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Abstract— Many factors, such as the number of vertices and the 

resolution of texture, can affect the display quality of 3D objects. 
When the resources of a graphics system are not sufficient to 
render the ideal image, degradation is inevitable. It is therefore 
important to study how individual factors will affect the overall 
quality, and how the degradation can be controlled given limited 
resources. In this paper, the essential factors determining the 
display quality are reviewed. We then integrate two important 
ones, resolution of texture and resolution of wireframe, and use 
them in our model as a perceptual metric. We assess this metric 
using statistical data collected from a 3D quality evaluation 
experiment. The statistical model and the methodology to assess 
the display quality metric are discussed. A preliminary study of 
the reliability of the estimates is also described. The contribution 
of this paper lies in: (a) determining the relative importance of 
wireframe vs. texture  resolution in perceptual quality evaluation, 
and (b) proposing an experimental strategy for verifying and 
fitting a quantitative model that estimates 3D perceptual quality. 
The proposed quantitative method is found to fit closely to 
subjective ratings by human observers based on preliminary 
experimental results. 
 

Index Terms—3D graphics, image quality, perceptual metric, 
subjective evaluation. 
 

T
I. INTRODUCTION 

hree-dimensional (3D) computer graphics was traditionally 
used in high-end graphics workstation for specific 
applications such as computer-aided design (CAD) and 

feature movie production. In recent years, 3D graphics has 
taken an important role in interactive, networked applications 
such as computer games, e-commerce and educational 
software. Although the rapid development in graphics 
hardware has made realistic 3D display possible on personal 
computers (PCs), the increase in data complexity for high 
resolution models still surpasses the average PC and normal 
network capabilities for online applications. A decade ago, 
most 3D models were carefully designed and composed of 
relatively small number of polygons, in order to speed up 
processing and rendering. Today, highly complex models are 
required in many applications. In computer vision, range data 
on an object is acquired via 3D scanning systems. In 
computer-aided design, polygonal models are produced by the 
subdivision of curved parametric surfaces. In medicine, organs 
and tissues are reconstructed from radiological and nuclear 
images. In remote sensing, terrain data is obtained from satellite 
photographs. These applications often demand 3D models 

containing millions of polygons. Since the processing and 
display of high-resolution 3D objects require substantial 
computer resources, trade-off has to be made between display 
quality and efficient interactivity.  

The constraints that can determine the display quality of a 3D 
image in online applications fall into two main categories. 
These are Computational Constraint and Network Bandwidth 
Constraint. Computational Constraint includes the resources 
for displaying 3D objects, which are determined by the number 
of polygons, shading, lighting, texture resolution etc. Network 
Constraint includes the available bandwidth of a network, such 
as the Internet, which can affect the transmission speed 
significantly depending on the current traffic. It is thus unwise 
in an interactive application to transmit a high-resolution 3D 
object over a congested network. An adaptive approach can be 
applied through compression and simplification of 3D data to 
make the transmitted size 10-20 times smaller than the original 
without noticeable distortions [5]. An example of geometric 
simplification is shown in Figure 1, in which the Stanford 
Bunny is simplified to various resolution levels (number of 
triangles is 69,451 left, 1,919 middle and 462 right).  

 

 
Figure 1: Stanford Bunny at various resolution levels. 

When a graphics system is under computational and/or 
network constraints discussed above, the appropriate size can 
be determined depending on the available resources in order to 
speed up interactivity. Fortunately, a high-resolution 
representation is not always required. A simplified version of 
the 3D object can reduce temporary storage, memory 
utilization, as well as processing and rendering time. An 
essential consideration in designing effective interactive 3D 
systems is to adaptively adjust the model representation, while 
preserving satisfactory quality as perceived by a viewer. 
Whether or not the perceived quality is satisfactory is a 
subjective decision and can only be determined by the viewers. 
While most research in the literature focus on geometric 
compression and use only synthetic texture or color, we address 
both geometry resolution and realistic texture resolution, and 
analyze how these factors affect the overall perceptual quality 
and fidelity. Our analysis is based on experiments conducted on 
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human observers. The perceptual quality metric derived from 
the experiments allows the appropriate level of detail (LOD) to 
be selected given the computation and bandwidth constraints. 
A detailed survey on simplification algorithms can be found in 
[9]. These algorithms try to control the complexity of a 
wireframe by developing various strategies for simplifying the 
level of detail (LOD) in different parts of a 3D object. In order 
to easily control the details on a 3D object we will follow a 
simple model approximation strategy based on multiresolution 
representation of texture and wireframe. More complex LOD 
models as perceived by human observers will be included in 
our future work. Our main contribution is in proposing and 
evaluating a quantitative metric that measures perceptual 
quality variations in a restricted online environment. For 
example, given limited bandwidth [24] our model can give 
multimedia developers some insight into how to reduce the 
texture and wireframe details before transmission, and what is 
the relative importance of these two factors. 

