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Abstract

Constructing a strong heuristic function is a central
problem in heuristic search. A common approach is
to combine a number of heuristics by maximizing
over the values from each. If a limit is placed on
this number, then a subset selection problem arises.
We treat this as an optimization problem, and pro-
ceed by translating a natural loss function into a
submodular and monotonic utility function under
which greedy selection is guaranteed to be near-
optimal. We then extend this approach with a sam-
pling scheme that retains provable optimality. Our
empirical results show large improvements over ex-
isting methods, and give new insight into building
heuristics for directed domains.

1 Introduction
The heuristic function – which we also simply call the heuris-
tic – is an estimate of the cost or distance between two states.
When used in search, a strong heuristic can improve solution
quality, speed, and can render intractable problems tractable.

The literature describes several approaches to heuristic
construction, including pattern databases [Culberson and
Schaeffer, 1998], memory-based heuristics [Sturtevant et al.,
2009], regressors [Ernandes and Gori, 2004], and metric em-
beddings [Rayner et al., 2011], each capable of generating
multiple different heuristic functions based on input parame-
ters. When multiple heuristics are available, it is common to
query each and somehow combine the resulting values into a
better estimate. However, under constraints on lookup time or
memory, it may be that only a subset of a much larger pool
of candidate heuristics can be used during search. Groups of
heuristics can interact with each other in subtle ways, which
makes selecting the best subset among them challenging.

In this paper, we formulate selecting heuristic subsets as an
optimization problem. The loss function we aim to minimize
is inspired by search effort, and is independent of the type of
heuristics in the candidate set. When the candidate heuristics
are admissible, this loss can be translated into a submodular
and monotonic utility function; these properties imply that
greedy selection is near-optimal. We also introduce a sample
utility function under which greedy selection retains provable

optimality if the heuristics are consistent. An empirical evalu-
ation of our approach shows it to be capable of outperforming
existing methods. We further use our approach to accurately
benchmark a promising new type of true-distance heuristic,
which gives valuable insight into the problem of constructing
heuristics for highly directed search graphs.

2 Background
Research spanning the past two decades shows a progression
toward building heuristics automatically, often in ways that
enforce the key properties of admissibility and consistency.
When heuristics are so readily constructed, an accompanying
subset selection problem is inevitable.

One common motivation for heuristic construction is
to solve otherwise intractable search problems. Here, pat-
tern databases (PDBs) have arguably made the greatest im-
pact [Culberson and Schaeffer, 1998]. The problem of select-
ing heuristic subsets is prevalent here, with it having been ob-
served that many small PDBs can be more effective together
than a single monolithic PDB [Holte et al., 2006].

In other cases, the heuristic function is constructed to ex-
pedite the solution of arbitrarily many future problems. These
cases are a motivating force behind our work, with exam-
ple applications including GPS navigation and video game
pathfinding. Several algorithms have been proposed in this
context for selecting heuristic subsets, but most lack an opti-
mality criterion or are tied to a specific type of heuristic func-
tion. For example, one recent approach draws a connection
between heuristic construction and manifold learning [Wein-
berger et al., 2005] and represents heuristic information as
distances between points in Euclidean space [Rayner et al.,
2011]. Principal components analysis can be used to select
an optimal, variance-preserving subset of this distance infor-
mation, but that approach is exclusive to Euclidean heuristics.

Another popular approach is to precompute true distances
to a landmark [Goldberg and Werneck, 2003], which can
be thought of as selecting a subset of all distance informa-
tion [Sturtevant et al., 2009]. These methods can be viewed
as special cases of Lipschitz embeddings [Bourgain, 1985]
in which distances are computed to the nearest of a set of
landmarks. Many selection algorithms have been devised
for these, both as heuristics [Goldberg and Harrelson, 2005;
Fuchs, 2010] and as metric embeddings [Linial et al., 1995],
but these too cannot be applied to other types of heuristics.



