
Autonomous Geocaching: Navigation and Goal Finding in
Outdoor Domains

James Neufeld
University of Alberta

114 St - 89 Ave
Edmonton, Alberta

neufeld@cs.ualberta.ca

Jason Roberts
University of Alberta

114 St - 89 Ave
Edmonton, Alberta

roberts@cs.ualberta.ca

Stephen Walsh
University of Alberta

114 St - 89 Ave
Edmonton, Alberta

walsh@cs.ualberta.ca
Michael Sokolsky
University of Alberta

114 St - 89 Ave
Edmonton, Alberta

sokolsky@cs.ualberta.ca

Adam Milstein
University of Waterloo

200 University Avenue West
Waterloo, Ontario

ahpmilst@cs.uwaterloo.ca

Michael Bowling
University of Alberta

114 St - 89 Ave
Edmonton, Alberta

bowling@cs.ualberta.ca

ABSTRACT
This paper describes an autonomous robot system designed
to solve the challenging task of geocaching. Geocaching
involves locating a goal object in an outdoor environment
given only its rough GPS position. No additional informa-
tion about the environment such as road maps, waypoints,
or obstacle descriptions is provided, nor is there often a sim-
ple straight line path to the object. This is in contrast to
much of the research in robot navigation which often focuses
on common structural features, e.g., road following, curb
avoidance, or indoor navigation. In addition, uncertainty in
GPS positions requires a final local search of the target area
after completing the challenging navigation problem. We
describe a relatively simple robotic system for completing
this task. This system addresses three main issues: building
a map from raw sensor readings, navigating to the target
region, and searching for the target object. We demonstrate
the effectiveness of this system in a variety of complex out-
door environments and compare our system’s performance
to that of a human expert teleoperating the robot.

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Command and con-
trol

General Terms
Design, Experimentation

Keywords
Robotics, Outdoor navigation, Geocaching

1. INTRODUCTION
Geocaching is a human recreational activity in which par-

Cite as: Autonomous Geocaching: Navigation and Goal Finding in
Outdoor Domains, J. Neufeld, J. Roberts, S. Walsh, A. Milstein, M.
Sokolsky, M. Bowling, Proc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2008), Padgham,
Parkes, Müller and Parsons (eds.), May, 12-16., 2008, Estoril, Portugal,
pp. XXX-XXX.
Copyright c⃝ 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ticipants use a handheld GPS to aid in finding an object
hidden in an unknown environment given only the object’s
GPS coordinates. Typically the objects are placed in unde-
veloped areas with no obvious roads or paths. Natural ob-
stacles along with the lack of any map of the terrain make
it a challenging navigation problem even for humans. In ad-
dition, due to the error in GPS position estimates, a search
is usually required to finally locate the object even after the
GPS coordinate has been reached. This paper describes an
autonomous robot system designed to solve the geocaching
task. Some of the features of human geocaching will be re-
laxed: the target object is known in advance and can be
identified when found, and the robot will start within a few
kilometers of the goal. However, the core challenge — navi-
gating in an unknown environment without a map to find a
target object — remains unchanged.

Robot navigation in outdoor, and hence unstructured, en-
vironments is an exciting challenge for robotics. It has in-
numerable practical applications such as search and rescue,
surveying, monitoring outdoor industrial or agricultural as-
sets, and interstellar exploration. It also has proven to be
considerably more difficult than the far more studied task
of indoor navigation, where sensor range is not an issue and
two-dimensional occupancy maps have been shown to be ad-
equate. Even in outdoor settings most recent successes have
focused on tasks such as road following where waypoints are
provided and a road or path is known to exist between such
waypoints. The more general problem of navigating with-
out any map, waypoints, or known paths has, in comparison,
received little attention. Robot geocaching is an ideal task
for exploring this general navigation challenge, while also
coupling it with another challenging problem of searching a
local area for a target object.

Robot geocaching requires addressing three key issues:
map building, navigation, and local search. Map building
requires both identifying a good representation of the nav-
igability of outdoor space, and extracting such a map from
the robot’s array of sensors as it moves about the environ-
ment. Navigation is required to identify an appropriate path
to reach the target area, despite an inaccurate and incom-
plete map, as well as produce control commands to follow
the path. Because GPS receivers have limited accuracy in
estimating position, a local search is necessary when the



Figure 1: Segway RMP outfitted for geocaching.

robot arrives within the range of the GPS goal. This paper
describes a simple robot system that addresses these issues.