The remainder of this paper is organized as follows: Section 2 
reviews past work on perceptual quality evaluation. Section 3 
examines the factors that control the fidelity of 3D images. 
Section 4 presents the user interface and environment used for 
conducting human evaluation experiments and proposes a 
quantitative metric for estimating subjective evaluations. In 
Section 5, the quantitative metric is estimated through 
experimental results on 3D objects; the reliability of the 
subjective evaluations is also discussed and measured in this 
section.  Finally, conclusion and future work are summarized in 
Section 6. 

II. REVIEW OF PERCEPTUAL QUALITY EVALUATION 
In the area of image compression, Mean Square Error (MSE) 

is commonly used as a quality predictor. MSE is defined as: 
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where  is the original pixel value, P is the compressed  
pixel value, M and N are the width and height of the image in 
pixels respectively. However, past research has shown that 
MSE does not correlate well to perceived quality based on 
human evaluation [12]. Since this study, a number of new 
quality metrics based on the human visual system have been 
developed [11,18,4,19,10]. Limb [11] originally looked at 
fitting an objective measure that closely estimated impairment 
ratings on five test pictures. Effects of distortion based on 
masking and filtering were considered in these works. The new 
models incorporate distortion criteria, psychophysical rating, 
spatio-temporal frequency response, color perception, contrast 
sensitivity and contrast masking results, achieved from 
different psychovisual experiments. One of the models was 
extended to also evaluate the distortion of digital color video 
[23]. An error metric, to approximate perceptual video quality, 
was proposed by Webster et al. [22]. Our work focuses on the 
3D-display quality evaluation of geometric as well as texture 
data, and is different from prior work on image and video 
compression assessment. 

0P c

In the study on image synthesis, different shading and global 
illumination algorithms have been introduced to simulate 
photo-realistic effect. Since mathematical models cannot solely 
determine the accuracy of the display quality, human 
perceptual evaluation has to be taken into account. A number of 
perception-driven rendering algorithms were developed to 
incorporate the Human Visual System (HVS) as a factor to 
compute global illumination so as to improve perceptual 
accuracy [6,2].  

In research on 3D-model simplification, a predefined error 
bound is often used to measure the deviation between the 
original and simplified models. While such a measure can 
control the deviation, it does not estimate the perceptual quality 
of the simplified models. Most researchers leave it up to the 
readers to evaluate quality by showing a number of images at 
various simplified stages. Only recently, a few authors started 
to develop perceptual experiments to examine how well error 
metrics can reflect perceptual quality. However, their results 
are not encouraging.  

The criteria used to evaluate perceptual quality in the various 
areas mentioned above are rather different. In image 
compression, the process is simpler in the sense that it only 
deals with 2D images, and the images can be preprocessed. In 
contrast to image compression, image synthesis computes 
visibility, shading and global illumination at run-time. While 
preserving perceptual quality, the underlying mechanism has to 
reduce computational complexity, i.e., to avoid displaying 
cull-faces and intersecting invisible objects. Unlike image 
compression, in which an overall fidelity metric is desired, the 
image synthesis process may use ray tracing, radiosity or other 
sampling techniques to determine visual distortion. The sample 
set may need to be adjusted adaptively until such distortion is 
negligible. Because of the processing time involved, image 
synthesis is often an offline process. Although the image is 
rendered as a 3D object, the perspective is actually represented 
by translating the coordinates on a 2D plane. Thus the quality 
evaluation is based on a view-dependent 2D image.  

III. FACTORS CONTROLLING 3D IMAGE DEGRADATION AND 
PERCEPTUAL QUALITY ESTIMATION 

There are many strategies available to provide smooth 
degradation in the fidelity of 3D images. In an early pioneering 
paper [13,14], S. Nagata discussed the evaluation of subjective 
depth of 3D objects as a function of the variation of texture 
conditions between sharp and blurred images, and texture 
patterns of form, density, shade or polish. The evaluations were 
based on depth sensitivities of various cues for depth 
perception as a function of distance to the viewer. Three 
subjects two male and one female with normal stereoscopic 
vision were used as subjects in the experiments. Depth 
thresholds and viewing conditions were varied depending on a 
number of factors. The author extended the work [17] with M. 
Siegel to include studies of stereoscopy with very small 
inter-occular disparities, called “micro-stereopsis.” 
Implications of the research in developing “zoneless” 
auto-stereoscopic displays were also discussed. Our research 
differs from the above study in the following aspects: (i) We do 
not evaluate the depth perception on 3D objects per se; (ii) We 
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perform an overall quality evaluation of a 3D object based on 
wireframe resolution and texture resolution, wireframe 
resolution was not considered in the previous study; (iii) We 
attempt to estimate the perceptual quality depending on 
wireframe and texture quality using a quantitative model, in our 
opinion this model fitting is a new contribution. 

