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Abstract

Despite its potential to improve sample complexity versus model-free approaches,
model-based reinforcement learning can fail catastrophically if the model is in-
accurate. An algorithm should ideally be able to trust an imperfect model over
a reasonably long planning horizon, and only rely on model-free updates when
the model errors get infeasibly large. In this paper, we investigate techniques for
choosing the planning horizon on a state-dependent basis, where a state’s planning
horizon is determined by the maximum cumulative model error around that state.
We demonstrate that these state-dependent model errors can be learned with Tem-
poral Difference methods, based on a novel approach of temporally decomposing
the cumulative model errors. Experimental results show that the proposed method
can successfully adapt the planning horizon to account for state-dependent model
accuracy, significantly improving the efficiency of policy learning compared to
model-based and model-free baselines.

1 Introduction

Model-free reinforcement learning (RL) aims to learn an effective behavior policy directly from
interaction with a black-box environment. This approach has recently achieved great success,
particularly in game playing [13, 14, 16, 17]. Unfortunately, model-free RL techniques are hampered
by poor sample efficiency, which makes their deployment infeasible whenever data collection is
expensive. A key challenge remains to improve the sample efficiency of general purpose RL methods.

By contrast, model-based RL attempts to learn a model of an environment from direct experience
collected during training. A learned model can be either directly combined with a planning algorithm
[10, 19], or applied to improve the target values for model-free RL [4, 6]. Model-based RL is
often thought to be more sample efficient than model-free approaches [20]. Recent theoretical work
confirms this intuition by showing that there exist environments where model-based approaches can
be exponentially more sample efficient than any model-free approach [18].

The performance of model-based RL heavily relies on the quality of the model a learning agent
can acquire. When an accurate model is given or can be learned with relatively little experience,
model-based RL can be significantly more data efficient than model-free approaches. However, in
noisy and complex environments, learning an accurate model can be a challenge. In such cases,
model errors can compound and render the model useless for planning, which can lead to catastrophic
failure of model-based RL. Although having an accurate model in a complex environment can be
unrealistic, it is sometimes possible to obtain a model that is accurate in local subsets of the state
space. For example in robotic control tasks, local-motion dynamics that do not consider external
environment interaction can be much easier to model than the dynamics of interaction with other
∗Equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



objects. In such cases, even if a pure model-based approach would fail, one might still expect to gain
advantage over model-based approaches by exploiting the accurate parts of the model.
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Figure 1: Illustration of adaptive planning horizon
in FourRoom with an imperfect model. The model
is perfect in three rooms while totally wrong in
the left bottom room. Non-adaptive MVE diverges
due to the large model errors (right). In contrast,
AdaMVE is able to adapt the planning horizon at
different state (see (a), darker color means longer
planning horizon), outperforming both the model-
based and model-free baselines.

One potential advantage of model-based RL is
that a longer planning horizon can be considered
by rolling out the model for multiple steps. Ide-
ally, with an imperfect model, one would like a
principled approach for adapting the planning
horizon at different states, in order to overcome
the compounding error problem of model-based
RL. When the model has large error around
some states, the learning agent should trust the
model less by using a small planning horizon.
On the other hand, for states where the model
is near optimal, a large planning horizon should
be adopted. To implement this idea, we pro-
vide a few key observations that are essential
for the methods we propose: First, we charac-
terize the error in a multi-step learning target
under an approximate model as a multi-step dis-
counted cumulative model error. Second, we
show how the cumulative model error for dif-
ferent planning horizons can be learned based
on TD-learning. Finally, we introduce Adaptive
Model-based Value Expansion (AdaMVE), an extension to Model-based Value Expansion (MVE) [6]
that adaptively selects planning horizons for each state, based on the learned accumulative model
errors. To illustrate, Fig. 1 provides an example of how AdaMVE works in a FourRoom gridworld
maze with an imperfect model. This example shows that AdaMVE can successfully adapt the
planning horizon for different subsets of the state space, and significantly outperforms both MVE
and model-free baselines. We evaluate our method on both gridworld mazes with different imperfect
models as well as continuous control tasks. The experimental results suggest that the adaptive horizon
algorithm can significantly alleviate the compounding error problem in model-based RL, while
exploiting its advantage in terms of sample efficiency.