The paper is organized as follows. In Section 2 we describe
the physical robot platform and the sensors that were used.
Explanations of how the key challenges were addressed are
presented in turn: map building in Section 3, navigation in
Section 4, and the local search in Section 5. Results for
the full system follow in Section 6 which includes evalua-
tions for our system in two separate environments, a lightly
wooded park area and the semi-urban setting of a univer-
sity campus. We present both aggregate statistics on the
robot’s performance, sample paths, and a comparison with
human operators shown the same sensory inputs as used by
the robot. In Section 7 we relate this work to other exam-
ples of robot navigation in unstructured environments, and
then finally conclude.

2. HARDWARE
The robotic system described in this paper is built on top

of a Segway Robotics Mobility Platform (RMP): a 2-wheeled
self-balancing robot. A picture of the robot can be seen in
Figure 1.

2.1 Robot Platform
The Segway RMP is ideal for navigating in outdoor envi-

ronments due to its high maneuverability, ruggedness, nar-
row chassis, large payload capacity, and water resistance.
Our RMP has been out-fitted for autonomous navigation by
adding all terrain tires, roll bars, two laptop computers, a
combination GPS and inertial sensing unit, a color camera,
and a laser rangefinder. The Segway RMP has a top speed of
3.6 m/s (13 km/h) but we limited the speed to 0.4 m/s which
we determined as the maximum speed at which the system
could detect and avoid obstacles given the sensor configura-
tion described below. The RMP’s internal batteries provide

enough energy to last for approximately four hours of con-
tinuous navigation at our maximum speed. The two laptop
computers mounted on the system each have extended bat-
teries to provide approximately four hours of battery life.
The first laptop is used only to communicate with the RMP
and the sensors and contains a 800MHz Intel processor and
512MB RAM. The second laptop, containing a 2.0GHz dual
core Intel processor and 1GB RAM, is used to interpret the
sensor information and process the commands to direct the
robot toward the goal.

2.2 Sensors
This robotic system is equipped with a SICK LMS 200

laser rangefinder used for measuring the terrain directly in
front of the robot. This sensor is configured to return 401
distance measurements over a 100 degree sweep at 18.5Hz.
The laser is rigidly mounted on the top of the robot and
pitched forward 27 degrees. If the robot is on flat ground
and perfectly upright, the laser returns horizontal scans of
the terrain approximately 2 meters in front of the robot and
5 meters wide. Additionally, for goal identification, a color
camera is mounted just above the laser sensor and pitched
downward 30 degrees. This camera is configured to return
images at a 320x240 resolution at 3.75 Hz.

In addition to these external sensors, the robot is equipped
with a variety of proprioceptive sensors. The RMP has
highly accurate wheel odometry encoders as well as gyro-
scopes that measure the pitch and roll of the platform. In
addition we’ve added a Novatel ProPac G2 – Plus, which
returns global position and heading information. This sen-
sor combines a GPS receiver with an inertial measurement
unit and is able to return orientation information accurate
to 1/100th of a degree and positions accurate to 1 meter
at 100Hz. Note that the goal object’s location, though, is
measured using a hand-held GPS and so is only accurate to
8–12 meters in the best conditions.

3. MAP BUILDING
In order to safely navigate to the goal location the robot

requires a map that specifies the locations of unsafe terrain.
Our map is constructed exclusively from measurements pro-
vided by the downward pointing laser. The map will neces-
sarily be incomplete as the laser is only scanning 2 meters
ahead, requiring us to integrate our sensor readings, and up-
date our map, as we move in the environment. In order to
integrate readings that were collected at different times we
must know the robot’s pose at the time each reading was
recorded. In the robotics literature this is referred to as the
localization problem. Given a set of laser distance measure-
ments, from known poses, the system must integrate this
information and identify sections of the terrain that pose
a danger to the robot. This is referred to as the mapping
problem with the additional element of traversability classi-
fication. We address each of these problems in turn.