3 Subset Selection of Search Heuristics
We consider the problem of choosing a good subset H of a
set of candidate heuristics C = {h1, . . . , h|C|}. We assume
the heuristics in H are to be combined with a set of default
heuristics D by maximizing over the values across both H
and D. For states i and j, we denote this heuristic lookup as:

hH(i, j) = max
hx∈H∪D

hx(i, j) (1)

In the simplest case,D contains only the zero heuristic, which
gives 0 for any pair of states queried. We further assume any
default or candidate heuristic hx ∈ D∪C is non-negative and
admissible (i.e., never overestimating),

∀i, j, 0 ≤ hx(i, j) ≤ δ(i, j), (2)

where δ(i, j) is the true distance between states i and j.

3.1 Optimization Problem
We formalize the heuristic subset selection problem as an op-
timization problem:

minimize
H∈2C

L(H) (3)

subject to |H| = d

The constraint |H| = d simply limits the capacity of H to a
fixed-size subset of C, and the loss L(H) is a scalar quantity
summarizing the quality of a given subset H .

We relate loss to eventual search effort. An optimal search
algorithm must expand any state encountered whose heuristic
is low enough to suggest it may be on an optimal path to the
goal [Bagchi and Mahanti, 1983], so a well-suited loss is the
weighted sum of the errors between the resulting heuristic
values and the true distances, for all pairs across n states:

L(H) =
∑n
i=1

∑n
j=1Wij

∣∣δ(i, j)− hH(i, j)
∣∣ (4)

The non-negative weight matrix W ∈ Rn×n is a free param-
eter, and it can be flexibly defined to specify the relative im-
portance of each pair of states, perhaps based on knowledge
of frequent start and goal locations.

We can rewrite this loss as an equivalent utility function U .
First, all of the heuristics in H ∪D are admissible, so for all
states i and j, hH(i, j) ≤ δ(i, j). Therefore we can remove
the absolute value from line 4 and split the sum:1

L(H) =
∑
i,jWij

(
δ(i, j)− hH(i, j)

)
(5)

=
∑
i,jWij δ(i, j)−

∑
i,jWij h

H(i, j) (6)

The leftmost term on line 6 does not depend on H , so min-
imizing L(H) is equivalent to maximizing the term on the
right. We introduce the corresponding utility function,

U(H) =
∑
i,jWij h

H(i, j)− α, (7)

where α is a normalizing constant that has no effect on the
choice of H , but ensures that U(∅) = 0. α is defined as a
weighted sum of the contributions of the default heuristics:

α =
∑
i,j

Wij h
∅(i, j) =

∑
i,j

Wij max
hd∈D

hd(i, j) (8)

1Note i and j always iterate from 1 to n as on line 4.

All told, we arrive at a specific utility maximization problem:

maximize
H∈2C

U(H) (9)

subject to |H| = d

Unfortunately, there is unlikely to be an efficient algorithm to
find a globally optimal solution to this problem.

Proposition 1 The optimization problem (9) is NP-hard.2

Proof. We sketch a reduction from the NP-complete Vertex
Cover problem over an undirected graph (V,E). This is the
problem of finding a subset of d graph vertices T ⊆ V such
that all edges in E are incident to at least one vertex in T .

By definition, heuristics describe values between pairs of
vertices in a search graph. A special case of this is a function
that only returns 1 between a vertex and its neighbors, and 0
for any other query. Thus, to reduce vertex cover, we defineC
as a set of heuristics C = {hv : v ∈ V } where each hv ∈ C
gives a value of 1 between vertex v and its neighbors, and 0
otherwise. If a subset of d such heuristics captures all edge
costs, then there is a vertex cover of size d as well. �

3.2 Approximation Algorithm
Despite Proposition 1, greedy selection will yield a solution
to the optimization problem (9) with a strong near-optimality
guarantee. This is because U is submodular and monotonic.