2 Background

Consider a Markov Decision Process (MDP) [20]M = (S,A, P,R, γ) where S is the state space,A
is the action space, P (·|s, a) is the transition probability distribution function, R(s, a) is the reward
function and γ is the discount factor. We also assume that each state is represented by a feature vector
s ∈ Rd. The goal is to find a policy π(·|s) that maximizes the cumulative discounted reward starting
from any state s ∈ S. Let Pπ(·|s) denote the induced transition distribution for policy π. For later
convenience, we also introduce the notion of multi-step transition distributions as Pπt , where Pπt (·|s)
denotes the distribution over the state space after rolling out Pπ for t steps starting from state s. For
example, Pπ0 (·|s) is the Dirac delta function at s and Pπ1 (·|s) = Pπ(·|s). We use Rπ(s) to denote
the expected reward at state s when following policy π, i.e. Rπ(s) = Ea∼π(·|s) [R(s, a)]. The state
value function is defined by

V π(s) =
∑∞

t=0
γtEst∼Pπt (s) [Rπ(st)] .

The action-value function (a.k.a. Q-function) can be written as

Qπ(s, a) = R(s, a) + γEs′∼P (·|s,a) [V π(s′)] .

The optimal policy is define as the policy π that maximizes V π(s) at all states s ∈ S. Such policy
always exists [20].

Model-based reinforcement learning approaches explicitly make use of a dynamics model P̂ ≈ P
of the environment to compute the optimal policy, while model-free approaches learn the optimal
policy without explicitly modeling P (e.g. directly learning the action-value functions from samples).
Throughout the paper we assume that the reward function R is known to the agent, hence a “model”
refers to an estimated transition dynamics P .
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2.1 Multi-step Model-Based Value

One potential advantage of learning a model is to compute a multi-step target value by iteratively
rolling out the model, that is, to take the predicted state of the model and feed it in again as the state
input, projecting to a sample state two time steps later, and so on. Formally, for any policy π, given a
planning horizon H , a reference (target) value function V̄ , and an approximate (e.g. learned) model
P̂ , the H-step model-based value is defined as

V̂ π
P̂ ,H

(s) =

H−1∑
t=0

γtEst∼P̂πt (s) [Rπ(st)] + γHEsH∼P̂πH(s)[V̄ (sH)] . (1)

This value can be integrated with model-free methods in different ways based on the policy π. For
example in AlphaGo Zero, the H-step optimal lookahead policy π∗H = argmaxπV̂

π
P̂ ,H

(s) combined
with a proper exploration strategy is used as the behavior policy of the learning agent, where π∗H is
approximated by Monte Carlo Tree Search [17].

Model-based value expansion (MVE) is another example of utilizing objective (1) [4, 6]. MVE applies
the learning agent’s current policy as the rollout policy to obtain V̂ π

P̂ ,H
(s), which is used as the update

target value for TD Learning. For example in Q-learning [25], given a sampled transition (s, a, r, s′)
and a target Q-value function Q̄(s, a), one can replace the target value V̄ (s′) = maxa Q̄(s′, a) with
the multi-step estimate V̂ π

P̂ ,H
(s′) or a mixture of such estimates with different values of H . The

rollout policy π can be greedy with respect to Q̄. Note that when H = 0, there is no rollout hence
V̂ π
P̂ ,0

(s′) = V̄ (s′), which recovers the model-free update target.

When the model is perfect, MVE can reduce the biases of the targets, leading to improved performance
over model-free methods [6]. However, the major limitation of MVE is that the rollout horizon H
needs to be tuned in a task-specific manner: in a complex environment where the model is difficult to
learn, a smaller rollout horizon usually performs better than a larger one. To overcome this drawback,
Buckman et al. propose stochastic ensemble value expansion (STEVE), which applies stochastic
ensembles both over multiple models and rollout horizons to choose the best H dynamically [4].

2.2 Wasserstein Distance

The Wasserstein distance is a distance metric between two distributions. Its Kantorovich-Rubinstein
dual form is defined as follows [23]:

W (p, q) = sup
‖g‖L≤1

Ez∼p [g(z)]− Ez∼q [g(z)] (2)

where ‖g‖L is the Lipschitz constant of function g. If both p and q are Dirac delta functions (i.e. de-
terministic) denoted by δzp and δzq respectively, W (p, q) = ‖zp − zq‖2 is just the Euclidean distance.
If only one of the distributions is deterministic, e.g. q = δzq , then W (p, q) = Ez∼p

[
‖z − zq‖2

]
.

This can be checked directly from the primal form or observing that g(z) = ‖z − zq‖2 achieves the
superimum in the dual form [23].

3 Learning Multi-step Model Error

To exploit the advantage of multi-step value estimation while alleviating the negative impact of using
an imperfect model, we propose to adapt planning horizons H such that the H-step expanded value
using the approximate model is close to the one obtained using the true model. Specifically, for policy
π, consider the h-step model-based value error for an approximate model P̂ defined by

E(h|π, s, V̄ , P̂ ) =
∣∣∣V̂ π
P̂ ,h

(s)− V̂ πP,h(s)
∣∣∣ . (3)

We aim to select an appropriate planning horizon for state s based on this error. Since the accuracy of
an approximate model could vary in different subspace of S, selecting planning horizons in a state
dependent way is particularly desirable in practice.

