Simplification envelopes

Tao Wang
CMPUT 604

Outline

- Introduction
- Background
- Concepts and assumptions
- Envelope computation

Simplification
Other features
Conclusion
Q \& A

Introduction

- User specified error bound ε
- Framework
- Local algorithm
- Global algorithm
- Geometry preserving

Prevention of self-intersection
Offset surfaces (envelopes) Hierarchy of LOD

Hierarchy of LOD

Background

Two categories (from I to A)

- Minimize number of vertices
- Minimize the error
- Varshney's PhD thesis

Concepts

- Convex hull
- Voronoi diagram
- Delaunay triangulation

Terminology and assumptions

- P: polygonal model
- A: approximation of P
- ε-approximations
- Assumptions
- Triangles
- Well-behaved model
- Manifold (or bordered manifold)
- Single normal

Envelope computation I

- Fundamental triangles
- Edge half-spaces
- Fundamental prism

$$
\begin{aligned}
& c\left(v_{i}^{ \pm}\right)=c\left(v_{i}\right) \pm \varepsilon n\left(v_{i}\right) \\
& n\left(v_{i}^{ \pm}\right)=n\left(v_{i}\right)
\end{aligned}
$$

Edge half-spaces

The fundamental prism

Envelope computation II

- Voronoi regions

Offset surfaces, Courtesy of Irene

Analytical ε computation

$$
\varepsilon_{n e w}=\frac{1}{2} \min _{i} \delta_{i}
$$

Numerical ε computation

Generation of approximation

- Hole creation
- Hole filling
- Candidate triangle Local algorithm
Global algorithm
- Cover
- Overlap

Additional features

- Preserve sharp edges
- Adaptive approximation
- Manifold Bordered surfaces

Results

AMR model, 3,000 objects, 500,000 triangles. Simplified 2,600 objects, 430,000 triangles.

Batteries model, 87,000 triangles.
Simplified 45,000 triangles.

(a) bunny model: 69,451 triangles

(a) $c=1 / 16 \%, 10,793$ triangles

(a) $と=1 / 4 \%, 2,204$ triangles

(a) $\varepsilon=1 \%, 575$ triangles

(b) phone model: 165,936 triangles

(b) $\varepsilon=1 / 32 \%, 12,364$ triangles
(b) $\varepsilon=1,16 \%, 4,891$ triangles

(b) $2=1,1$ cor $, 4,89$ tring

(c) rotor model: 4,736 triangles

(c) $\varepsilon=1 / 8 \%, 2,146$ triangles

Performance

Bunny				Phone				Rotor			AMR		
$\epsilon \%$	\#Polys	Time	$\epsilon \%$	\# Polys	Time	$\epsilon \%$	\#Polys	Time	$\epsilon \%$	\#Polys	Time		
0	69,451	N/A	0	165,936	N/A	0	4,735	N/A	0	436,402	N/A		
$1 / 64$	44,621	9	$1 / 64$	43,537	31	$1 / 8$	2,146	3	1	195,446	171		
$1 / 32$	23,581	10	$1 / 32$	12,364	35	$1 / 4$	1,514	2	3	143,728	61		
$1 / 16$	10,793	11	$1 / 16$	4,891	38	$3 / 4$	1,266	2	7	110,090	61		
$1 / 8$	4,838	11	$1 / 8$	2,201	32	$13 / 4$	850	1	15	87,476	68		
$1 / 4$	2,204	11	$1 / 4$	1,032	35	$33 / 4$	716	1	31	75,434	84		
$1 / 2$	1,004	11	$1 / 2$	544	33	$73 / 4$	688	1					
1	575	11	1	412	30	$153 / 4$	674	1					

Simplification performance and run times in minutes On Hewlett-Packard 735/125

Future work

Moving vertices, ...

Pros and cons

- Advantage
- High fidelity

Disadvantages

- Cannot simplify models drastically
- \mathcal{E}

Comparison

What matters me most
Geometric accuracy
Performance
Drastic simplification Progressive transmission

Recommendation
SE
QEM
QEM
PM

References

" [1] J. Cohen et al., "Simplification Envelopes," Computer Graphics (Proc. Siggraph 96), vol. 30, ACM Press, New York, 1996, pp. 119-128.
" [2] Irene Cheng, "3D Model Simplification \& Efficient Transmission," CMPUT 604 class presentation.

- [3] A. Varshney. "Hierarchical geometric approximations". Ph.D. Thesis TR-050-1994, Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175, 1994.
[4] David P. Lueke, "A Developer's Survey of Polygonal Simplification Algorithms", IEEE CG\&A, May/June, 2001
[5] H. Hoppe, "Progressive Meshes," Computer Graphics (Proc. Siggraph 96), vol. 30, ACM Press, New York, 1996, pp. 99-108.
[6] M. Garland and P. Heckbert, "Simpli.cation Using Quadric Error Metrics," Computer Graphics (Proc. Siggraph 97), vol. 31, ACM Press, New York, 1997, pp. 209-216.

Q \& A