Submodularity is a diminishing returns property. It aptly
describes settings where marginal gains in utility start to di-
minish due to saturation of the objective, such as with sensor
placement and monetary gain. LetA ⊆ B ( S, let x ∈ S\B,
and let φ be a function over 2S . φ is submodular if:

φ(A ∪ {x})− φ(A) ≥ φ(B ∪ {x})− φ(B) (10)

That is, the same element newly added to a subset and its su-
perset will lead the subset to gain at least as much in value as
the superset. Intuitively, the utility function U(H) and sub-
modularity are a good fit, since adding a new heuristic to H
will not newly cover any of the heuristic values thatH already
covers. We prove this formally in the following lemma.
Lemma 1 U is submodular.
Proof. Let A and B be sets of heuristics with A ⊆ B, and
let hc ∈ C be a particular but arbitrary candidate heuristic
function which is in neither A nor B (i.e., hc ∈ C \ B). We
can reproduce the inequality on line 10 as follows:

U(A ∪ {hc})− U(A) (11)

=
∑
i,jWij h

A∪{hc}(i, j)−
∑
i,jWij h

A(i, j) (12)

=
∑
i,jWij (h

A∪{hc}(i, j)− hA(i, j)) (13)

=
∑
i,jWij(hc(i, j)− hA(i, j))+ (14)

≥
∑
i,jWij(hc(i, j)− hA∪B(i, j))+ (15)

= U(B ∪ {hc})− U(B) (16)

Line 12 twice expands the definition of utility (7) with the α
terms cancelling, and line 13 rewrites this difference of sums

2A distinct result is the NP-hardness of ALT’s preprocessing
phase under an edge-covering objective [Bauer et al., 2010].



as a sum of differences between hc and hA together versus hA
alone. Line 14 equates this to a sum of the positive differences
between hc and hA, where (x)+ = max{0, x}. Line 15 holds
since hc’s individual gains over hA∪B cannot exceed its gains
over hA. But A ∪B = B, proving submodularity. �

Monotonicity is the notion that adding an element to a set
never leads to a decrease in value. LetA ⊆ B ⊆ S be sets and
let φ be a function over 2S . φ is monotonic if φ(A) ≤ φ(B).
Since U(H) only measures the sum of the heuristics – and
not, for example, the cost per heuristic lookup or the memory
consumed – no heuristic added to H can decrease utility.
Lemma 2 U is monotonic.
Proof. Let A and B be sets of heuristics with A ⊆ B. We
must show that U(A) ≤ U(B).

U(A) =
∑
i,jWij h

A(i, j)− α (17)

≤
∑
i,jWij h

A∪B(i, j)− α (18)

=
∑
i,jWij h

B(i, j)− α = U(B) (19)

Where line 18 assumes non-negativity of the heuristics and
the entries in W ; thus proving monotonicity. �

Together, submodularity and monotonicity are exploitable
properties that reveal simple approximation algorithms to
hard problems. A reference including details for speeding
up greedy selection under such functions is by Krause and
Golovin [2012]. In particular, Lemmas 1, 2, and a key result
by Nemhauser et al. [1978] lead us to the following result:
Theorem 1 Initialize H0 = ∅ and incrementally add heuris-
tics by greedy selection from a set of admissible heuristics C,

Ht = Ht−1 ∪
{
argmax

h∈C
U(Ht−1 ∪ {h})

}
. (20)

U(Hd) is greater than a factor of (1−1/e) ≈ 0.63 of optimal.
A similar bound has been observed alongside the problem of
selecting heuristics [Fuchs, 2010]. However, it applies to an
edge covering measure of utility that can only be used with
a specific type of heuristic, and does not incorporate an ar-
bitrary default heuristic. While we compare to such an edge
covering objective later, we stress that Theorem 1 applies to
any – possibly heterogeneous – set of candidate heuristics C
for which our measure of utility can be efficiently determined.

4 Sample Utility
Greedy selection can be further sped up by measuring utility
with a simpler approximation to U . The approach we con-
sider is to sum the heuristic values between only a sample of
the states. Intuitively, if this sample is well distributed, then
the heuristics between sample states should be strongly cor-
related with the heuristics between all states.