Given a state s, exactly computing error (3) is unfeasible as we cannot directly compute the multi-step
model-based value due to the inaccessibility of the true model P . To overcome this problem, we
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propose a practical algorithm to learn the value expansion error for each state approximately, based
on the observation that the value expansion error defined in (3) can be characterized by the discounted
accumulative model error. The following theorem states such connection.

Theorem 1. Given any policy π, an approximate model P̂ , and a reference value function V̄ , for
planning horizon H we have

E(H|π, s, V̄ , P̂ ) =
∣∣∣V̂ π
P̂ ,H

(s)− V̂ πP,H(s)
∣∣∣ ≤ K · H−1∑

t=0

γt+1Est∼Pπt (s) [Wπ(st)] , (4)

where Wπ(s) = Ea∼π(·|s) [W (s, a)] with W (s, a) = W (P (·|s, a), P̂ (·|s, a)) being the Wasserstein

distance and K = suph

∥∥∥V̂ π
P̂ ,h

∥∥∥
L

is the maximum Lipschitzness of the estimated value function over
all possible horizons.

The H-step discounted cumulative model error (RHS of (4)) can be viewed as a finite-horizon RL
objective. We can define a new MDP to learn this error,MH,P̂= (S,A, P,W, γ), where the state
and action space, the transition function, and the discount factor remain unchanged from the original
problem, the W-reward function W (s, a) = W (P (·|s, a), P̂ (·|s, a)) defines the “reward” of the MDP.
WithMH,P̂ , we define a new state-value function named h-step state model error function, which
measures the expected cumulative model error if the agent starts in state s and follows some policy π,

Êπ(s, h) =

{
0 h = 0∑h−1
t=0 γ

tEst∼Pπt (s) [Wπ(st)] h > 0
(5)

According to (4), Êπ(s, h) is an upper bound of the h-step model-based value error (3) up to a
constant. Similarly, the h-step action model error is defined by

Êπ(s, a, h) =

{
0 h = 0

W (s, a) + γEs′∼P (·|s,a)

[
Êπ(s′, h− 1)

]
h > 0

(6)

Note that Êπ(s, h) = Ea∼π
[
Êπ(s, h, a)

]
by the definition. Learning the h-step model-based value

error under some policy π now becomes a traditional policy evaluation problem in RL with a different
reward function. In this paper we use mode-free methods to learn the model error function.

3.1 Learning h-step Cumulative Model Error

We now introduce a principled method to learn the cumulative model error based on finite horizon
Bellman updates. SinceMH,P̂ only differs from the original MDP in the reward function, we can
directly learn the h-step model error using the transition data sampled from a relay buffer. As
discussed in Section 2.2, when either the ground-truth or the approximate transition is deterministic,
the W-reward is just the expected Euclidean norm between the real and predicted next state. For
stochastic transitions, W-reward can be approximated by learning the g function in (2) as suggested
in the Wasserstein GAN [1]. Therefore, given a sampled transition data (st, at, rt, st+1), we can
directly compute the W-reward for learning. In addition, since the policy π used for computing
mode-based value is non-stationary during learning, which may or may not be available at the time of
evaluating the value expansion errors, we measure the value expansion error using a reference policy
π̄. The choice of π̄ will be discussed later.

We use TD-learning to train the model error function. In particular, given a data sample (s, a, r, s′),
Ê is updated by minimizing the one step Bellman error

min
Ê

1

2

{
W (s, a) + γĒ(s′, a′, h− 1)− Ê(s, a, h)

}2

(7)

where a′ is selected using the policy π̄, and Ē is the target model error value function. It is important
to note that this learning process can be combined with any model-based algorithm where a replay
buffer is used. Also, our method does not introduce additional sample complexity, since the data used
to train (7) can be sampled from the replay buffer.

Choice of the Reference Policy. Since the policy used for value expansion is changing during the
learning process and the cumulative model error is policy dependent, it is expensive to retrain the
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model error for the current policy at every step. Thus, we choose the reference policy π̄ to “prepare
for the future”. There are several possibilities but we consider three that allow model error to be
efficiently learned with samples from the replay buffer.

1. The conservative reference policy argmaxπ E(h|π, s, V̄ , P̂ ) targets the maximum model error.
When using the learned model error to decide a proper planning horizon, this policy allows us to
consider the worst case model error, making the selected horizon more robust in practice. To
learn the model error under this policy, we can use a′ = argmaxa Ê(s′, a, h− 1) when doing
the update (7). This can be viewed as an extension of Q-learning [25] to learn the maximum
model error.

