Simplification envelopes

Tao Wang CMPUT 604

Outline

- Introduction
- Background
- Concepts and assumptions
- Envelope computation
- Simplification
- Other features
- Conclusion
- Q & A

Introduction

- User specified error bound \mathcal{E}
- Framework
 - Local algorithm
 - Global algorithm
- Geometry preserving
- Prevention of self-intersection
- Offset surfaces (envelopes)Hierarchy of LOD

Hierarchy of LOD

Background

Two categories (from I to A)

- Minimize number of vertices
- Minimize the error
- Varshney's PhD thesis

Concepts

- Convex hull
- Voronoi diagram
- Delaunay triangulation

Point set P

Convex hull

Voronoi diagram

Delaunay triangulation

5

Terminology and assumptions

- P: polygonal model
- A: approximation of P
- ε -approximations
- Assumptions
 - Triangles
 - Well-behaved model
 - Manifold (or bordered manifold)
 - Single normal

Envelope computation I

- Fundamental triangles
- Edge half-spaces
- Fundamental prism $c(v_i^{\pm}) = c(v_i) \pm \epsilon n(v_i)$

$$n(v_i^{\pm}) = n(v_i)$$

Edge half-spaces

The fundamental prism

Envelope computation II

Voronoi regions

Offset surfaces, Courtesy of Irene

Analytical *ɛ* computation

Numerical *ɛ* computation

Generation of approximation

- Hole creation
- Hole filling
- Candidate triangle
- Local algorithm
- Global algorithm
 - Cover
 - Overlap

Additional features

- Preserve sharp edges
- Adaptive approximation
- Manifold Bordered surfaces

Results

AMRmodel,3,000objects,500,000triangles.Simplified2,600objects,430,000triangles.

Batteries model, 87,000 triangles. Simplified 45,000 triangles.

(a) bunny model: 69,451 triangles

(a) c = 1/16%, 10, 793 triangles

(a) $\varepsilon = 1/4\%, 2, 204\, triangles$

(a) $\epsilon = 1\%$, 575 triangles

(b) phone model: 165,936 triangles

(b) e = 1/32%, 12, 364 triangles

(b) $\epsilon = 1/16\%$, 4, 891 triangles

(b) c = 1%, 412 triangles

(c) rotor model: 4,736 triangles

(c) $\epsilon = 1/8\%$, 2, 146 triangles

(c) $\underline{e} \equiv 3/4\%, 1, 266$ triangles

(c) ∈ = 3 3/4%, 716 triangles

Performance

	Bunny			Phone			Rotor			AMR		
	€ %	# Polys	Time	€ %	# Polys	Time	€%	# Polys	Time	€%	# Polys	Time
	0	69,451	N/A	0	165,936	N/A	0	4,735	N/A	0	436,402	N/A
	1/64	44,621	9	1/64	43,537	31	1/8	2,146	3	1	195,446	171
	1/32	23,581	10	1/32	12,364	35	1/4	1,514	2	3	143,728	61
	1/16	10,793	11	1/16	4,891	38	3/4	1,266	2	7	110,090	61
	1/8	4,838	11	1/8	2,201	32	13/4	850	1	15	87,476	68
	1/4	2,204	11	1/4	1,032	35	3 3/4	716	1	31	75,434	84
	1/2	1,004	11	1/2	544	33	7 3/4	688	1			
l	1	575	11	1	412	30	15 3/4	674	1			

Simplification performance and run times in minutes On Hewlett-Packard 735/125

Future work

Moving vertices, …

Pros and cons

Advantage

• E

- High fidelity
- Disadvantages
 - Cannot simplify models drastically

Comparison

What matters me most Geometric accuracy Performance Drastic simplification Progressive transmission Recommendation SE QEM QEM PM

References

- [1] J. Cohen et al., "Simplification Envelopes," Computer Graphics (Proc. Siggraph 96), vol. 30, ACM Press, New York, 1996, pp. 119-128.
- [2] Irene Cheng, "3D Model Simplification & Efficient Transmission," CMPUT 604 class presentation.
- [3] A. Varshney. "Hierarchical geometric approximations". Ph.D. Thesis TR-050-1994, Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, 1994.
- [4] David P. Lueke, "A Developer's Survey of Polygonal Simplification Algorithms", IEEE CG&A, May/June, 2001
- [5] H. Hoppe, "Progressive Meshes," Computer Graphics (Proc. Siggraph 96), vol. 30, ACM Press, New York, 1996, pp. 99-108.
 - [6] M. Garland and P. Heckbert, "Simpli.cation Using Quadric Error Metrics," Computer Graphics (Proc. Siggraph 97), vol. 31, ACM Press, New York, 1997, pp. 209-216.

Q & A