An overview of some of the related factors that influence 
perceptual quality include: 

A.  Geometric representation 
The shape of a 3D object is commonly represented by a 

polygonal mesh, in which the vertices of the polygons provide 
depth information on the object surface. While smooth surfaces 
are represented by a smaller number of vertices, surfaces with 
more detail are represented by a higher number of vertices. 
Given an adequate number of polygons, we are able to describe 
complex geometry with high precision. Nevertheless, complex 
models demand large storage, and long computing and 
rendering time, which may not be suitable for interactive 
visualization. The performance of graphics systems can thus be 
measured in terms of the number of polygons (or vertices) 
updated per second. In other words, the number of vertices in a 
model is a good evaluation metric.  

B.   Texture resolution  
Construction of high quality 3D objects requires 

high-resolution texture images for mapping. The question is 
how much the texture resolution can be reduced in order to 
achieve satisfactory interactivity without affecting perceptual 
quality. In experiments on substitution of geometry with 
texture, Rushmeier et al. observed that covering colored 
geometric models with very low-resolution texture decreases 
the perceived quality [16]. This is because the spatial frequency 
of an overly simplified texture is significantly lower than the 
minimum level required by the human visual system. Based on 
this observation, we should not use very low-resolution texture. 
Moderate resolution texture maps [8] generally provide 
acceptable quality. One simple way to obtain a lower resolution 
texture is by averaging. In addition to decreasing texture 
resolution, increasing image compression ratio can also reduce 
the size of transmitted data. Texture compression is thus 
another metric related to quality evaluation. 

C. Shading 
Shading complexity is determined by the shading model, the 

number and positions of lights illuminating the scene, the 
textures of objects, the use of shadows and so on. Rogowitz et 
al. concluded that visual quality varies significantly depending 
on the directions of illumination [15], and thus, comparison of 
different shading models should be based on the same 
illumination environment. Consequently, constant illumination 
is used in our experiments. 

D.  Frame Rate 
Many systems automatically decrease the frame rate to allow 

enough computation time to render a scene. Since the refresh 
rate is inversely proportional to computation time of a single 
frame, reducing frame rate is simple and allows smooth control 
of the quality of an individual frame, but will lead to the 
problem of flickering. In interactive applications, even a slight 

mismatch of refreshing rate is not acceptable. For instance, in a 
shooting game, users may not be able to aim at an object at a 
particular position or moment. It is therefore important to use 
the correct frame rate, and update the scene adaptively to 
optimize performance [20].  

E. Distance  
The impact of visual stimuli depends on the distance between 

the stimuli and the viewer. The contrast sensitivity function 
(CSF) [12] describes how sensitive the human visual system is 
to various frequencies of visual stimuli. Even though distance 
is an important factor in perceived quality, we eliminate this 
factor in the current version of our proposed evaluation metric 
by keeping a fixed distance. However, as mentioned by Siegel 
and Nagata [17] we scale objects to the largest possible size on 
a large monitor to allow observers to have better depth 
perception. 

F. Visual Masking and Adaptation 
Visual texture may hide faceting because of the tessellation of 

a curved surface. Ferwerda et al. developed a comprehensive 
model of visual masking that can predict whether the presence 
of one visual pattern affects the perceptibility of another visual 
pattern when one is imposed over another [11,6]. Visual 
adaptation is the phenomenon that the sensitivity of human eye 
changes for varying luminance, for example, we sometimes 
need several minutes to see well when entering a dark theatre.  

G.  Other Factors 
Some other important factors are discussed in psychology, 

such as the degree of concentration from the viewers. Fovea, 
the region of highest sensitivity on the retina occupies roughly 
a central angle of one degree of vision. Visual acuity, measured 
as the highest perceptible spatial frequency, is significantly 
lower in the visual periphery than in the fovea [1]. Thus, if 
within an image different objects have different resolutions, the 
perceived quality largely depends on the resolution of the 
object in focus. Since these factors vary from person to person, 
and from situation to situation, we will eliminate their influence 
in our experimental environment. 