2. The greedy reference policy selects argmaxa Q̄(s, a) , where Q̄ is the current target Q-value
function of the learning agent. This policy tries to measure the model error under the learning
agent’s current behavior.

3. The replay buffer reference policy selects an action which occurred in the replay buffer at s.
This policy can be considered as a mixture policy of previous agent’s behaviors. As we only
care about the “value function” Ê π̄(s, h) and every sampled transition (s, a, r, s′) can be viewed
as “on-policy” under the replay buffer policy, we can directly estimate Ê π̄(s, h) by on-policy
TD learning: minÊ

1
2{W (s, a) + γĒ(s′, h− 1)− Ê(s, h)}2.

3.2 Adaptive Planning Horizon using Model Error

In this section, we introduce the Adaptive Model-based Value Expansion (AdaMVE) algorithm, as an
example of using a learned multi-step model error function to adapt planning horizon for different
states. Instead of applying a fixed horizon tuned for different environment when computing (1) as in
MVE, AdaMVE attempts to adapt the rollout horizon for different states according to a model error
function learned as described in the previous section. We suppose that the learner’s behavior policy π
is determined by Q-values. For a discrete domain, π = argmaxQ(s, a). For a continuous domain, π
is trained to approximate the greedy policy over Q(s, a) as in DDPG [12].

In AdaMVE, we aim to find a proper planning horizon H(s) ∈ [0, Hmax] for any state s ∈ S 2.
For state s ∈ S, we use the learned model error function Ê to produce the model error Ê(s, h) for
all rollout horizons h ∈ [0, Hmax]. Although Ê can be viewed as a good proxy for E in (4), it is
still difficult to directly find an appropriate planning horizon by setting a hard threshold, due to
the unknown Lipschitz constant K in Theorem 1. To resolve this issue, instead of setting a hard
threshold to get a maximum rollout horizon H(s), we use a soft weighted combination over all
horizons h ≤ Hmax. For horizon h with higher model error Ê(s, h) we set a smaller weight ωh. More
specifically, we define the weights according to a “softmax policy”

ω(h|s) ∝ exp
{
−Ê(s, h)/τ

}
(8)

where τ is a temperature parameter. AdaMVE uses this policy as its weighting function to mix the
expansion values (1) of different rollout horizons,

Ṽ π
P̂ ,Hmax

(s) =

Hmax∑
h=0

ω(h|s)V̂ π
P̂ ,h

(s) . (9)

To give a scalar measure of the “planning horizon” when using soft combination, for each state s
we define its weighted average horizon as H̄(s) =

∑Hmax
h=1 ω(h|s) ∗ h, which is the expected rollout

horizon under a “softmax policy”. When the model error is zero everywhere, ω(h|s) = 1/(Hmax + 1)
and Ṽ π

P̂ ,Hmax
(s) is the average value estimates of all horizon. The average planing horizon is H̄(s) =

Hmax/2. When the model error is infinitely large everywhere, ω(0|s) = 1 and ω(h|s) = 0 for all
h > 0 thus no rollout is being considered. The average planing horizon is H̄(s) = 0.

The combined value estimate (9) is used as the learning target to update Q(s, a). Specifically, at each
training step, AdaMVE samples a batch of data (s, a, r, s′) from a replay buffer B. For each s′ in the
batch, an on-policy Hmax-step rollout is computed using the model and the learning agent’s current
policy π. For each data (s, a, r, s′), we update Q by minimizing 1

2
{r + γṼ π

P̂ ,Hmax
(s′) − Q(s, a)}2 ,

2Hmax is set by computational consideration in practice. Our proposed method is valid for any large Hmax.
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where a target Q-value is used to compute the value at the end state of each rollout. Pseudocode of
AdaMVE is provided in the Appendix.

4 Related Work

Previous work in model-based reinforcement learning can be divided in two categories: using the
model for planning in low-dimensional state spaces, and combining the benefits of model-based and
model-free approaches. For the first category, Gal et al. [8] combine the PILCO algorithm [5] with a
neural dynamic model. Hafner et al. [10] propose to learn a latent dynamic model and choose actions
through online planning with the latent model. For the second category, Weber et al. use imaginary
rollouts generated by the dynamic model for policy learning [15]. Gu et al. propose to augment
imaginary rollout data to the experience replay buffer and show that this can accelerate model-free
learning [9]. In this paper, we use MVE [6] as the baseline algorithm to show the effectiveness of our
adaptive planning horizon algorithm. But it is important to note that our method can be combined
with any of the model-based methods discussed above.