3.1 Localization
To obtain an estimate of the robot’s pose in the world

reference frame we integrate information from our various
sensors. Although we have an accurate GPS/IMU position-
ing system, it does not entirely solve our problem. This is
because the measurements returned by the GPS/IMU sensor
have a high relative error (error in the change in position over
small periods of time). Relative error is critical because the



robot must be able detect very small obstacles by comparing
laser readings taken in close succession. Odometry informa-
tion, on the other hand, can provide very accurate relative
positions, but its absolute error (error in the global position
at any given time) accumulates as the robot moves. For a
long distance navigation task this is a significant drawback
as a robot localizing solely on odometry can end up looking
for the goal object kilometers away from its actual location.
In order to address the shortfalls of both of these sensors we
combine the information received from each to maintain a
robust position estimate.

The most significant source of pose estimation error when
integrating odometry information comes incorrect heading
(yaw) information. This error comes from two sources, first,
wheels tend to slip much more when the robot is turning,
and second, incorrect heading information has a compound-
ing effect on all subsequent measurements. Fortunately, the
GPS/IMU sensor returns yaw measurement with an abso-
lute error less than 1/100th of a degree. We combine this
yaw measurement with information from the odometry en-
coders, which provide an accurate measurement of the dis-
tance traveled, to update the current (x,y) position of the
robot. Under normal operation we found that this position
estimate was accurate to 1% of the distance traveled. In or-
der to adjust for this accumulating position inaccuracy the
position of the goal is updated periodically from its known
GPS location and the current GPS position of the robot,
which does not drift over time.

The other two rotational degrees of freedom, forward ro-
tation (pitch) and the side rotation (roll), are provided di-
rectly by the RMP’s internal gyroscopes. These values are
crucial to the accuracy of the world map because the errors
are magnified when laser information is converted into the
world frame of reference. In fact, a 1◦error in the pitch es-
timate can lead to a 4 cm error on the height estimate of
the ground plane. And a 1◦error in roll can lead to a 6 cm
error in the ground plane estimate. Conveniently, the in-
ternal gyroscopes are essential if maintaining the balance of
the RMP and are accurate to about 0.12◦.

The only sensor measurement we have for the height of
the robot (z) comes from the GPS/IMU sensor. However,
this measurement has far too much relative error to be used
in map building. Hence, we assume z to be zero at all times.
We further discuss the problems that arise from this assump-
tion in the evaluation section as well as discuss possible so-
lutions in the conclusion.

3.2 Traversability
Once we have an accurate estimate for the position and

orientation of our robot in the world, we can use it to inte-
grate and interpret our sensor readings and identify unsafe
areas of terrain. The laser rangefinder sensor sends out a
series of laser pulses in a sweeping motion and returns the
distance at which the beam is reflected back to the sensor.
The first step taken in processing this information is to re-
move measurements caused by small airborne objects such
as pollen, snowflakes, and dust. This is done by filtering out
laser readings that differ by more than 30 cm from both of its
neighbours in the same direction. The next step is to convert
these laser readings into the world reference frame using the
current pose estimate of the robot. The resulting 3D point
cloud is combined with earlier scans to produce a somewhat
sparse contour of the terrain. However, due to the compu-

tational limitations on board the robot, a 3D point cloud is
not an ideal representation of the terrain. Instead, we sum-
marize this information into a compact probabilistic repre-
sentation. This representation is a discrete two-dimensional
lattice of square cells, where each cell maintains a mean and
variance over the heights of the laser points that fall within
its boundaries. This representation reduces the overall com-
putation and memory resources required to both remember
past measurements and classify terrain.

Through a series of crash tests teleoperating the RMP, we
determined that the robot is not physically able to drive over
terrain if the load bearing surface changes in height by gen-
erally more than 8 cm over a 25 cm distance1. Therefore, to
determine the traversability of a section of terrain we must
obtain an estimate for the height of the load bearing sur-
face. This turns out to be a very difficult problem because
many terrain types, such as vegetation or snow, can occlude
the true surface. While there has been some research on es-
timating the correct ground plane in vegetated terrain [10]
these techniques are not robust enough to guarantee cor-
rect classifications. Unfortunately, this is a limitation of our
sensor modality and we are only able to partially address
this issue. This is done by estimating the height of the load
bearing surface as equal to the mean for a cell in the prob-
abilistic representation. Using this estimate terrain with a
reasonable amount of variance, such as short grass, will gen-
erally appear as flat, and thus be classified as traversable.