Perceptual Quality Estimation 
Automatic measures based on mathematical theory were used 

to evaluate perceptual quality, but few studies have been 
performed on psycho-visual experiments to evaluate 3D object 
quality. There are two basic reasons: First, interactive 
visualization has a short history of less than ten years since the 
time high-performance graphics accelerators became available. 
Second, perceptual experiments are time-consuming and 
expensive. Naming time, the response time to recognize a given 
object, has been used in cognitive psychology research as a 
measure of recognition for a long time. However, naming time 
becomes ineffective with prior knowledge on objects. Thus, 
Watson et al. included ratings and forced choices as perceptual 
quality measures in their later work [21]. They suggested that 
ratings and forced choices are better measures than naming 
time for a small number of participants. In addition, BMP [2], 
MSE and MetroMN [3] are excellent predictors of fidelity as 
measured by ratings. MetroMN is a notion and measure from 
the Metro tool [3]. Watson et al. used the mean of the values in 
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BMP difference images as a measure in their experiments [21]. 
Nevertheless, Watson et al. only used still images in their 
experiments, thus their results only apply to static scenes with a 
fixed viewpoint. Can their results be extended to dynamic 
scenes with variable viewpoints? Rogowitz et al. provided a 
negative answer in their experiments [15].  

Although more experiments are needed to draw robust 
conclusions, our initial observation is that neither the 
geometry-based metric Metro nor the image-based metric MSE 
is a good predictor for view-independent perceptual quality of 
3D objects. Nevertheless, we have learnt from previous 
experiments that rating is a better measure than naming time for 
a smaller number of participants, and illumination and 
animation of objects are important factors in perceptual quality. 
We will consider these factors in our experiments. 

Incorporating Various Factors ian Designing a Perceptual 
Metric 
Since variable frame rate is expensive to implement and may 

be uncomfortable for viewers to experience, we do not adjust 
frame rates in our experiments. We choose geometric and 
texture resolution as our focus because they are the 
fundamental components of a 3D object, and their 
simplification can have significant impact on both 
computation-constrained and bandwidth-constrained graphics 
systems. Other factors such as shading, illumination and 
distance are also important in determining perceptual quality, 
and will be incorporated in our experiments in future work.  

IV. EXPERIMENTAL ENVIRONMENT AND DERIVATION OF A 
PERCEPTUAL METRIC  

Figure 2 shows the orientation of a virtual world (right) with 
respect to the viewer (left), with the view platform in the 
middle. 

 

 

In our interface, we start by rotating an object at a slow 
speed, and the users can use a scrollbar to adjust the rotation 
speed or stop rotation. Rotation speed is an important factor 
relating depth perception to motion parallax, as described in 
[17, Fig. 3]. A green grid is drawn in the background to 
represent the floor. Two text fields and one pull down menu are 
available to control the object geometry resolution in the X and 
Y directions, and the resolution of texture image respectively. 
Figure 3 shows the user interface and the virtual world 
rendering a 3D object Nutcracker. Figure 4 shows snapshots of 
the object from different viewpoints. 

 

 

3D Data Acquisition Hardware and Processing 
Five 3D objects (Doll, Nutcracker, Pot, Head and Dog) were 

used as stimuli in the experiments. These objects were acquired 
with the Zoomage 3D scanner. The scanned objects were 
rotated and captured by the range scanner. The wireframe 
resolution can be up to 10,000 x 30 polygons for a full 360 
degrees, 31 laser-lines scanned model, and texture resolution is 
up to 5300 pixels (vertical) x 40,000 pixels (horizontal). Since 
all objects were lit from the front during scanning, and the 
viewpoint is fixed at the front of objects, the rendered scene 
simulates illumination from the front. Figure 5 illustrates the 
scanning process, and Figure 6 shows the texture, wireframe, 
and the canonical view of object Nutcracker. The other objects 
(dog, doll, head and pot) used in the experiments are shown in 
Figure 7. 

 

Figure2: View Platform in Virtual World 

 

  
  

Figure 5: The Zoomage 3D Scanner 
     
(a) Front                (b) Left               (c) Rear                 (d) Right 

Figure 4: Views of Nutcracker from various angles 
 

Figure 3: The User Interface and the 3D Virtual World 
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the first pair of visually different objects was found and agreed 
upon by all three parties. The simplest polygonal mesh 
preserving fidelity identified in this process was used as the 
full-resolution model in our subsequent experiments.  
To ensure consistent physical luminance, all evaluation 
experiments were performed on a DELL 1.8GHZ, 512MB, 
Geforce3 workstation, which was equipped with a 21 inch 
Trinitron monitor. The resolution of the display was 1280 x 
1024. 

