Real-time Search and Learning

Vadim Bulitko
http://ircl.cs.ualberta.ca
Disclaimer

- Work in progress

- Questions/suggestions/criticisms are most welcome
Acknowledgments

- Nathan Sturtevant
- IRCL members
- Adriana Lopez
- Mark Brockington
- Valeriy Bulitko
Outline

- Past work - path refinement in real-time search
- Current work - real-time opponent modeling
- Future work - marriage of the two
Past Work

Path Refinement in Learning Real-time Search
Simultaneous Planning & Learning

- We are interested in domains that are:
 - initially unknown
 - “real-time” (thinking matters)

- Examples:
 - RTS games
 - Robotics
Motivation: Theory

- Sustained attention to decision-making in dynamic, \textit{a priori} unknown domains
- IJCAI’05, AAAI’06, ECAI’06
- Challenges to AI
 - large scale learning
 - planning with uncertainty
 - opponent modeling
 - interleaving execution and deliberation
Problem Formulation

- path-planning in a game-like environment
- 2D grid
- unknown map
- static goal/start of known coordinates
- trial based
Incremental A*

Algorithm:
- run A* with the free space assumption
- Euclidean distance as the heuristic
- replan when running into an obstacle

Pros:
- easy to implement

Cons:
- substantial delays when planning
First Move Delay

- Small map from an RPG
- 6,176 states
- Shortest path of 115
- Incremental A*
- several orders of magnitude slower than greedy agent
- Important with many units
- 60-70% of time in AoE2
Search in Abstract Space

- Instead of searching in the large ground-level space...

- ...search in a simpler / smaller / restricted space
Clique Abstraction

Group 1

Group 2

Group 3

Group 4

Figure 30 The process of abstracting a state in a map. We only pay this cost when we are making changes that affect the connectivity of the entire map. In practice, to rely on abstraction, we consider some heuristic, such as Holte’s mechanism, which has been successfully used in many domains. The abstraction is performed by creating a new state that is a sparse representation of the entire state space, as in Dietterich’s work on the K-actor mechanism. This abstraction helps to reduce the problem size and improve efficiency. The abstraction process involves grouping entities that are similar to each other, such as nodes in a graph. The figure shows an example of how nodes are grouped into different clusters or groups, which are then abstracted into a smaller set of entities.
• Map from an RTS game
Level 0

- 16,807 nodes
Level 1

- 5,212 nodes
Level 2

- 1,919 nodes
Level 3

- 771 nodes
Clique Abstraction
Path Refinement A*

Algorithm:
- build/repair clique based abstraction(s)
- build an abstract path (A*)
- refine it into a lower level path (A*)

Pros:
- an implementation is available

Cons:
- complex

[Sturtevant, Buro, 2005]
Path Refinement
Algorithm:
- greedy
- heuristic is updated on every move

Pros:
- real-time

Cons:
- large memory requirements
- slow, unstable convergence

[Korf, 1990]
LRTA* in action
First move lag: 6 nodes \((484\times \text{faster})\)

Convergence travel: \(47630\) \((160\times \text{slower})\)
Following

- RTA*/LRTA*
- MTS
- SRTA*
- DTA*/LDTA*
- SLA*
- RTDP
- Weighted LRTA*
- Bounded LRTA*
- RTBS
- SLA*T
- FALCONS
- eFALCONS
- CB-LRTA*
- Multi-update LRTA*
- Y-Trap
- LRTS
- LRTA*(k)
- P-LRTA*

[образом Korf 90]
[Ishida, Korf 91]
[Russell, Wefald 91]
[Russell, Wefald 91]
[Shue, Zamani 93]
[Barto, et al. 95]
[Ishida, Shimbo 96]
[Ishida, Shimbo 96]
[Ishida, 97]
[Shue, Zamani 98]
[Furcy, Koenig 00]
[Furcy, Koenig 01]
[Shang, et al. 03]
[Koenig 04]
[Bulitko 04]
[Bulitko, Lee 06]
[Hernandez, Meseguer 05]
[Rayner, et al. 06]
Learning Real-time Search (LRTS)

- **Algorithm:**
 - LRTA* extended with max-of-min lookahead, weights and backtracking