4.1 A Partitioning Approach
One of the many possible ways to implement sampling is to
partition the state space into m mutually exclusive and col-
lectively exhaustive regions, represented by sets of state in-
dices, Z1, . . . , Zm. Within each region, a single sample state
is nominated, zi ∈ Zi. From these we define sample utility as

U(H) =
∑m
p=1

∑m
q=1W pq h

H(zp, zq)− α, (21)

where the weight between sample states p and q is the sum of
the weights between the states in partitions Zp and Zq ,

W pq =
∑
r∈Zp

∑
s∈Zq

Wrs, (22)

or W pq = |Zp| |Zq| if W specifies a uniform weighting, and

α =
∑m
p=1

∑m
q=1W pq h

∅(zp, zq) (23)

is a normalizing constant ensuring U(∅) = 0.
Choosing the best partitioning is an optimization problem

unto itself, and a study of different ways to do so is left to
future work. When we use sampling in our experiments, we
incrementally select sample states to cover the largest num-
ber of uncovered states; a state is covered if it is within
t steps of a sample. When all states are covered, we de-
fine partitions by assigning states to the nearest sample state
as measured in an undirected version of the search graph,
where the costs between states are replaced with δ(i, j) ←
min {δ(i, j), δ(j, i)}. We note the similarity of this approach
to specifying canonical heuristics [Sturtevant et al., 2009] and
choosing pathfinding subgoals [Bulitko et al., 2012].

4.2 Optimality Analysis
In this section we analyze the effect sampling has on optimal-
ity with respect to the true utility function (7). The foundation
of this analysis is heuristic consistency. If each default and
candidate heuristic hx ∈ D ∪ C is consistent,3 i.e.,

∀i, j, k, hx(i, k) ≤ hx(j, k) + δ(i, j), (24)

then we can use local distance information in the search graph
to bound the difference between U(H) and U(H) for any H .
Lemma 3 The sample utility’s error is bounded by the
weighted sum of the distances between samples and states in
the same partition, i.e., ∀H ∈ 2C , |U(H)−U(H)| ≤ ε with:

ε = 2

m∑
p=1

m∑
q=1

∑
r∈Zp

∑
s∈Zq

Wrs(δ(r, zp) + δ(zq, s)) (25)

Proof. Since the partitions are mutually exclusive and collec-
tively contain all states, we can write U(H) equivalently as a
sum over pairs of states between pairs of partitions:4

U(H) =
∑
i,jWij h

H(i, j)− α (26)

=
∑
p,q,r,sWrs h

H(r, s)−
∑
p,q,r,sWrs h

∅(r, s) (27)

Since the heuristics in H are consistent, it must be true for
arbitrary indices p, q, r, and s that:

hH(r, s) ≤ hH(zp, s) + δ(r, zp) (28)

≤ hH(zp, zq) + δ(r, zp) + δ(zq, s) (29)

Reversing the consistency inequality, we similarly have:

h∅(r, s) ≥ h∅(zp, s)− δ(zp, r) (30)

≥ h∅(zp, zq)− δ(zp, r)− δ(s, zq) (31)

3Consistency also implies admissibility.
4Note p and q always iterate from 1 to m, and r and s always

iterate over the state indices in Zp and Zq as on line 25.



Substituting lines 29 and 31 into line 27 establishes an upper
bound on U(H) as follows:

U(H) (32)

≤
∑
p,q,r,sWrs(h

H(zp, zq) + δ(r, zp) + δ(zq, s))

−
∑
p,q,r,sWrs(h

∅(zp, zq)− δ(zp, r)− δ(s, zq)) (33)
By separating the terms that refer to the heuristics from those
that do not refer to the heuristics, we can rewrite line 33 and
recover the definitions of W , U and ε:∑

p,q,r,sWrs h
H(zp, zq)−

∑
p,q,r,sWrs h

∅(zp, zq)

+
∑
p,q,r,sWrs(δ(r, zp) + δ(zq, s))

+
∑
p,q,r,sWrs(δ(zp, r) + δ(s, zq)) (34)

=
∑
p,qW pq h

H(zp, zq)−
∑
p,qW pq h

∅(zp, zq) + ε (35)

= U(H) + ε (36)
where the last two terms of line 34 are identical but with trans-
posed indices, together equating to ε; thus proving U(H) ≤
U(H) + ε. The lower bound proceeds similarly, and together
these bounds give |U(H)− U(H)| ≤ ε. �

Lemma 3 suggests we could use a modified greedy algo-
rithm to optimize U and still retain an approximation guar-
antee to optimal under U [Krause and Guestrin, 2005]. How-
ever, this modification entails a polynomial increase in the
number of iterations over the candidate set, which may be
unacceptable when the set is large. Fortunately, solutions of
known optimality under U are provably optimal under U .