 

Experimental Process 
In the experiments, there were 5 different visual objects, each 

object was represented by 6 levels of wireframe resolution and 
3 levels of texture resolution, giving a total of 5 x 6 x 3 rating 
stimuli. These stimuli were evaluated by 10 participants, all of 
whom were Computing Science students with no prior 
knowledge of these objects. Two more referential stimuli were 
displayed side by side with the rating stimulus for comparison. 
One referential stimulus had the highest geometry and texture 
resolution, and the other had the lowest geometry and texture 
resolution. The highest quality referential stimulus was 
assigned a rating of 5 (very good), and the lowest quality one 
was assigned 1 (very poor). The referential stimuli were rotated 

F

 

 
igure 7: Other objects (dog, doll, head and pot) used in qualitative 

experiments 
  

(a) Texture                         (b) Wireframe      (c) Canonical View 

Figure 6: Texture, Wireframe, and the Canonical View of Nutcracker 
plification of Scanned Models 
 original scanned objects were intentionally over-sampled 

respect to both geometry and texture resolution. In order to 
 the quality degradation related to geometry and texture, 
implified the models at different stages until further 
lification produced visible degradation.  
en the distance between the viewer and an object is fixed, 
est display quality is achieved when one texel (pixel on 
re image) maps exactly to one pixel in the rendered image. 
e texture resolution is higher, a number of texels are 
ged and the resulting value is mapped onto a pixel. In 
 words, extra resolution is reduced. When the texture is of 
r resolution, a texel is duplicated and the same values are 
ed onto the corresponding pixels. In the experiments, all 
ts were normalized to 2.0 meter height and the distance 
 the object to view platform was about 4.0 meters in the 
l world. The view platform was placed at a distance so 

the whole object was visible and occupied most of the 
 in the vertical direction, which was approximately 750 
s in height given a display monitor with resolution of 1280 
4. The actual distance between an observer and the image 
 (CRT display) was 0.4572 meters (1.5 feet). We reduced 
solution of all texture images to 750 pixels in height. The 
 of texture images was decreased in proportion to the 
t.  
ny algorithms are available for mesh simplification. We 
 on the change of visual quality resulting from reduced 
etry and texture resolution, using a Regular Grid Mesh. 
sampling can easily be obtained from range scanners. The 
ts were initially composed of 360 x 30 polygons. Then 
lification was performed in the X and Y axes directions. 
 simplification reduced 5% of the vertices in one direction. 
 object and its next 5% simplified version were grouped 
pairs. Three human viewers were requested to compare 
pair of simplified objects and the process did not stop until 

at the same speed as the target stimulus to be rated, and the 
rotation speed of all three could be adjusted simultaneously. 
The participants (judges) were asked to compare the target 
stimulus with the two referential stimuli and assign it one of the 
following ratings: very poor (1), poor (2), fair (3), good (4), 
very good (5). 

 

Figure 8: Evaluation Example 

Figure 8 illustrates two referential stimuli (left and right) and 
one target stimulus (center) in the experiment. 
In order to avoid the effect of the temporal sequencing factor, 
the sequence of 90 target stimuli was randomly generated so 
that no two participants shared the same sequence, and each 
participant made his/her decision independently. Only one 
object was displayed at a time to the viewer.  

A Metric for Estimating Perceptual Quality 
Given the same texture resolution, the image quality 

improves with the augmentation of wireframe resolution, 
which creates a finer geometry. When the wireframe resolution 
is low, a marginal increase in resolution shows a relatively 
significant improvement in quality. On the other hand, when 
the resolution is high, an augmentation in resolution is not as 
significant. When the wireframe resolution reaches a particular 
density at the high end, further increase is no longer perceptible 
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to the human eyes. We assume that, given the same texture 
resolution, the image quality curve of different wireframe 
resolutions vary exponentially. This assumption is represented 
by Equation (2), which is a function of g and will be tested by 
our experimental results. 

 

(2)                                              1
cgbea

Quality −+
=  

 
We define g as a variable representing the level of detail of 
geometric data, which is implemented as the square root of the 
number of vertices, and a, b, c are constant coefficients. We 
define the minimum quality to be m, and the maximum quality 
to be M. When g → ∞, Q  denotes the image quality with 
an optimal wireframe, i.e., = M. When g → 0, 

. Thus, we can deduce the constant 
coefficients a and b as follows: 
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Since quality also varies with texture, Q  is also a function 
of texture (say Q = ), where t represents texture 
resolution. Substituting  a and b from Equation (3), and  
for Q  into (2) we get: 
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In (4), g∈[0, ], when g is equal to or larger than the optimal 
geometry G , the extra detail is not perceptible to the human 
visual system, thus the optimal quality can be written as: 

∞
0

 
(5)                  ),(),( 0 tGQualitytQuality =∞

 
For convenience, it is desirable to normalize the value of 
geometry to the interval [0, 1]. We map g from interval [0, G ] 

to  in the interval [0, 1] using the function:  
0

'g
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Note that the transformation from g  to with scaling based 

on G , eliminates the problem of varying units and scales for 
different objects and different experimental set up. Combining 
(4) and (6) gives: 

'g

0
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Where . Note that even if G is as small as 5, 

is about 0.007. Hence, K is very close to 1. Thus (7) can 
be simplified for practical situations to (8): 

01 GeK −−= 0
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For the experimental curve fitting in the next section, we use 

Equation (8) and the assumption that the scaled geometry 
parameter ( ) varies between 0 and 1. (For example, see 
Equation (10) and Figure 10, geometry resolution axis.) 

