
A Proof of Proposition 1

Proof. Let Xi=1...N be sampled i.i.d. from the uniform distribution over [0, 1]. Let Yi be the ith
smallest value of the set {Xi}i=1...N . So that Y1 < Y2 < . . . < YN

2. Finally, let Z be chosen
uniformly at random from the set {Yi}i=1...k. We will use f to refer to the probability density
function for a continuous random variable.

The density of the (k + 1) order statistic follows a Beta distribution and so has the following form.

fYk+1(y) =
1

B(k + 1, N − k)
yk(1− y)N−k−1 (5)

where B(a, b) is the beta function.

We now derive the density of Z.

fZ|Yk+1=y(z) =
1(0 ≤ z < y)

y
(6)

fZ(z) =
� 1

0
fZ|Yk+1=y(z)fYk+1(y) dy (7)

=
� 1

0

1(0 ≤ z < y)
y

1
B(k + 1, N − k)

yk(1− y)N−k−1 dy (8)

=
� 1

z

1
B(k + 1, N − k)y

yk(1− y)N−k−1 dy (9)

=
1

B(k + 1, N − k)

� 1

z
yk−1(1− y)N−k−1 dy (10)

=
B(k, N − k)

B(k + 1, N − k)
1

B(k, N − k)

� 1

z
yk−1(1− y)N−k−1 dy (11)

=
B(k, N − k)

B(k + 1, N − k)
1

B(k, N − k)
(B(k, N − k)−B(z; k, N − k)) (12)

=
B(k, N − k)

B(k + 1, N − k)
(1− Iz(k, N − k)) (13)

=
B(N − k, k)

B(N − k, k + 1)
I1−z(N − k, k) (14)

∝ I1−z(N − k, k) = 1− Iz(k, N − k) (15)

where B(x; a, b) is the incomplete beta function, i.e., B(x; a, b) =
� x
0 ta−1(1−t)b−1dt, and Ix(a, b)

is the regularized incomplete beta function, i.e., Ix(a, b) = B(x;a,b)
B(a,b) .

We now want to show that our k-of-N procedure results in the same density. LetM ∼ P(M) and let
V = V π

M, so that V is a real-valued random variable. Let FV be its cumulative distribution function,
and define F−1

V (y) = infx∈R{FV (s) ≥ y for y ∈ [0, 1]} to be its generalized inverse distribution
function. Recall that the k-of-N procedure draws N samples from the distribution FV and chooses
uniformly among the k smallest. This procedure can also be achieved by the inverse sampling
transform. Take our uniform [0, 1] samples Xi=1...n, and let Vi = F−1

V (Xi). The set Vi=1...n are
i.i.d. distributed according to FV . Furthermore, since F−1

V is non-decreasing, the ordering of Vi and
Xi are the same. So, F−1

V (Z) has the same distribution as a random sample from the k smallest
values in {Vi}i=1...n.

B Proof of Theorem 3

Proof. First, observe that we can trivially extend Theorem 2 to the case of a mixture of k-of-N
measures. We simply modify the k-of-N game to begin by having a chance node sample a k-of-N

2We can assume Yi < Yi+1 because the event that any two Xi’s have the same value has measure zero.
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measure, unbeknownst to player 1. Since the algorithm in Theorem 2 involves chance-sampled CFR-

BR, we can handle this new game by simply sampling a new k-of-N measure on each iteration. The

number of iterations required in such a case is unchanged; the time per iteration increases by the

sampling time, which is polynomial in the size of the mixture.

Let � > 0 be given. Consider the µ-robust optimization in Equation 4, and note that for all abso-

lutely continuous measures, the optimization is unchanged if we allow F to be the set of Lebesgue

integrable functions. We will construct an absolutely continuous measure µ̂ with density gµ̂ derived

from a mixture of m̂ measures, each a k-of-N measure, such that

|gµ − gµ̂| =
� 1

0
|gµ(x)− gµ̂(x)| dx <

�

2∆
. (16)

Therefore, for any Lebesgue integrable function f ∈ F ,

�����

�

[0,1]
f dµ−

�

[0,1]
f dµ̂

����� =
����
� 1

0
f(x)gµ(x) dx−

� 1

0
f(x)gµ̂(x) dx

���� (17)

=
����
� 1

0
f(x)(gµ(x)− gµ̂(x)) dx

���� (18)

≤
� 1

0
|f(x)| |gµ(x)− gµ̂(x))| dx (19)

≤ ∆
� 1

0
|gµ(x)− gµ̂(x))| dx ≤ �

2
(20)

By Theorem 2 we can find an
�
2 -approximation of our µ̂-robust policy with high probability in

polynomial time (polynomial in m̂ and N as well) under our conditions. Since the two objectives

never differ by more than
�
2 this gives us a high probability �-approximation of a µ-robust policy.