- **Pros:**
 - faster and more stable convergence
 - more memory efficient

- **Cons:**
 - more complex
 - can still be memory-prohibitive for MTS

[Bulitko, Lee, 2006]
LRTS in action

heuristic update
First move lag: 789 nodes (132x slower)
Convergence travel: 1217 (39x faster)
Outstanding Issues

- Slow convergence
- \(\Theta(\text{number of states}) \) memory required
- Why?
 - Large state space
 - Tabular representation of heuristic function
 - No generalization
Generalization

- heuristic function approximation
 - e.g., linear function with tile-coding

- state aggregation
 - tiling, clique abstraction, triangulation
Path refinement LRTS

Algorithm:
- Subsumes incremental A*, PRA*, LRTS
- Arbitrary algorithms for abstraction levels
- Path-refinement

Pros:
- faster convergence, less memory
- lots of flexibility

Cons:
- more complex
- user-defined parameters

[Bulitko, Sturtevant, Kazakevich, 2005]
Path Refinement LRTS

- First move lag: 262 nodes (3x faster)
- Convergence travel: 619 (2x faster)
Evaluation

- 10 maps from a role-playing video game
- 1,000 convergence runs total
- LRTS\((d=10, \gamma=0.5, T=0)\)
- PR LRTS
 - A* at level 0
 - LRTS\((d=5, \gamma=0.5, T=0)\) at level 1
Effects of Abstraction

- PR LRTS over LRTS
- 40% reduction in convergence travel
- the same time lag
- the same suboptimality

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>1st move time</th>
<th>Conv. travel</th>
<th>Suboptimality</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>5.01 ms</td>
<td>186</td>
<td>0.0%</td>
</tr>
<tr>
<td>LRTA*</td>
<td>0.02 ms</td>
<td>25,868</td>
<td>0.0%</td>
</tr>
<tr>
<td>LRTS</td>
<td>0.93 ms</td>
<td>555</td>
<td>2.07%</td>
</tr>
<tr>
<td>PR-LRTS</td>
<td>0.95 ms</td>
<td>345</td>
<td>2.19%</td>
</tr>
</tbody>
</table>
Why Does it Work?

- At higher abstraction levels
- A* spends less time planning
- LRTS has fewer heuristic values to learn
- Each heuristic value learnt at an abstract level affects several ground states
- Search at the lower level is restricted
Chasing

[Copyright 1999 Warner Bros.]
Present Work

Real-time Opponent Modeling in Moving Target Pursuit
Attacking NPC

Trailing instead of intercepting
Motivation: Applications

- Games
- Law enforcement
- Military
Problem Formulation

- 2D grid
- Target’s position is known frequently
- Target is possibly faster
 - outsmarting vs. outrunning
- Asynchronous environment
 - target moves while you think
 - deliberation time matters
Simulator Cycle

- Each agent:
 - sense
 - deliberate
 - execute
 - wait until next allowed execution time

Diagram:
- Think time (a * \(\alpha \))
- Move time (b)
- Current time
- Next allowed execution time
Moving Target Pursuit

- Trial based chases
- Fixed start position for the target agent
- Fixed start position for the pursuit agent
- Trial ends when:
 - pursuit agent is close to the target
 - travel limit is reached
- Once trial ends, a new trial begins
Search Algorithms

- A* [Hart, et al. 1968]
- D* [Stenz 1995]
- D* Lite [Koenig, Likhachev 2002]
- Trailblazer [Chimura, Tokoro 1994]
- aTrailblazer [Sasaki, et al. 1995]
Too much commitment
Replan
A*

Trailing, slow
Real-time Search

- MTS
 - MTS with commitment
 - MTS with deliberation

[Ishida, Korf 1991]

[Ishida 1992]
Problems

- A*
 - too committing and/or too slow per move

- MTS
 - fast per move but trailing, very slow convergence
Why?

- All these algorithms plan to go where the target presently *is*
- One needs to go where the target *will be*
- Intercept vs. trail
$h(s_p, s_t)$ is the expected interception travel of pursuit agent presently in state s_p if target agent is presently in state s_t.