'g

There are three problems remaining in this quality metric: 
(1) How closely the quality curve for images under the same 

texture resolution and different wireframe resolutions 
follow the exponential property? 

(2) How to resolve the function of texture resolution ? )(tf
(3) How to determine coefficient c? 

We are going to answer the first two questions through the 
analysis of evaluation results in the next section, and discuss 
the other question for a specific set of objects. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 
From the experiments it was observed that results for the 

objects Head, Dog and Doll are very close to the Nutcracker 
and are not shown separately to reduce the length of this 
document. The qualitative evaluations for these objects fitted 
Equation (8) quite well, for different values of c. Results for the 
Pot object did not fit an exponential curve well; this occurred 
because people found a square (distorted) pot acceptable 
compared to the original (round) pot. Once the exponential 
relation between geometry parameter and visual quality is 
verified, the problem that remains is to study the property of 
quality related to texture resolution. That is, how to resolve f(t) 
in Equation (8). f(t) is the visual quality for maximum geometry 
resolution and various texture resolutions. More samples are 
collected to resolve this function. For each object other than 
Pot, 4 more stimuli are tested. All of these stimuli have 
maximum geometry resolution and different texture 
resolutions. Combined with samples from former experiments, 
there are 6 samples along the Quality Axis direction for each 
object with 100% geometry resolution. The data is listed in 
Table 1 and plotted in Figure 9. 
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In Figure 9, all samples points are distributed close to the 
diagonal, that is,  f(t) approximately follows a linear regression:  
 

(9)                                    ]1 ,0[  ,)()( ∈−+= ttmMmtf
 
Substituting the expression for  f(t) above (Equation (9)) into 
(8) gives:  
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At first, curves were fitted based on observed values of f(t). 

The graph for fitting based on experimental f(t) for the 
Nutcracker object is shown in Figure 10.  However, 
determining f(t) from experiments is not feasible before 
estimating perceptual quality in an experimental set up in 
general.  Thus f(t) was estimated based on linear regression 
(Equation (9)) after observing the data in Figure 9. [Note that 
(ai, bi, ci), i = 1,2,3 denotes the fitting parameters for the 
various texture resolutions, and ssei, i = 1,2,3 denotes the sum 
of square errors for the respective cases.] 

In Table 2, the first three rows are the Standard Deviation of 
the vertical distances from the sample points to the 
corresponding curves fitted at different texture resolutions. The 
quality values of best (100% texture and 100% geometry) and 
worst (25% texture and lowest geometry) stimuli are fixed at 5 
and 1 respectively, and produce no error, thus the sizes of the 
groups for 100%, 50% and 25% texture are counted as 5, 6, and 
5 respectively. Let r be the distance between a point and the 

fitting curve. SD is the standard deviation, Equation (11), of r at 
each texture level, where N is the size of the group. 

 

(11)                                          
1

2

−
=

∑
N

r
SD i

i

  Table 1: Quality vs. Texture Resolution (100% Geometry Resolution) 
The overall standard deviation  is calculated as in 

Equation (12). 
allSD

(12)                                      

2

df

r
SD i

i

all

∑
=  

 
Here df is degree of freedom and equal to the number of 

sample points minus the number of parameters fitted. df = 16 
–2 = 14  in our experiments.  
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Graph of Mean Quality vs Wireframe and Texture Resolution: Nutcracker

Texture Resolution = 100%, 
a1=0.200000, b1=0.800000, c1=4.337966, sse1=0.219501

Texture Resolution = 50%, 
a2=0.312500, b2=0.687500, c2=4.337966, sse2=0.270991

Texture Resolution = 25%, 
a3=0.454545, b3=0.545455, c3=4.337966, sse3=0.173739

Figure 9: Quality vs. Texture Resolution (100% Geometry Resolution) 

Figure 10: Comparing Best Fitting with Experimental f(t) to Average 
Perceptual Evaluations (Nutcracker) 

  

 

 
Table 2: Standard Deviation of Residuals with Experimental f(t) 

We perform a curve fitting based on Equation (10) for 
validation. The results are listed in Table 3 and plotted in 
Figures 11 and 12 for two of the objects. Since the values of f(t) 
are estimated from Equation (9) and substituted into (10), we 
use the notation of “estimated f(t)” as opposed to the results in 
which the values of f(t) are obtained from experiments. 
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Graph of Mean Quality vs Wireframe and Texture Resolution: Nutcracker