Thus, it suffices to show how to construct gµ̂ such that m̂ and N are polynomial in {∆, L,m,
1
� }.

In constructing gµ̂, we will first approximate gµ with a piecewise constant function ĝ such that

|ĝ − gµ| <
�

4∆ , and then approximate ĝ with gµ̂ using a mixture of k-of-N measures such that

|gµ̂− ĝ| <
�

4∆ Let a1, . . . , am be the boundaries of the pieces of µ, and let b1, . . . , bm� be uniformly

spaced along the unit interval with m
� = � 4L∆

� � pieces. Finally, let the boundaries of the pieces

of ĝ, x0, . . . , xm̂, be the union of {ai}, {bi}, and {0, 1}, so that x0 = 0 and xm̂ = 1. For any

x ∈ [xi−1, xi), define ĝ(x) = gµ(xi−1+xi

2 ). By construction, the interval [xi−1, xi) is in the same

piece of gµ and the size of the interval |xi−1 − xi| ≤ 4L∆
� , so by the piecewise Lipschitz continuity

of gµ

|ĝ − gµ| ≤ max
x∈[0,1]

|ĝ(x)− gµ(x)| (21)

≤ L
4L∆

�
=

4∆
�

, (22)

where ĝ has m̂ = m + � 4L∆
� � pieces.

Notice that ĝ is a non-increasing function since gµ is non-increasing. Therefore, we can write ĝ as a

weighted sum of decreasing unit step functions,

ĝ(x) =
m̂�

i=1

wisi(x), (23)

where wi = ĝ(xi−1) − ĝ(xi) and si(x) = H(xi − x), with H being the Heaviside step function

(i.e., 1 when its argument is non-negative, 0 otherwise). Notice that
�

i wi = ĝ(0)− ĝ(1) = 1. We

will now construct our gµ̂ as a mixture of measures g1, . . . , gm̂ each designed to approximate one of

the step functions H(xi − x), and each a k-of-N measure. With N = � 512∆3

�3 � and Ki = �xiN�,
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we choose gi(x) = 1− Ix(Ki, N −Ki).

|gi − si| =
� 1

0
|gi(x)− si(x)| (24)

=
� 1

0
|1− Ix(Ki, N −Ki)−H(xi − x)| dx (25)

=
� 1

0
|H(x− xi)− Ix(Ki, N −Ki)| dx (26)

Let x̂i = Ki
N , then by the triangle inequality,

≤
� 1

0
|H(x− x̂i)− Ix(Ki, N −Ki)| + |H(x− xi)−H(x− x̂i)| dx (27)

=
� 1

0
|H(x− x̂i)− Ix(Ki, N −Ki)| dx +

� 1

0
|H(x− xi)−H(x− x̂i)| dx (28)

The second integral can easily be bounded by 1
N , and so we focus on the first. Let σ

2 be the variance
of a Beta distributed random variable with parameters (Ki, N −Ki) and let c > 0 be an arbitrary
value.

� 1

0
|H(x− x̂i)− Ix(Ki, N −Ki)| dx (29)

=
� x̂i

0
|H(x− x̂i)− Ix(Ki, N −Ki)| dx +

� 1

x̂i

|H(x− x̂i)− Ix(Ki, N −Ki)| dx (30)

=
� x̂i

0
Ix(Ki, N −Ki) dx +

� 1

x̂i

1− Ix(Ki, N −Ki) dx (31)

=
� x̂i−cσ

0
Ix(Ki, N −Ki) dx +

� x̂i

x̂i−cσ
Ix(Ki, N −Ki) dx

+
� x̂i+cσ

x̂i

1− Ix(Ki, N −Ki) dx +
� 1

x̂i+cσ
1− Ix(Ki, N −Ki) dx (32)

≤
� x̂i−cσ

0
Ix(Ki, N −Ki) dx +

� 1

x̂i+cσ
1− Ix(Ki, N −Ki) dx

+ cσIx̂i(Ki, N −Ki) + cσ(1− Ix̂i(Ki, N −Ki)) (33)