By duplicating the reasoning in Lemmas 1 and 2, we as-
sert that the sample utility function U is both submodular and
monotonic. It follows as in Theorem 1 that greedy maximiza-
tion under U will find a solution that scores greater than a fac-
tor of (1−1/e) of U’s optimal value. Together with Lemma 4
(described in Appendix A) we obtain the following result:
Theorem 2 InitializeH0 = ∅, and incrementally add heuris-
tics by greedy selection from a set of consistent heuristics C,

Ht = Ht−1 ∪
{
argmax

h∈C
U(Ht−1 ∪ {h})

}
. (37)

U(Hd) is within a factor of (1 − 1/e) of optimal, implying
U(Hd) is within a factor of (1−1/e) U(Hd)−ε

U(Hd)+ε−ε/e
of optimal.

Under the assumption that both U(H) and ε can be efficiently
computed, it is therefore easy to determine an optimality
bound on H post factum. Note that this bound improves as
U(H) increases (i.e., as we add more heuristics to the set H).

5 Experiments
We test our approach of greedy utility maximization under U
and U on optimal search with A∗ [Hart et al., 1968]. We fo-
cus on selecting true-distance heuristics, using the number of
nodes expanded during search as a general performance mea-
sure. First, we compare our approach to existing methods on
two undirected search domains. Next, we use our approach to
accurately benchmark a new type of heuristic for directed do-
mains, showing encouraging results over alternative heuris-
tics. In each case our approach requires less than three hours
to complete, even on the largest search graphs we consider.

5.1 Undirected Search Graphs
We first apply our approach to the selection of differential
heuristics, or DHs [Sturtevant et al., 2009], for undirected
search graphs. A single DH consists of the precomputed dis-
tances from each state to a specific landmark state p and, from
these distances, hp(i, j) = |δ(i, p)− δ(j, p)| gives consistent
heuristics. A search graph with n states defines n candidate
DHs. Since every DH occupies the same amount of memory,
a cardinality constraint doubles as a constraint on memory.

Word Search
In these search problems, states are four letter words from
an English dictionary. A word can be changed into another
by substituting one letter at a time, resulting in 54, 752 edges
across 4, 820 states. To turn coal into gold, for instance, one
could take the path 〈coal; goal; goad; gold〉. Euclidean heuris-
tics were recently shown to outperform DHs that used the
Farthest selection algorithm [Goldberg and Harrelson, 2005]
on precisely this search graph [Rayner et al., 2011]. How-
ever, it was unclear whether this was a failure of DHs, or of
the particular algorithm that was used to select them. This dis-
tinction is to be emphasized: a strong class of heuristics may
be undervalued in the absence of a good selection algorithm.

This motivates testing whether DHs are powerful enough
to outperform Euclidean heuristics when driven by our ap-
proach of greedy utility maximization under U (note we do
not sample utility with U here). We reproduce the experimen-
tal parameters of the earlier work by testing sets of 6 and 18
DHs, and use the same Euclidean heuristics of dimension 6
and 18. The default heuristic is the zero heuristic.

The results across 10,000 problems are shown in Figure 1.
Greedy utility maximization (MaxU) gives a set of 6 DHs
that are still not competitive with a 6-dimensional Euclidean
heuristic. However, 18 greedily chosen DHs dominate their
Euclidean counterpart across all solution lengths. Meanwhile,
the DHs placed using the Farthest algorithm excel only on a
minority of the longest paths. This is expected of Farthest,
since such paths tend to start or end on the landmark states.
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Figure 1: Word Search results averaged over 10,000 problems.
Through greedy utility maximization, a set of 18 differential
heuristics dominates an 18-dimensional Euclidean heuristic.



Game Maps
Next we consider standard pathfinding benchmarks [Sturte-
vant, 2012] defined on grid-based maps from BioWare’s
Dragon Age: Origins. The agent can move cardinally at cost
1 or diagonally at cost 1.5 among open grid cells, as long as
doing so does not cut the corner of any closed grid cell. We
consider all benchmark problems on fully connected maps
with between 168 and 18,890 states, using the travel cost as-
suming no closed cells as the default heuristic.