The compounding error phenomenon of model-based RL is previously discussed in [2, 11, 21, 24].
Surprisingly, relatively little work has been done to solve this problem. Buckman et al. propose
STEVE, which uses stochastic ensemble of models and planning horizons to relax the error caused
by using only one model with a fixed planning horizon [4]. The ensemble with lowest variance is
used as the learning target. In comparison, our proposed method directly handles the compounding
error by adaptively selecting planning horizons based on a learned model error function. In addition
to using a different design idea, our approach has both the model and the model error as a single
function, which is far less computationally expensive than STEVE, that learns multiple models in
an ensemble. It is also worth noting that the model in our approach can be either hand designed,
pretrained from another task, or learned online.

5 Experiments

We conduct experiments on both gridworld and continuous control environments. For the gridworld
environment, we implement our adaptive value expansion (AdaMVE) based on DQN [13] and
compare to the vanilla DQN and its non-adaptive value expansion variant (MVE). For continuous
control, we implement AdaMVE with DDPG [12] and compare to the vanilla DDPG and MVE. We
perform a single update to the policy for all methods in comparison at each environmental step.

5.1 Experiments on GridWorld
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Figure 2: FourRoom Env

Visualizing the Adaptive Horizon. We first evaluate the learned adap-
tive planning horizon by visualizing in a gridworld with predefined im-
perfect model. If our method works correctly, we should observe a large
horizon at states where the model is accurate, but small horizon for those
states where the model deviates a lot from the true environment dynamics.

We use a FourRoom gridworld maze (Fig. 2). Each room has 9× 9 cells.
The agent’s objective is to find the goal position (in red) starting from a
random initial position. There are five actions: left, right, up, down and
stay. The maximum length of each episode is 50. After each episode the
agent restarts in a random position. The reward is 1 when hitting the goal
and 0 in the other positions. A state is represented by the (x, y) coordinate. We evaluate the adaptive
planning horizon using the following models:

• Oracle model. The transition function behaves exactly the same as the true environment.
• 3Room model. The transition function is true in three rooms, but completely wrong in the left

bottom room. For a given state and action in this room, the model simply produces a randomly
sampled next state from all possible positions.

• NoWall model. This model ignores the existence of the wall. For example, given a state at one
side of a wall, if the agent takes the action towards the wall, this model will predict the position
overlapping with the wall as the next state, but in the true environment the agent will just stop at
the current position.
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(a) 3Room CSRV
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(c) 3Room Replay
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(f) NoWall Replay

0 6000 12000 18000 24000 30000
training steps

0

5

10

15

20

25

30

35

40

re
wa

rd
s

AdaMVE_csrv
AdaMVE_greedy
AdaMVE_replay
DQN
MVE

(g) Oracle

0 6000 12000 18000 24000 30000
training steps

0

5

10

15

20

25

30

35

40

re
wa

rd
s

AdaMVE_csrv
AdaMVE_greedy
AdaMVE_replay
DQN
MVE

(h) 3Room
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Figure 3: Experiment results on FourRoom. (a)-(f) Visualization of learned planning horizon for all
states. For each state, the average horizon H̄(s) weighted by (8) is presented. We use Hmax = 5 thus
H̄(s) <= Hmax/2 = 2.5 from definition. Our method can successfully adapt the planning horizon
when the model is imperfect. (g)-(i) Policy learning performance with different models. The shaded
area shows the standard error. Results clearly show that AdaMVE significantly outperforms MVE
when the model is imperfect (no wall model and 3room model).

We evaluate the three reference policies (conservative, greedy and replay buffer) discussed in Sec-
tion 3.1, denoted by csrv, greedy and replay respectively. The results are visualized in Fig. 3 (a)-(f).
For each state (position), we show its weighted average horizon H̄(s), as defined in Section 3.2. The
results clearly show the effectiveness of the proposed method in finding an appropriate planning
horizon for different parts of the state space. For example, in the 3room model, our method can adopt
zero planning horizon for states in the left bottom room where the model has large error.

Policy Learning Performance in FourRoom. We compare AdaMVE with MVE and DQN using
the three models described above. Results are presented in Fig. 3 (g)-(i). Each data point is averaged
over 5 runs. Each run is evaluated after every 2000 environmental steps by computing the mean
total episode reward across 10 episodes. When the oracle model is available, the model error is zero
everywhere, hence AdaMVE performs exactly the same with MVE. Both algorithms outperforms
DQN, which confirms that the model-based value expansion targets can lead to improved performance.
However, when the model is noisy, MVE diverges due to model errors. In contrast, AdaMVE still
converges, and does so significantly faster than DQN. This is because AdaMVE can adapt the rollout
horizon for states where the model has large error as shown in the visualization. For example, when
using the 3room model, AdaMVE only performs the model-free updates for states in the bottom left
room. In contrast, at these states MVE still trusts the multi-step value expansion target, which has
large error that causes diverge.