=cσ +
� x̂i−cσ

0
Ix(Ki, N −Ki) dx +

� 1

x̂i+cσ
1− Ix(Ki, N −Ki) dx (34)

The remaining two integrals are simply the probability a Beta-distributed random variable is at least
c standard deviations from its mean. By Chebyshev’s inequality we have,

� x̂i−cσ

0
Ix(Ki, N −Ki) dx +

� 1

x̂i+cσ
1− Ix(Ki, N −Ki) dx ≤ 1

c2
(35)
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We can bound the variance of our Beta distribution by σ2 ≤ 1
4N and by choosing c = N

1
6 and

putting all of the pieces together we have,

|gi − si| ≤
1
N

+ cσ +
1
c2

(36)

≤ 1
N

+
N

1
6

2N
1
2

+
1

N
1
3

(37)

=
1
N

+
1

2N
1
3

+
1

N
1
3

(38)

≤ 1
2N

1
3

+
1

2N
1
3

+
1

N
1
3

(39)

=
2

N
1
3

(40)

≤ 2
�

�3

512∆3

� 1
3

=
�

4∆
(41)

So,

|gµ̂ − ĝ| =
� 1

0
|gµ̂(x)− ĝ(x)| dx (42)

=
� 1

0

�����

�
�

i

wigi(x)

�
−

�
�

i

wisi(x)

������ dx (43)

=
� 1

0

�����
�

i

wi (gi(x)− si(x))

����� dx (44)

≤
� 1

0

�

i

wi |gi(x)− si(x)| dx (45)

≤
�

i

wi

� 1

0
|gi(x)− si(x)| dx (46)

≤
�

i

wi
�

4∆
=

�

4∆
(47)

Thus, |gµ̂ − gµ| ≤ �
2∆ , which is what we set out to prove. Furthermore, m̂ and N are polynomial in

the quantities L, ∆, m, and 1
� .

C The Diabetes Management Task

Our simplified diabetes management MDP is depicted in Figure 4. States in the diabetes manage-
ment task are a combination of blood glucose level (low, medium, and high) and meal size (small,
regular, and large). For simplicity, we do not simulate meal-size separately from blood glucose level
even though they are highly tied to one another, i.e. patients who feel faint general sense that they
have low blood sugar and choose to eat a bigger meal. Instead, our problem set up assumes that
patients do not get to choose their meals and that insulin actions are the only thing determining
transitions between states, i.e. that injecting some level of insulin affects not only how much blood
glucose a patient has but also the meal they are to eat in the next step. A future task is to improve
the diabetes management task to more accurately reflect reality.

Rewards depend only on blood glucose state and do not depend on insulin actions. They are drawn
from Normal distributions: Low ∼ N (5, 4), Med ∼ N (6, 3), and High ∼ N (5, 2). The values
chosen loosely reflect what is desired by experts in the medical community. Medium blood glucose
is ideal and yields the highest reward in expectation. A high-glucose state provides slightly lower
rewards because a patient with higher blood glucose is in stable condition in the short-term, but may
experience detrimental effects in the long-term. A low-glucose state is potentially very detrimental
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Figure 4: Transition probabilities between the states are shown as arrows of increasing width and
darkness. The states (circles) get darker as we go toward high blood glucose states.

to the patient, as reflected in the high variance of the low-glucose reward distribution. We note that
any choice of distribution could be used- Weibull, lognormal, uniform, and that Gaussian’s were
chosen because they were understandable and yielded interesting results.

Transitions are drawn from Dirichlet distributions. Figure 4 depicts transitions for the three levels
of insulin. In general, patients trend toward higher blood glucose states after injecting no insulin.
Patients generally stay within their current blood glucose level after injecting a moderate level of
insulin, and they trend toward lower blood glucose states after injecting a high level of insulin. We
scaled the Dirichlet parameters, α, with a multiplicative factor drawn from a uniform distribution
q ∼ Unif[1, 5]. When q is small, the transitions are more likely to take patients to unexpected states,
a scenario that more adequately models child diabetics who often have unpredictable blood glucose
fluctuations. When q is large, transitions more closely follow the depicted trends, a phenomenon
more often observed with more stable adult diabetics.