Texture Resolution = 100%, 
a1=0.200000, b1=0.800000, c1=4.523092, sse1=0.162499

Texture Resolution = 50%, 
a2=0.333333, b2=0.666667, c2=4.523092, sse2=0.159338

Texture Resolution = 25%, 
a3=0.500000, b3=0.500000, c3=4.523092, sse3=0.178129
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Graph of Mean Quality vs Wireframe and Texture Resolution: Pot

Texture Resolution = 100%, 
a1=0.200000, b1=0.800000, c1=7.282115, sse1=1.038082

Texture Resolution = 50%, 
a2=0.333333, b2=0.666667, c2=7.282115, sse2=0.626284

Texture Resolution = 25%, 
a3=0.500000, b3=0.500000, c3=7.282115, sse3=0.945111

The discrete points in Figures 10, 11 and 12 are the averages 
taken from 10 participants’ perceptual quality evaluation 
values based on a maximum of 18 stimuli for each texture 
resolution on each of the two objects, Nutcracker and Pot. An 
additional 4 stimuli were used at the highest geometry level to 
better estimate the linear regression given by f(t). (There were 
only 3 stimuli, 3 rotating objects, shown at a time for a given 
level of geometry resolution level.) Results for the other objects 
(Head, Dog and Doll) are very close to the Nutcracker and are 
not shown separately. From the figures, we can observe that 
perceptual quality roughly follows an exponential distribution 
for geometry as we predicted. At each level of texture 
resolution, there is a diminishing return; the same percentage 
increase in geometry resolution will show more visible 
improvement in quality at the low-resolution end than at the 
high-resolution end. Some exceptional points exist in these 
figures, for example, in Figure 11, the sample point Q(g, t) = 
Q(87%, 25%) has the value 2.30, and Q(100%, 25%) has the 
value 2.20, but Q(100%, 25%) is supposed to have a better 
quality than Q(87%, 25%). Several factors combined to 
produce such exceptional points. First, stimuli were evaluated 
in a random sequence, and each stimulus was compared to the 
referential stimuli independently, with one target appearing at a 
time. Viewers were asked to evaluate the quality according to 
the proximity between target and referential stimuli. If the 
viewer felt that the target was closer to the left stimulus, he/she 

would give a rating of 5 or 4 depending on the degree of 
quality. If the target stimulus was closer to the other end, a 
rating of 1 or 2 would be assigned. If the viewer had no 
preference, he/she would probably give a rating of 3. 
Therefore, there was no direct comparison among the target 
stimuli themselves, and an evaluation error was likely to occur 
for two stimuli with close quality. We notice that these 
exceptional points are located at the high geometry resolution 
regions, because visual quality changes only marginally with 
the variation of geometry resolution, causing the human visual 
system difficulty in rating two high resolution stimuli 
accurately. Second, the number of participants, 10, is relatively 
small, and any exceptions such as viewer illusion or operational 
mistakes (values are recorded by choosing one of five buttons) 
can easily cause an error of +/- 0.1. Although such error cannot 
be totally eliminated, with a larger group of participants the 
effect of the error can be reduced. Fortunately, evaluation 
errors in the results are small and do not change the overall 
property of the curves.  

Figure 11: Comparing Best Fitting with Estimated f(t) to Average 
Perceptual Evaluations (Nutcracker) 

In Section 4, the quality metric was given in Equation (8). 
We perform curve fitting minimizing the sum of square error 
over each of the five datasets. The results for the Nutcracker 
and the Pot are illustrated in Figures 11 and 12. In the legends, 
a = 1/f(t), b = 1/m – 1/f(t), and c is the constant in (8). 

Despite of the poor performance of Object “Pot”, all of the 
four other objects have a good fit. The standard deviation 
ranges from 0.20 – 0.34, which is less than 10% of the dynamic 
range. The exponential coefficient c has a reasonable value 
around 4.40. More importantly, sample points are fairly evenly 
distributed around the fitting curve. The SD  value of Pot is 
not large either, but an exponential coefficient as high as 7.03 
describes a curve that is nearly constant in the intermediate to 
high geometry resolution, and drops abruptly for low geometry 
resolution. A closer examination reveals uneven deviation of 
sample points around the fitted curve. The points are close to a 
straight line in higher geometry resolution area and rather 
poorly fitted in lower geometry resolution area. Thus, the 
fitting does not serve much better than a piecewise linear 
function. Given more samples in low geometry resolution end, 
the  for this example will become too large to be 
acceptable.  

all

allSD

Figure 12: Comparing Best Fitting with Estimated f(t) to Average 
Perceptual Evaluations (Pot) 