We compare three selection algorithms. The first is greedy
utility maximization under U , where the partitions are de-
fined using a radius of 1 when a map has less than 10,000
states, and a radius of 2 otherwise. Second, we consider a
greedy edge-covering approach [Fuchs, 2010]. This measure
of utility is also submodular monotonic, so a comparison is
warranted. To improve its efficiency and facilitate an even
comparison, we modify this approach to use the same sam-
ple states as used by U . Third, we use the Farthest algorithm,
which tends to be very effective on the benchmark problems.
Each approach is used to define sets of 3 and 10 DHs.

Figure 2 shows our approach achieving a marked improve-
ment over both algorithms on the vast majority of problems.
Even though all three approaches have access to the default
heuristic during search, our approach benefits from explicitly
incorporating it into how the heuristic subset is chosen.

5.2 Directed Search Graphs
Since our approach can be applied to any class of heuristics,
an important practical use is to compare competing classes of
heuristics on a level playing field. In the following, we com-
pare three kinds of heuristics for directed search graphs.

A search graph is directed if, for any two states i and j,
δ(i, j) 6= δ(j, i). DHs can still generate consistent heuristics
on such graphs if the distances are computed on an undirected
version of the graph with δ(i, j) ← min{δ(i, j), δ(j, i)}, but
we will also consider a new approach of directed differential
heuristics (DDHs). DDHs use a pivot state p too, but each
pivot defines two distinct heuristic functions. If distances are
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Figure 2: Game Maps results averaged across Dragon Age:
Origins benchmarks using sets of 3 and 10 differential heuris-
tics. Utility maximization proves to be an effective approach.

computed to the pivot, h←−p (i, j) = (δ(i, p)−δ(j, p))+. If they
are computed from the pivot, h−→p (i, j) = (δ(p, j)− δ(p, i))+.
A search graph with n states defines 2n DDHs, all con-
sistent. DDHs are essentially a decoupling of the heuristics
used by the ALT algorithm [Goldberg and Harrelson, 2005],
which always stores both the to and from distances for each
pivot. However, given fixed memory, the space of possible
DDH subsets encapsulates and is exponentially larger than
the space of possible ALT subsets. Nevertheless, the greedy
algorithm will only experience a doubling in effort.

Each of these – DHs, DDHs, and ALT heuristics – has a
defining drawback. A DH built on the undirected graph risks
being based on inaccurate distances; a DDH suffers from re-
turning 0 for at least half of the state pairs; and a single ALT
heuristic occupies twice the memory of any one DH or DDH.
We stress that the optimality bound on our approach readily
applies in each case, despite these major idiosyncrasies.

Turning in Place
In our first comparison of these three heuristics, we add a
state variable to the Dragon Age map, LAK101D, to describe
the agent’s current heading. The agent can advance along its
current heading or turn left and right in 45 degree increments,
as depicted in Figure 3. This results in 7,342 directed edges
across 2,544 states. The cost to advance is 1, and the cost to
turn is a variable which offers control over the difference in
cost between an action and its reverse. The default heuristic
is the travel cost assuming no closed cells and no cost to turn.

We explore how the cost to turn affects the performance
of sets of 1 and 2 ALT heuristics, and sets of 2 and 4 DH
and DDH heuristics. Each set is selected using greedy util-

W� �� W� �� W� �� W� ��

Figure 3: An east-facing agent turns before it can go south.
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Figure 4: Turning in Place results across 10,000 problems.
Differential heuristics are competitive at low turning costs,
but higher costs lead to a preference for directed heuristics.
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Figure 5: Platformer results averaged over 10,000 problems.
Differential heuristics are ineffective, but directed differential
heuristics excel at representing the distances in this domain.

Figure 6: Platformer examples. Dark cells are platforms and
ladders, grey cells are mid-air, and white cells are out of
reach. The platformer on the left is used in our experiments.

ity maximization without sampling (that is, we directly mea-
sure utility using U), and each set uses the same amount of
memory. The results across 10,000 benchmark problems are
shown in Figure 4. The search problems become more ex-
pensive to solve as the cost to turn increases, but DDHs seem
least affected by this. A tradeoff between DHs and DDHs is
also evident: when the cost to turn is small, 2 DHs are pre-
ferred over 2 DDHs, but this changes as the cost increases.