The cell width parameter allows us to control how much
smoothing we introduce into the terrain map. As the width
increases the heights are averaged over a larger area and con-
sequently the terrain will appear to be much smoother. As
the width of the cells is reduced there is less of a smoothing
effect which causes terrain variance and measurement errors
become much more pronounced. The extremes in either case
can lead to poor performance. If the cell width is too wide
the classifier may not detect obstacles and if the width is too
narrow the classifier may label safe terrain as untraversable.
We experimented with this parameter in several different
environments and found that a cell width of 12.5 cm struck
a good balance between these two trade-offs. Additionally,
we anticipated that this height estimate would incorrectly
halve the height of solid objects such as curbs or walls. For
this reason we automatically classified a cell as unsafe if its
variance measure exceeded a set threshold of 10 cm.

Given this estimate for the height of the load bearing sur-
face we classify each terrain cell by comparing its height
(mean) to all of its neighbours that lie within the surround-
ing square 5x5 cell area. If the height difference between
the cell and any of its neighbours exceeds a threshold, set
at 8.3 cm, then both cells are marked unsafe. Figure 2 illus-
trates how this classification scheme works in a simple 2D
example.

Improvements.
In order to reduce misclassifications due to measurement

errors and terrain variance we do not include cells that have
less than 5 laser measurements in the terrain classification
step. Also, to avoid misclassifications that arise from this
accumulated localization error we introduced two adapta-
tions. The first adaptation is to immediately discard a cell’s

1This is a guideline figure since there are a number of ad-
ditional factors that affect traversability such as the current
speed, payload, and heading of the robot.



z

A B C D

z

A B C D

Figure 2: This figure shows two example point
clouds, shown as the smaller dots, as a cross sec-
tion. The large dots indicate the mean value of the
point cloud and the bars represent the (scaled) vari-
ance. In the top figure cells B&C are not traversable
because the difference between their means is above
threshold. In the bottom figure cells B&C are not
traversable because their variance exceeds thresh-
old.

previous laser information older than 1.5 seconds upon re-
ceiving new laser data. The second adaptation is to ignore
the height difference between cells if they have been updated
more than 5 seconds apart. Also, in order to ensure that
the robot will not incorrectly surround itself with obstacles
we mark all of the grid cells that it traverses over as per-
manently safe. This is an important modification because
often in rough terrain the robot will be forced to backtrack
along the path it had previously traversed. In this instance
a single misclassification can cause the robot to believe it is
surrounded and that there is no safe path to goal.

4. NAVIGATION
The navigation system on this robot consists primarily

of two independent systems: planning and control. The
planning system produces a safe and efficient path to the
goal while the control system follows that path as efficiently
as possible.

4.1 Planning
The objective of the planning system is to produce a path

that is optimal with respect to the robot’s current map of the
environment. This is a challenging problem because the sys-
tem must produce long distance paths at a resolution high
enough to allow for precise local navigation around and be-
tween obstacles. Additionally, the system must be able to
efficiently alter the current path in order to adapt to the
constant stream of new robot positions and map updates.
This problem is further complicated by the limited compu-
tational resources available on board the robot. However,

the robot moves only a small distance at a time and map
updates only occur close to the robot. Fortunately, algo-
rithms exist that have been specifically designed to exploit
these two properties, one such an algorithm is D*-lite [4].
The D*-lite algorithm maintains a distance to goal for each
vertex in the search graph and only makes local modifica-
tions as edge costs change. Because this system only up-
dates cells relatively close to the robot there is often very
little computation required to update the changed costs.

The search graph used for this planner is an 8-way con-
nected graph that is the same resolution as the traversability
map. Any cell that is marked as untraversable is simply re-
moved from the search graph. Also, in order to account for
the RMP being larger than a single 12.5 cm square cell we
expand around obstacles by marking all the cells within a 3
cell radius of an untraversable cell as unsafe. This buffer is
actually a full cell size larger than required so that the path
is still safe even after it is smoothed as described in the next
section. The D*-lite algorithm produces a path by essen-
tially planning backwards from the goal in the same manner
A* search would. Once the start location has been reached
the closed list is saved and used as a cost map for producing
a path. When the robot moves the algorithm will reuse the
saved cost map or extend it out to the new start location if
needed. Also, when new map updates occur they are added
to the open list and their costs, as well as the costs of the
cells they affect, are updated in a cascading fashion. Once
the updates are finished a path is produced from the cost
map with a simple depth first search, starting from the start
state.

