1 are summarized in Table 3.

We use standard gaussian policy for all experimented algorithms in the mujoco tasks. Two layer fully-connected feed-forward
neural networks with hidden dimension 300 and ReLU nonlinearity are applied to parameterize policy, soft state value, and



Table 3: ECPO Hyperparameters in Algorithmic Tasks

Copy DuplicatedInput RepeatCopy Reverse ReversedAddition
τ 0.5 0.5 2.0 0.2 0.5
τ ′ 0.01 0.01 0.01 0.02 0.01
learning rate 0.01 0.01 0.01 0.001 0.001
clip norm 20 20 20 20 20
ε 0.01 0.01 0.005 0.005 0.005

soft-Q value. We batch size 256 for all algorithms on all tasks. The lag parameter α of ECAC for target value network update
is 0.01, and the number of training steps is set as M = 100 in all tasks. The other domain-dependent ECAC parameters are
summarized in Table 4.

Table 4: ECAC Hyperparameters in Mujoco Tasks

Walker2d Hopper HalfCheetah Ant Humanoid
τ 1.5 0.5 0.5 1.0 2.0
τ ′ 0.2 0.05 0.2 0.1 0.05
ψ learning rate 5 · 10−4 5 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

φ learning rate 5 · 10−4 5 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4

θ learning rate 5 · 10−4 5 · 10−4 3 · 10−4 3 · 10−4 3 · 10−4
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