5.2 Continuous Control

We experiment on continuous control tasks to further verify the benefit of adaptive rollout horizons.
We first use Mujoco [22] to create 3D mazes and learn to control a PointMass agent to navigate to a
goal area in the maze, starting from a random location, as shown in Fig 4(a-c). We also test on two
Mujoco control problems in OpenAI Gym [3]: HalfCheetah and Swimmer. All results are based on 5
different runs. Each data point in the plots is evaluated by 200 test episodes for PointMass Navigation,
and 50 test episodes for Mujoco control problems.
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Figure 4: Results of continuous control. (a)-(c) PointMass Navigation example environments. (d)-(e)
PointMass Navigation policy learning performance using pretrained model. (f)-(g) PointMass Navi-
gation policy learning performance using online learned model. (h)-(i) Policy learning performance
on HalfCheetah and Swimmer. AdaMVE outperforms both DDPG and MVE with pretrained model.
With online learned model, vanilla AdaMVE does not improve performance over the baselines.
SML_AdaMVE outperforms all the baseline algorithms with an online learned model.

Results with Pretrained Model. We first evaluate the adaptive method using a pretrained model on
the PointMass Navigation problem. We pretrain a model by executing a uniform-random policy in
PointNoWall (Fig 4 (a)). This pretrained model is then used as an imperfect model in PointRoom
(PR, Fig 4 (b)) and PointMaze (PM, Fig 4 (c)) without further training. This model is supposed to be
good at modeling local motions while bad at modeling interactions with the wall. For AdaMVE, we
use the replay reference policy and Hmax = 5. MVE applies a fixed rollout horizon 5. As shown in
Fig 4 (d)-(e), AdaMVE outperforms both MVE and DDPG, which further justifies the benefits of
selecting rollout horizons in an adaptive way.

Results with Online Learned Model. We next conduct experiments with an online learned model.
The model is updated by one gradient step at each environment step. We observe that in this setting it
is hard to achieve competitive performance by directly learning the model online. To fix this problem,
we propose selective model learning: for a batch B of data (s, a, s′) that are used for learning the
model, we rank the data according to the model error function Ê(s, hsml), and use x percent of the data
that have small model errors to learn the model. By using this selective model learning approach, we
hope to learn a partially accurate model that only focus on the dynamics which are easy to be learned.
Our adaptive planning method can still benefit from such model since it is able to learn where the
model has large errors and only adopt a small planning horizon at those states. We also note that
using the model error function Ê is different with directly computing the model error for each data
in B, since Ê is learned by a reference policy and thus can provide more stable guidance for robust
model learning. Another advantage of using Ê is that we can tune the hsml parameter, in which case
we try to identify states whose nearby regions have large model error.

We denote AdaMVE with selective model learning by SML_AdaMVE. In all test domains, we use
the replay reference policy and Hmax = 3 for both AdaMVE and Sml-AdaMVE. We tune hsml from
{1, 2} and use x = 50 for selective model learning. For MVE, we tune the rollout horizon H from
{1, 3, 5} and report the best result. Surprisingly, we find that H = 1 gives the best results in all
test domains. We also compare our methods with STEVE, the state-of-the-art model-based value
expansion method [4]. In our implementation of STEVE, we use 3 value functions, H = 3, and
3 independently online learned models to create ensembles. Results are presented in Fig 4 (f)-(i).
With an online learned model, vanilla AdaMVE does not improve performance over the baselines,
due to the difficulty to catch the error of an online updated model. However, by relaxing the model
learning procedure using selective model learning, SML_AdaMVE outperforms all the baselines
with an online learned model. Importantly, our proposed method has both the model and the model
error as a single function, which is far less computationally expensive than the stochastic adaptive
method STEVE, but show significantly better performance in practice.
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6 Conclusion

We present a principled method to learn model errors by TD-learning in model-based reinforcement
learning. Based on the learned model errors, an adaptive approach to select state-dependent planning
horizons is introduced. Our proposed algorithm, AdaMVE, combines model-based and model-free
reinforcement learning by adaptively selecting the rollout horizons in model-based value expansion.
Empirical results shows that AdaMVE (i) successfully adapts the planning horizons according to the
local correctness of the model, (ii) outperforms model-free, non-adaptive and stochastic-adaptive
model-based baselines.