D Computing k-of-N policies with CFR-BR

Algorithm 1 computes the k-of-N optimal policy, π∗, given N , k, and the number of CFR iterations
T ∗. The EvaluatePolicyOnMDP (line 6), RegretUpdate (line 11) and PolicyUpdate

(line 12) steps differ when computing optimal policies under an imperfect recall assumption versus
a perfect recall assumption as described below.

D.1 Imperfect recall

Under an assumption of reward uncertainty, the sequence of past states and actions is not informative
and we find Markovian policies, which can be represented in tables size O(|S|H). For the diabetes
problem, there are |S| = 9 states, and H = 3 is the time horizon indexed by h. When h = 0, the
agent is in end-game, and when h = 3, the agent is in the initial state as sampled from the initial
state distribution P (sinit)

Policy Evaluation. Given a policy π and an MDP with fixed reward and transition parameters R
and P , we compute the state-action values Q(s, a, h) and vπ

M.

Initialize the state-action value function at end-game (terminal) states to be zero, i.e. Q(s, a, h =
0) = 0. For all non-terminal states, i.e. ∀h ∈ (0, H], we use the following dynamic programming
equation to compute the state-action value function:
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Algorithm 1: CFR-BR for optimizing k-of-N percentile measures objectives
Data: N,k,T ∗

Result: π
∗

regrett=0 = 0;1

π
t=0 = 1

|A| ;2

for t = 1 to T
∗ do3

for i = 1 to N do4
Mi ← GenerateDiabetesMDP;5
v

π

Mi
← EvaluatePolicyOnMDP;6

SortMDPsOn(vπ

M);7
Mk-of-N = ChanceSampleFromBottom(k);8
vk-of-N = v

π

Mk-of-N
;9

Qk-of-N = arg vk-of-N ;10

regrett = RegretUpdate(Qk-of-N );11

π
t = PolicyUpdate(regrett);12

π
∗ = π

T
∗

13

Q(s, a, h) = R(s) +
�

s�

�

a�

Pa(s, s�)π(s�, a�, h− 1)Q(s�, a�, h− 1) (48)

The value of employing policy π in and MDP M is given by

v
π

M =
�

s

�

a

P (sinit)π(s, a,H)Q(s, a,H) (49)

Regret Update. After sorting v
π

M for all N MDPs, chance samples one MDP Mk-of-N from the
bottom k. Regrets are updated according to the k-of-N state-action value function Qk-of-N

regrett(s, a, h) = regrett−1(s, a, h) +

�
Qk-of-N (s, a, h)−

�

a�∈A

π
t(s, a�, h)Qk-of-N (s, a�, h)

�

(50)

Policy Update.

π(s, a, h)t+1 =
(regrett(s, a, h))+�
a
(regrett(s, a, h))+

(51)

where f
+ = max(f, 0).

D.2 Perfect recall

Under an assumption of transition uncertainty, policies depend on entire histories of past states
and actions. As a result, the number of information sets (i.e., decision points) in an optimal policy is
|I1| = |S|((|S||A|)H−1)/(|S||A|−1), and so polynomial in the number of states and actions for any
fixed horizon, but exponential in the horizon itself. The diabetes problem has |X| = |S|((|S||A|)H−
1)/(|S||A| − 1) = 6813 non-terminal histories, denoted as x, and |Z| = |S|(|S||A|H) = 177147
terminal leaf nodes, denoted as z.

Policy Evaluation. Given a policy π and an MDP with fixed reward and transition parameters R

and P as drawn from their respective distributions, we compute the state-action values Q(x, a) and
v

π

M.

We initialize the state-action value function at end-game (terminal) states (the leaf nodes in the game
tree) z to be the terminal rewards, i.e. Q(z, a) = R(z). For all non-terminal states, x, we compute:

Q(x, a) =
�

x�

�

a�

Pa(x, x
�)π(x�, a�)Q(x�, a�) (52)
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where x is a parent node of x� in the game tree, i.e. if x� is the sequence (s0, a5, s1, a4, s2), then
the parent x is the sequence (s0, a5, s1).

vπ
M =

�

xinit

�

a

P (xinit)π(xinit, a)Q(xinit, a) (53)

The regret and policy updates are directly analogous to the one under an imperfect recall assumption.

Regret Update.

regrett(x, a) = regrett−1(x, a) +

�
Qk-of-N (x, a)−

�

a�

πt(x, a�)Qk-of-N (x, a�)

�
(54)

Policy Update.

πt+1(x, a) =
(regrett(x, a))+�
a(regrett(x, a))+

(55)
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