Improvements.
In order to produce a more direct path to the goal the

depth first search breaks ties by choosing to expand the node
that is closest to the straight line path between the start and
goal. This alleviates some of the inefficiencies created by dis-
cretizing the terrain into an 8-way grid. The search was also
adapted to deal with the goal location periodically changing
due to accumulating localization error. To move the goal in
the path planner we simply erased the entire map, moved the
goal position, then re-added all of the obstacles, and planned
a new path to the goal. This simple solution turned out to
be surprisingly efficient because the large majority of the
obstacles are not between the robot and the goal. Because
D*-lite updates the cost map by planning backwards from
the goal the changes introduced by these obstacles do not
require computational resources.

4.2 Control
Once a safe path to the goal is returned by the planning

system the control system must issue low level velocity com-
mands to follow the path as efficiently as possible. Because
the RMP is able to turn in place, we found that a simple
point-based controller was an effective way to produce veloc-
ity commands. This controller receives its current location ,
orientation, and target location for input and produces two
continuous velocity commands: forward velocity and angu-
lar velocity as output. This controller works by first supply-
ing an angular velocity until it is almost facing the target
location. As the robot begins to point the correct direction
the controller will start supplying a forward velocity propor-
tional to the distance it must travel. The embedded software
on the RMP then attempts to meet these given velocities un-



Figure 3: This figure shows the differences between
the path produced by the 8-way D*-lite planner
(solid line) and the actual path taken by the robot
(dashed line). The solid dark cells have been marked
unsafe by the classifier. The striped dark cells have
more than one unsafe cell within a 3 cell radius. The
line striped cells have only one unsafe cell within this
radius.

der the additional constraint of keeping the robot balanced.
Using this controller the robot can follow a path by contin-
ually navigating to the next point along the path. However,
because the path is produced in a discrete 8-way grid it will
have several sharp turns and following it so strictly will lead
to slow choppy motion.

To create a smoother and more efficient path the control
system chooses a navigation waypoint as far along the path
as possible. The only restriction on this choice is that the
robot must not drive over any unsafe terrain. To determine
where to set the waypoint the control system starts at the
point 1.5 m along the path and traces a ray back to the
robot’s current position. If the ray does not intersect any
untraversable cells or any cells that have more than one
unsafe cell in a 3 cell radius then the waypoint is safe. If
the waypoint is not safe then the algorithm steps along the
path toward the robot until it finds a point that is safe.
Once a good waypoint is found it is sent to the point based
controller and the robot will drive towards it. We deliber-
ately made expanded region around obstacles larger than
required so that this controller could produce a smoother
path by cutting corners. Figure 3 demonstrates how this
controller produces smoother paths by cutting corners.

4.3 Replanning
Since the robot is continually moving and receiving new

information about its environment, its current path rapidly
becomes outdated. Therefore, the robot must constantly
make the decision of when to plan a new path. This is
difficult because planning too frequently is not only compu-
tationally expensive but it can cause the robot to exhibit os-
cillating behavior. Replanning too infrequently is also prob-
lematic because the robot can collide with new obstacles in
between planning stages. To make this decision the system
keeps the current path until any one of the following condi-
tions force a replan:

• The robot is closer to the waypoint than to the path’s
starting point (i.e., it is approximately half-way toward
the waypoint.)

• More than a set amount of time has elapsed since the
last replan.

• The line between the robot and waypoint becomes un-
safe by the previous definition.

Under these conditions the robot will tend to stick with
its current path and does not act indecisively. Also, this
system ensures that the robot can navigate safely without
having to waste system resources on unnecessary planning.

5. LOCAL GOAL SEARCH
The local goal search system takes over the planning as

soon as the robot gets within a set range of the GPS goal.
The objective of this final subcomponent is to search the lo-
cal area around the GPS coordinate and find the goal object
as quickly as possible. This involves deciding which part of
the search area to scan next, safely navigating to the chosen
area, marking off which sections have been searched, and
identifying the goal object with the camera.