- Interception travel < physical distance
- Interception travel > physical distance
Proposed Approach

\[h(s_p, s_t) \] is the expected interception travel of pursuit agent presently in state \(s_p \) if target agent is presently in state \(s_t \)

\[h(s'_p, s'_t) \]

\[h(s_p, s_t) \leq c(s_p, s'_p) + h(s'_p, s'_t) \]
Proposed Approach

- Frequency based motion model \(Pr(s_t \rightarrow s'_t) \)
- Real-time dynamic programming [Barto, et al. 1995]
- Bellman equation

\[
h^*(s_p, s_t) = \min_{s'_p} \sum_{s'_t} Pr(s_t \rightarrow s'_t) \left[c(s_p, s'_p) + h^*(s'_p, s'_t) \right]
\]

- Turned into update rule:

\[
h_{new}(s_p, s_t) \leftarrow (1-\alpha)h_{old}(s_p, s_t) + \alpha \min_{s'_p} \sum_{s'_t} Pr(s_t \rightarrow s'_t) \left[c(s_p, s'_p) + h_{old}(s'_p, s'_t) \right]
\]

- Epsilon-greedy control policy
Initial, \(\varepsilon = 0.3 \)
OM MTP

After < 100 trials
Thinking penalty
Speed advantage of the pursuit agent
Reduction in convergence travel, level 0, patrolUnit, empty.txt

0.5 0.6 0.7 0.8 0.9 1 1.1 1.25 1.43 1.67 2
0
1
5
10
50
100
500
1000
−1
−0.5
0
0.5
1
$x \times 10^4$
Reduction in convergence travel, level 0, patrolUnit, empty.txt

<table>
<thead>
<tr>
<th>Speed advantage of the pursuit agent</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.25</th>
<th>1.43</th>
<th>1.67</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinking penalty</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>50</td>
<td>100</td>
<td>500</td>
<td>1000</td>
<td>-1</td>
<td>-0.5</td>
<td>0</td>
</tr>
</tbody>
</table>

x 10^4
Game Maps

- HOG simulator
- clique abstraction
- patrol unit as the target
- a commercial game map, 16,807 passable states
- 50 random problems, initial distance 60-100
- Proximity tolerance: 1 cell
- Target twice as fast
Convergence

- A*
- MTS
- OM MTP

- each point averaged over 50x30 data
300 trials
travel limited to 200 on each

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Travel</th>
<th>Final trial</th>
<th>Heuristic Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>A*</td>
<td>43,173 ± 2,372</td>
<td>144 ± 7</td>
<td>0</td>
</tr>
<tr>
<td>MTS</td>
<td>41,282 ± 2,560</td>
<td>132 ± 9</td>
<td>547 ± 69</td>
</tr>
<tr>
<td>OM MTS</td>
<td>38,746 ± 2,359</td>
<td>126 ± 9</td>
<td>1,120 ± 859</td>
</tr>
</tbody>
</table>
Future Work

Real-time Opponent Modeling and Path Refinement in Moving Target Pursuit
Problems with OM MTP

- Slow convergence
 - heuristic is target-position specific

- Quadratic memory requirements (doubled)
A Happy Marriage?

- Opponent modeling + real-time dynamic programming in an abstract state space

- Refine the solution with A* in the corridor
Why Would It Work?

- Learning heuristic (RTDP) and opponent modeling (OM) can work better in an abstract space:
 - smaller size
 - more deliberation per target’s move
 - each value affects several ground states
- A* as path-refinement engine works due to:
 - applied in a narrow corridor
 - applied for a short distance
Even More Future Work

- Opponent model that takes our move into account: \(Pr(s_t \rightarrow s'_t | s_p \rightarrow s'_p) \)

- Function approximation for target motion models [Paduraru 2006]

- Predictive state representations for target motion models

- Function approximation for value function (e.g., tile coding, neural networks, etc.)

- Dynamic environments

- Actively evasive opponents (e.g., mini-max)

- Tactical formations
Summary

Real-time search: static/moving target

Problems: slow convergence, slow response, trailing

Solution:

state abstraction + path refinement

opponent modeling + real time dynamic programming

http://ircl.cs.ualberta.ca