Platformer
The last test domain is defined on a grid of three types of
cells: platforms, ladders, and mid-air. Examples are shown in
Figure 6. If the agent is on a platform or ladder, it can move
left and right, or up and down onto ladders. If the agent occu-
pies a mid-air state, it automatically moves down one cell per
turn, but can optionally control its descent left or right. The
default heuristic is the number of steps assuming the agent
can travel freely between any adjoining cells. This domain is
modelled on a popular genre of video games which has re-
ceived relatively little attention as a pathfinding benchmark,
but is an extreme example of a cost structure that occurs in
domains with actions that are difficult to reverse.

We define a random platformer on a 200 × 200 grid with
16,248 accessible states. The states are partitioned into re-
gions whose radius is approximately 2, and greedy maximiza-
tion of U is used to choose sets of 1 and 2 ALT heuristics, and
sets of 2 and 4 DH and DDH heuristics. Figure 5 shows the
results on 10,000 random problems. These results reveal DHs

to be ineffective at representing costs in this domain, due to
the disparity between the cost of an action and its reverse.
Meanwhile, we also see the DDH subsets consistently out-
performing their ALT counterparts. With the knowledge that
both are near-optimal under the same objective, we can infer
that DDHs are well worth considering as an alternative class
of search heuristics in domains with highly directed costs.

6 Conclusion
This paper introduced a novel approach to the widespread
problem of selecting search heuristics. We showed that
greedy selection is nearly optimal under a natural measure
of utility, and furthermore that provable optimality is not sac-
rificed when utility is measured on just a sample of the states.
These two points rely on the admissibility and consistency of
the heuristics respectively, properties that are commonly sat-
isfied by many existing classes of heuristic functions.

Our empirical study emphasizes the importance of optimal-
ity under a well-motivated objective. In particular, our method
of approximate utility maximization redeemed an underper-
forming class of heuristics in one domain, outcompeted ex-
isting selection algorithms in another, and was instrumental
in a pilot study of a promising new type of heuristic which
excels in directed domains. The work in this paper has the
potential to be extended in several new directions, such as
by defining new measures of utility, more efficient sampling
methods, and wider application to domains where heuristic
subset selection defies domain expertise.
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A Post Factum Bound on Optimality
Lemma 4 Let θ and φ be set functions over 2S with

min
A:|A|=d

θ(A) = 0, min
A:|A|=d

φ(A) = 0, (38)

∀A ∈ 2S |θ(A)− φ(A)| ≤ ε, (39)
for some ε, and finite maxima at cardinality d denoted

θ∗ = max
A:|A|=d

θ(A), φ∗ = max
B:|B|=d

φ(B). (40)

For any set G with |G| = d, G’s optimality with respect to φ
is tied to its optimality with respect to θ:

φ(G)

φ∗
≥ b⇒ θ(G)

θ∗
≥ b φ(G)− ε

φ(G) + bε
(41)

Proof. The bound given on line 39 implies that θ∗ and φ∗ must
also have bounded difference: θ∗ − ε ≤ φ(arg(θ∗)) ≤ φ∗.
This reveals an inequality relating θ∗ to φ(G),

φ(G) ≥ bφ∗ ≥ b(θ∗ − ε)⇔ θ∗ ≤ φ(G) + bε

b
, (42)

which lets us bound the optimality of θ(G) as
θ(G)

θ∗
≥ φ(G)− ε

θ∗
≥ b φ(G)− ε

φ(G) + bε
, (43)

thus proving the inequality. �



References
[Bagchi and Mahanti, 1983] A. Bagchi and A. Mahanti.

Search Algorithms Under Different Kinds of Heuristics
- A Comparative Study. Journal of the ACM (JACM),
30(1):1–21, January 1983.

[Bauer et al., 2010] Reinhard Bauer, Tobias Columbus, Bas-
tian Katz, Marcus Krug, and Dorothea Wagner. Prepro-
cessing Speed-Up Techniques is Hard. In Proceedings
of the 7th International Conference on Algorithms and
Complexity, CIAC’10, pages 359–370, Berlin, Heidelberg,
2010. Springer-Verlag.