In order to find the goal object quickly it is important to
search the areas where the goal object is most likely located.
However, it is time efficient to search out areas that are close
to the robot. In order to explicitly manage this trade-off,
the system chooses which areas to search next according to
a parameterized scoring function:

score(x, y) = Pr(x, y) ∗ C

C + dist(x, y)α
, (1)

Pr(x, y) is the probability that cell (x, y) contains the goal
object and is calculated using a Gaussian distribution cen-
tered at the GPS position. dist(x, y) is the length of the
shortest obstacle free path to the cell. A modified version of
A* search is used to calculate this distance for every cell in
the search space. This search reduces the amount of com-
putation required by keeping the open and closed list from
previous searches until the start location moves. The con-
stant parameters C and α are used to trade off how much
the system prefers closer points over farther ones. Also, be-
cause the camera is not able to see the ground close to the
robot, cells that are within a 1.5 m radius of the robot are
not considered as candidates.

Once a cell has been selected the system will attempt to
scan the cell by navigating onto it. A path to the cell around
obstacles is planned using A* and the same waypoint con-
troller is used. The robot will continue to navigate toward
the selected cell until any of the following conditions are
met:

• The cell is seen by the camera.

• The cell is marked as an obstacle or unreachable.

• The robot has moved to within 1.2 meters of the cell.

• The goal has been found.

It is difficult to determine which parts of the terrain have
been seen by the camera because the geometry of the terrain
is unknown. Therefore, in order for a cell to be marked as
seen it must first be scanned by the laser sensor. Once a
cell has been scanned we can calculate whether or not it
is in the camera’s field of view. To make this calculation
easier the camera is mounted on the robot so that the field
of view lines up with the laser and we can mark cells as seen
immediately after being scanned.

The camera based goal identifier uses a modified version
of the CMVision [1] color threshold package to determine if



anything in the current field of view matches the distinct
color and shape of the goal object. This identifier receives
camera information at 3.75Hz and stops the local search
program as soon as the goal is found.

6. EXPERIMENTAL ANALYSIS
This system was tested in two different environments each

with their own unique obstacles. The first test site was a
lightly wooded park near the University of Alberta campus.
The park spans a distance of about 800 meters and con-
sists of two large forested areas separated by a small access
road. The obstacles in this site consist of picnic tables, large
trees, small shrubs, fallen trees, barbecues, larger berms, and
curbs. The second test site is a semi-urban area. Common
obstacles in this site include trees, bicycle racks, garbage
cans, benches, curbs, buildings, flower gardens, chain link
fences, and hills.

6.1 Results Summary
The autonomous system was run on 11 test trials over the

course of 5 days, 10 of these trials were run in the park test
site and one 1.1 km test was run at the campus site. For each
test trial the robot was placed at a random location in the
environment and provided with only a GPS coordinate of the
goal and a description of the goal object. The goal object in
all tests was a 20 cm wide red disc placed within 8 meters
of the specified GPS coordinate. The path, time taken, and
number of interventions was recorded as the robot navigated.
An intervention is defined as any time the tester took control
of the robot to either move it out of a situation it could not
safely escape from or to prevent it from hitting a dangerous
obstacle which it did not detect.

The results for all 11 of these tests are recorded in Table 1.
In all of the tests the robot was able to navigate to the target
region successfully and in all but one test was able to locate
the goal object. In the one failed test, the system mistakenly
classified a patch of red leaves as the goal object, which
highlights the need for more sophisticated object detection.
The human operators had to intervene a total of three times
over all of the test runs. In one case the RMP got caught on
a tree while trying to recover balance in rough terrain. In the
other two cases the RMP was unable to find a path to goal
due to incorrect terrain classifications in hilly terrain. The
system has a difficult time accurately modeling hilly terrain
because of its inability to estimate the current height of the
robot.