For the future work, we would like to combine our adaptive planning horizon method in other
model-based RL approaches such as model predictive control and Monte Carlo tree search. Another
future direction is how to learn a (partially correct) model online. In the experiments, we observe that
simply fitting a neural network with minibatch and training L2 losses is not good enough and a better
model learning method is needed. Our proposed selective model learning method is a preliminary
attempt to solve this problem. We believe learning a reasonably good model online in complex high
dimensional control tasks is an important problem and deserves thorough future studies.
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A Appendix

A.1 Pseudocode

We provide the pseudocode for AdaMVE. We provide the pseudocode for discrete setting (based on
DQN), and the model error is learned by the replay buffer reference policy. This code can be easily
extend to continuous setting (based on DDPG) and model error learning with the other two reference
policies as discussed in Section 3.1.

Algorithm 1 Adaptive Mode-based Value Expansion
Input: maximum rollout horizon Hmax
Initialize the replay buffer B to capacity N
Initialize the approximate model Pν
Initialize action value function Qθ (and/or the policy funtion πθ if applicable)
Initialize state model error function Êφ with maximum rollout horizon Hmax
for t = 0 to T − 1 do

Sample transitions using the ε-greedy policy and store transitions in B
(If learn model) Sample transitions from B to learn the model Pν
Sample transitions from B to learn the model error Êφ
Sample a batch of transitions (s, a, r, s′) from B
For each s′ in the batch get Êφ(s′, h) for h ∈ [0, Hmax]
For each s′ compute the multi-step value expansion target for each h ∈ [0, Hmax]

Compute the target value Ṽ π
P̂ ,Hmax

(s′) according to (9)

Update θ using model free RL by using Ṽ π
P̂ ,Hmax

(s′) as the target value

Update target network parameters for both policy training and model error training, θ̄ and φ̄,
with exponential decay

end for
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A.2 Proof of Theorem 1

Proof. For any 0 ≤ h ≤ H , define Uh to be the H-step value expansion that rolls out the true model
P for the first h steps and the approximate model P̂ for the remaining H − h steps:

Uh =

h−1∑
t=0

γtEst∼Pπt (·|s) [Rπ(st)] +

H−1∑
t=h

γtEst∼P̂πt−h◦Pπh (·|s) [Rπ(st)]

+ γHEsH∼P̂πH−h◦Pπh (·|s)
[
V̄ (sH)

]
, (10)

where P̂πt−h ◦ Pπh (·|s) denotes the distribution over states after rolling out h steps with P and t− h
steps with P̂ , i.e.

P̂πt−h ◦ Pπh (·|s) =
∑
s′∈S

Pπh (s′|s)P̂πt−h(·|s′) .

From the definition of Uh we know U0 = V̂ π
P̂ ,H

(s) and UH = V̂ πP,H(s). Hence we have

V̂ π
P̂ ,H

(s)− V̂ πP,H(s) = U0 − UH =
H−1∑
h=0

(Uh − Uh+1) .

To analyze the difference between Uh and Uh+1, we rearrange the terms in (10) in two different
ways:

Uh =

h−1∑
t=0

γtEst∼Pπt (·|s) [Rπ(st)] + γhEsh∼Pπh (·|s)

[
V̂ π
P̂ ,H−h(sh)

]
, (11)

Uh =

h∑
t=0

γtEst∼Pπt (·|s) [Rπ(st)] + γh+1Esh+1∼P̂π◦Pπh (·|s)

[
V̂ π
P̂ ,H−h−1

(sh+1)
]
. (12)

Now applying (12) to Uh and (11) to Uh+1, we can bound Uh − Uh+1 by

h∑
t=0

γtEst∼Pπt (·|s) [Rπ(st)] + γh+1Esh+1∼P̂π◦Pπh (·|s)

[
V̂ π
P̂ ,H−h−1

(sh+1)
]

−
h∑
t=0

γtEst∼Pπt (·|s) [Rπ(st)]− γh+1Esh+1∼Pπh+1(·|s)

[
V̂ π
P̂ ,H−h−1

(sh+1)
]

=γh+1Esh∼Pπh (·|s),ah∼π(·|sh)

[
Es′∼P̂ (·|sh,ah)

[
V̂ π
P̂ ,H−h−1

(s′)
]
− Es′∼P (·|sh,ah)

[
V̂ π
P̂ ,H−h−1

(s′)
]]

≤
∥∥∥V̂ π

P̂ ,H−h−1

∥∥∥
L
γh+1Esh∼Pπh (·|s),ah∼π(·|sh) [ sup

‖f‖L≤1

Es′∼P̂ (·|sh,ah) [f(s′)]− Es′∼P (·|sh,ah) [f(s′)]
]

≤Kγh+1Esh∼Pπh (·|s) [Wπ(sh)] . (13)

The bound (13) also holds for the opposite direction Uh+1 − Uh. Therefore∣∣∣V̂ π
P̂ ,H

(s)− V̂ πP,H(s)
∣∣∣ ≤ H−1∑

h=0

|Uh − Uh+1| ≤ K
H−1∑
h=0

γh+1Esh∼Pπh (·|s) [Wπ(sh)] ,

which concludes the proof.