[Bourgain, 1985] J. Bourgain. On Lipschitz Embedding of
Finite Metric Spaces in Hilbert Space. Israel Journal of
Mathematics, 52:46–52, 1985.

[Bulitko et al., 2012] Vadim Bulitko, Chris Rayner, and Ra-
mon Lawrence. On Case Base Formation in Real-Time
Heuristic Search. In Proceedings of the Artificial Intel-
ligence and Interactive Digital Entertainment conference
(AIIDE), 2012.

[Culberson and Schaeffer, 1998] Joseph Culberson and
Jonathan Schaeffer. Pattern Databases. Computational
Intelligence, 14(3):318–334, 1998.

[Ernandes and Gori, 2004] Marco Ernandes and Marco
Gori. Likely-admissible and Sub-symbolic Heuristics. In
ECAI, pages 613–617, 2004.

[Fuchs, 2010] Fabian Fuchs. On Preprocessing the ALT-
Algorithm. Master’s thesis, Institute for Theoretical Infor-
matics, Faculty of Computer Science, University of Karl-
sruhe, 2010.

[Goldberg and Harrelson, 2005] Andrew V. Goldberg and
Chris Harrelson. Computing the Shortest Path: A* Search
Meets Graph Theory. In Symposium on Discrete Algo-
rithms (SODA), pages 156–165, 2005.

[Goldberg and Werneck, 2003] Andrew V. Goldberg and Re-
nato F. Werneck. Computing Point-to-Point Shortest Paths
from External Memory. In Proceedings of the 2005 SIAM
Workshop on Algorithms Engineering and Experimenta-
tion, 2003.

[Hart et al., 1968] Peter Hart, Nils Nilsson, and Bertram
Raphael. A Formal Basis for the Heuristic Determination
of Minimum Cost Paths. IEEE Trans. on Sys. Sci. and Cy-
bernetics, 4(2):100–107, 1968.

[Holte et al., 2006] Robert Holte, Ariel Felner, Jack Newton,
Ram Meshulan, and David Furcy. Maximizing over Mul-
tiple Pattern Databases Speeds up Heuristic Search. Arti-
ficial Intelligence Journal, 170:1123–1136, 2006.

[Krause and Golovin, 2012] Andreas Krause and Daniel
Golovin. Submodular Function Maximization. In
Tractability: Practical Approaches to Hard Problems.
Cambridge University Press, 2012.

[Krause and Guestrin, 2005] Andreas Krause and Carlos
Guestrin. A Note on the Budgeted Maximization of Sub-
modular Functions. Technical Report CMU-CALD-05-
103, Carnegie Mellon University, June 2005.

[Linial et al., 1995] Nathan Linial, Eran London, and Yuri
Rabinovich. The Geometry of Graphs and Some of Its
Algorithmic Applications. Combinatorica, 15:215–245,
1995.

[Nemhauser et al., 1978] G. Nemhauser, L. Wolsey, and
M. Fisher. An Analysis of Approximations for Maximiz-
ing Submodular Set Functions. Mathematical Program-
ming, 14(1):265–294, 1978.

[Rayner et al., 2011] Chris Rayner, Michael Bowling, and
Nathan Sturtevant. Euclidean Heuristic Optimization. In
Proceedings of the Twenty-Fifth National Conference on
Artificial Intelligence (AAAI), pages 81–86, San Francisco,
CA, USA, 2011.

[Sturtevant et al., 2009] Nathan R. Sturtevant, Ariel Felner,
Max Barrer, Jonathan Schaeffer, and Neil Burch. Memory-
Based Heuristics for Explicit State Spaces. IJCAI-09,
pages 609–614, 2009.

[Sturtevant, 2012] Nathan R. Sturtevant. Benchmarks for
Grid-Based Pathfinding. Computational Intelligence and
AI in Games, IEEE Transactions on, 4(2):144–148, 2012.

[Weinberger et al., 2005] Kilian Q. Weinberger, Ben-
jamin D. Packer, and Lawrence K. Saul. Nonlinear
Dimensionality Reduction by Semidefinite Programming
and Kernel Matrix Factorization. In Proceedings of the
Tenth International Workshop on Artificial Intelligence
and Statistics, pages 381–388, 2005.