Over the course of testing, the autonomous robot was able
to successfully navigate a cumulative distance of 4.7 km over
unknown terrain while maintaining an average speed of 0.303
m/s. The system was able to maintain this high rate of
speed due to its ability to plan paths in fractions of a second
and identify obstacles early enough to navigate around them
smoothly. The longest trial test we conducted was across the
campus test site where the robot navigated continuously for
a period of 66 minutes travelling a distance of 1127 meters.
The path for this test, shown in Figure 4, shows the frequent
backtracking the robot had to do in order to find its way
around the large obstacles in the test site.

6.2 Comparison to Human Teleoperation
In addition to the autonomous test trials we also compared

the performance of this system to that of a human expert
teleoperating the robot. We ran a total of five tests with

Trials 11
Successes 10
Goal Finding Fails 1
Interventions 3

Cumulative Distance (m) 4700
Cumulative Time (min) 259
Average Speed (m/s) 0.302

Table 1: Results for the autonomous system on the
trial tests

Robot Humans
Trials 5 5

Successes 5 5
Goal Finding Fails 0 0
Interventions 0 3

Cumulative Distance (m) 1517 1541
Cumulative Time (min) 76.9 83.2
Average Speed (m/s) 0.329 0.309

Table 2: Results for the human expert trials.

two different human controllers who had no prior knowledge
of the environment. The human experts were shielded from
the test environment and only provided with a 3D graphical
interface of the robot’s sensors. This interface provided the
estimated position of the robot, the position of the goal, the
point cloud from the laser scanner, as well as the obstacles
detected by the terrain classifier. We elected to provide the
human testers with the terrain classifications because a point
cloud representation is at times difficult to interpret. In or-
der to prevent the testers from navigating using the camera
information the automatic goal detection subcomponent was
used and the testers were simply told when the robot had
found the goal. Additionally, the testers were encouraged to
use the point cloud information whenever possible since the
terrain classifier is not always correct.

The results for both the humans and robot on the five
test trials are shown in Table 2. The differences in the cu-
mulative distance traveled for both the test groups was with
an expected margin of error. However, the robot did navi-
gate at a faster average speed than the human controllers.
The human experts attributed this discrepancy mainly to
time taken to try and infer the shape of the terrain from the
point cloud data. The other major discrepancy between the
two tests groups is the number of interventions. In all three
of these cases the human controller incorrectly thought the
terrain looked safe and overruled the slope classifier only to
hit an obstacle. However, overruling the terrain classifier
did reduce the traversal time for some of the tests. The
paths shown in Figure 5 show how the human controller
took a shorter path than the autonomous system. However,
in this particular case the shortcut happened to take the
human into much rougher terrain resulting in a lower aver-
age speed. Additionally, the human controllers did a much
better job recognizing vegetation from the point cloud and
thus not wasting time navigating around it.

7. RELATED WORK
Much of the work related to our system is in the area of

outdoor navigation. See [8] for a succinct overview. Possibly
the most well known system for outdoor navigation is the



Figure 4: An example path followed by the robot in the university test site. The total distanced travelled
was 1.1 km, and the run was completed in 66 minutes. Map image courtesy of Google MapsTM.

Figure 5: Comparison of two paths in the park test site. The dark path was followed by a human expert
teleoperating the robot. The lighter path was followed by the robot under autonomous control. Map image
courtesy of Google MapsTM.



CMU NAVLAB II autonomous vehicle [9]. This system has
had demonstrated success navigating in outdoor terrain but
did not incorporate a solution for searching for and recogniz-
ing a goal, although the authors do recognize the necessity
of such a system. Several researchers have combined laser
and image information together to build a complete system
for navigating in outdoor terrain [6, 7, 3]. Each of these sys-
tems have had interesting contributions to the field of out-
door navigation but still have not touched on the subject
of goal finding. There is also a significant body of research
on object detection and classification with a laser sensor
for outdoor environments. There are a number of highly
applicable techniques for dealing with such data, including
point based methods [6], vegetation detection and ground
plane detection [10], structured obstacle detection [5], and
machine learned classifiers [7].

The robotic vehicles participating in the 2005 DARPA
Grand Challenge [2] all faced a number of similar challenges.
This competition featured a number of robotic systems rac-
ing along a rough 132 miles desert road that featured a va-
riety of dangerous obstacles. These vehicles had to solve
some of the same problems as we did such as mapping and
classifying terrain with a laser range finder and efficiently
planning around obstacles. However, because the Grand
Challenge race took place along a road, and GPS waypoints
were provided, the main challenge was maintaining a high
rate of speed. This is in contrast to the geocaching problem
where the main challenge is searching for an efficient path
to a long distance goal.