12



A.3 Extra Experiments on FourRoom

Comparison with MVE using other planning horizon. In Fig. 3 we compare AdaMVE with MVE
using a fixed horizon H = 5. In this section we provide experiment results compared with MVE_h1
(fixed horizon H = 1) and MVE_h3 (fixed horizon H = 3). AdaMVE still applies Hmax = 5.
AdaMVE clearly outperforms MVE-h1 and MVE-h3 on both domains in terms of sample efficiency
and final performance.
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Figure 5: We compare AdaMVE with MVE_h1 (fixed planning horizon 1) and MVE_h3 (fixed
planning horizon 3). AdaMVE outperforms both methods on both domains in terms of sample
efficiency and final performance.

Transferring Adaptivety to Different Tasks If the environment dynamics is fixed, the model error
learned in one task can be directly transferred to a different task. To illustrate this, we create a new
task named FourRoom2, by changing the goal position in FourRoom from (15,15) to (2,18). In
FourRoom2, we first train a model error function in FourRoom, then directly apply the pre-trained
model error for AdaMVE. We include DQN and AdaMVE that learns from scratch in the new tasks
as the baseline algorithms for comparison. Results are shown in Fig. 6. AdaMVE with the transferred
model error is denoted by T-AdaMVE.
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Figure 6: Evaluation of model error transformation.

Recall that the conservative policy tries to maximize the model error to provide a robust estimation.
Hence, the model error learned by this policy in FourRoom should still be effective for FourRoom2.
The result clearly confirms this intuition: with the pre-trained model error, AdaMVE_csrv learns
much faster than the one learning from scratch. In comparison, the model error learned by the greedy
policy and replay policy are less useful for transfer between the two tasks. When the no wall model
is used, the transferred model error even brings negative effects. This is due to the fact that both
the greedy policy and replay policy are based on the learning agent’s behavior during training and
therefore would change in different tasks.
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A.4 Experiment Details

Table 1 lists the parameters used in gridworld experiments. Table 2 lists the parameters used in
Mujoco Navigation. For selecting the mixing temperature τ , in Gridworld we pick the best one (0.01)
between 0.01 and 0.001. For Mujoco environments we use τ = 0.01 without further tuning. In
Swimmer, we use the double-Q trick to provide better performance [7]. For selective model learning,
the reported results use hsml = 2 for PointRoom, and hsml = 1 for other domains.

Table 1: Parameters used in gridworld experiments.

Parameter Values
ε-greedy 0.2
discount (γ) 0.98
τ 0.01
batch size 128
optimizer (all networks) Adam
learning rate (q network) 0.001
learning rate (model error network) 0.0001
replay buffer initial size 2000
replay buffer size 106

target network update interval 1
target network mixing coefficient 0.001
Q network for policy learning (200, 200, 200)
Q network for model error (200, 200, 200)
nonlinearity ReLU
Maximum rollout steps Hmax 5

Table 2: Parameters used in Mujoco Navigation.

Parameter Values
action noise for exploration N (0, 0.12)
discount (γ) 0.99
τ 0.01
batch size 128
optimizer (all networks) Adam
learning rate (all networks) 0.0001
A network weight decay (DDPG) 1e-6
Q network weight decay (DDPG) 1e-3
replay buffer initial size 20000
replay buffer size 106

target netowrk update interval 1
target network mixing coefficient 0.001
Q network for both model error and policy learning (300, 300, 300)
A network for both model error and policy learning (300, 300)
nonlinearity ReLU
Maximum rollout steps Hmax 5
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A.5 Adaptive Horizon in PointMass Navigation

We provide the weighted average horizon H̄ during training in PointRoom and PointMaze with a
pretrained model. The maximum horizon Hmax is set to 5. Figure 7 shows that H̄ over different states
has very high variance, which is a sign of successful adaptation since the pretrained model is wrong
at the states that are next to the wall (shorter rollout horizon) while being accurate at the states that
are away from the wall (longer rollout horizon). PointMass has shorter overall rollout horizons than
PointRoom because PointMaze has an extra wall and thus a smaller set of states where the pretrained
model is accurate, hence enjoys less benefit of using AdaMVE over DDPG than in PointRoom.
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Figure 7: Supporting Results. When Hmax = 5, the maximum of weighted average horizon H̄ is 2.5
according to the definition.
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