8. CONCLUSION
This paper described an autonomous system for robot geo-

caching. Geocaching is a challenging problem that requires
navigating through an unknown environment without a map
or obvious paths or roads. In addition, it requires an addi-
tional local search procedure for finding the target object
after navigating to its rough position. We describe a simple
system for solving the key three components to this task:
map building, navigation, and local goal search. We then
extensively evaluated the system in two different test en-
vironments facing a variety of challenging obstacles. The
system exhibited a high rate of success, travelling a total
of over four kilometers while requiring only three operator
interventions. We also compared the performance to human
expert operators making use of the same sensors in a tele-
operated fashion. The autonomous system completed the
same five test runs faster and with fewer interventions.

There are a number of future directions for improving the
system. Two of the required interventions in our tests were
due to hills in the environment. Hills create two problems for
the current system. First, the fixed tilt of the laser means
that it may not be able to scan the ground in front of it
when facing downhill. Second, scanning the same terrain
from different heights is problematic when we assume robot
height remains constant. Active control over the laser pitch
would help address the first issue. The robot’s own grid
height estimates could also be used to estimate the robot’s
height to address the second problem. Another useful ad-
dition would be pedestrian detection. Currently, when a
pedestrian approached the robot in our tests, we paused it
for safety reasons. Having an autonomous response to dy-
namically moving obstacles would allow the robot to be de-
ployed in even heavily populated environments. Finally, top

speed of the robot was limited because of the short range of
our downward pointing laser. Using a longer range sensor,
such as a camera, might allow the top speed to be increased
in open areas. Vision-based outdoor navigation, though, is
its own challenging research problem.

9. ACKNOWLEDGMENTS
We would like to thank the following people for their help:

Marcus Trenton, Brad Joyce, Cam Upright, and the class of
C608. We would also like to thank AICML, RLAI, NSERC,
and iCore for funding this research.

10. REFERENCES
[1] J. Bruce, M. Veloso, and T. Balch. Fast and

inexpensive color image segmentation for interactive
robots. In Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), 2000.

[2] M. Buehler, K. Iagnemma, and S. Singh. The 2005
DARPA Grand Challenge. Springer, 2007.

[3] A. Kelly, O. Amidi, M. Happold, H. Herman,
T. Pilarski, P. Rander, A. Stentz, N. Vallidis, and
R. Warner. Toward reliable off road autonomous
vehicles operating in challenging environments.
International Journal of Robotics Research,
25(5–6):449 – 483, 2006.

[4] S. Koenig and M. Likhachev. Improved fast
replanning for robot navigation in unknown terrain.
Technical Report GIT-COGSCI-2002/3, Georgia
Institute of Technology, 2002.

[5] S. Kolski, D. Ferguson, M. Bellino, and R. Siegwart.
Autonomous driving in structured and unstructured
environments. In IEEE Intelligent Vehicles
Symposium, pages 558– 563, 2006.

[6] R. Manduchi, A. Castano, A. Talukder, and
L. Matthies. Obstacle detection and terrain
classification for autonomous off-road navigation.
Journal Autonomous Robots, Volume 18(1):81–102,
2005.

[7] B. Sofman, E. Lin, J. Bagnell, N. Vandapel, and
A. Stentz. Improving robot navigation through
self-supervised online learning. In Proceedings of
Robotics: Science and Systems, 2006.

[8] D. J. Spero. A review of outdoor robotics research.
Technical Report MECSE-17-2004, Department of
Electrical and Computer Systems Engineering,
Monash University, Melbourne, Australia, 24 Nov.
2004.

[9] A. Stentz and M. Hebert. A complete navigation
system for goal acquisition in unknown environments.
In Proceedings 1995 IEEE/RSJ International
Conference On Intelligent Robotic Systems (IROS),
pages 425–432, 1995.

[10] C. Wellington and A. Stentz. Learning predictions of
the load-bearing surface for autonomous rough-terrain
navigation in vegetation. In Proceedings of the Int.
Conf. on Field and Service Robotics (FSR 03), pages
49–54, July 2003.