Note the sample point Q(g, t) = Q(26%, 25%), which is used 
as the referential stimulus of worst quality, is excluded in the 
curve fitting. In the derivation of Equation (6), we assume Q(0, 
t) = m; however, since an object without geometry has no 
visual appearance Q(26%, 25%) = m is set for comparison 
purpose.  Consequently, this sample point does not follow (6). 
As a matter of fact, if c=4.4 and f(t)=2.0, Q(26%, 25%)=1.58. 
With a finer-granularity rating system in which x.5 is available, 
1.5 is a better setup value for the worst quality referential 
stimulus. In our experiments, the worst quality reference is 
under-estimated; for this reason, sample points close to it are 
likely to be under-estimated as well.  This is also evident in the 
figures and Table 2, where the values of sample points at 25% 
texture resolution decrease faster than predicted, resulting in a 
relatively higher value of standard deviation (Row 3 in Table 
2). 
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Comparing Table 3 with Table 2, the SD  value of Doll 

remains nearly the same, but the  values of the first three 
objects become smaller, which means a comparatively better 
fitting. This phenomenon can be explained as follows. The 
former fitting ensures exact matches along 100% geometry 
resolution axis, and matching in other regions is not as good. 
However, the experimental values of f(t) may have accidental 
errors. Therefore, the entire sample space rather than samples 
in 100% geometry resolution axis alone conform to Equation 
(11). We notice that the exponential coefficient c, although not 
a constant for different objects, varies inside a narrow interval. 
For those applications that do not require high accuracy, 4.50 
can be used as an estimate for c, otherwise, some samples 
should be collected to better determine this parameter.  

all

allSD

Our metric does not estimate well the quality of object Pot. 
From the feedback of viewers, we found that while users were 
requested to rate based on comparing the target stimuli to two 
referential stimuli, not all of them followed the guidelines 
equally well. The first impression played an important role in 
their evaluations. Since square pots exist in the real world, 
when the geometry resolution of Pot is decreased, some of them 
felt “pot can be square, not necessarily round,” and 
unconsciously gave a higher than expected rating to some 
distorted stimuli. Psychologically, this proves prior knowledge 
is an important issue in quality evaluation. For instance, the 
quality degradation of a face is easier to detect than that of a 
rock because people are more familiar with the structure of a 
face. In our experiments, besides the referential stimuli, prior 
knowledge also serves as a pattern in the evaluation. Although 
such effects cannot be bypassed in any psycho-visual 
experiment, cautious selection of stimuli may reduce this 
problem. In conclusion, the Pot object is not an appropriate 
candidate for our experiments.  
Tables 4 through 7 give more details on the exact average user 
evaluations for the objects (Nutcracker and Pot) plotted in the 
figures, along with the standard deviations of the evaluations. 
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Table 4: Mean Quality of Users’ Evaluations for Nutcracker 
Table 7: Standard Deviation of Users’ Evaluations for Pot 
Table 6: Mean Quality of Users’ Evaluations for Pot 
Table 5: Standard Deviation of Users’ Evaluations for Nutcracker

Table 3: Standard Deviation of Residuals with estimated f(t) for all 

objects 
Reliability of the user evaluations 
It is important to discuss issues relating the reliability of our 
erceptual evaluations. The reliability discussions are based on 
tudies described by Guilford [7]. As stated on page 279 in [7] a 
reliability rating of 0.90 can be obtained with 10 to 50 judges, 
nd a reliability rating of 0.95 can be obtained with 21 to 106 
udges.” It was noted that reliability “increases with the number 
f judges.”  
It was observed in the book that reliability of measurement 
epends on “self-correlation” where repeated sets of 
easurements are correlated to each other. Forming groups for 

elf-correlation is however a difficult and time consuming task 
hat is beyond the scope of our preliminary study. A group of 
udges for self-correlation needs to have comparable judging 
ehavior. Thus extensive psychological behavior tracking over 
ime needs to be conducted to create consistent groups of 
udges. Given that we do not have groups of judges to measure 
elf-correlation, we performed the following experiments 
nstead. In addition to the experimental results already 
escribed we conducted tests with an additional 10 judges after 
 time interval of about 18 months. The results obtained using 
he second group for the Nutcracker object are summarized in 
ables 8 and 9, and the overall results for the two groups (i.e., 
0 judges) for the same object are shown in Tables 10 and 11.  
bserve in Table 10 that with 20 judges there are no 

nconsistencies in the mean evaluations; i.e., the means are 
on-decreasing for increasing geometry resolution at each level 
f texture resolution. 
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Note that the results for the second group are very close to the 
first, and that the variations of the combined group are close to 
the individual groups. Instead of computing correlation 
between similar judges, we will consider correlations of the 
average evaluations of the two groups of judges. Consider the 
average ratings in Tables 4 and 8 for the Nutcracker object for 
the two groups of 10 judges. If we pair ratings at corresponding 
texture and wireframe resolution levels we get the (X, Y) pairs 
(Table 12) given below: 

 
The correlation between these pairs of average evaluations is 

equal to 0.9938.  

The (X, Y) pairings for the dog and head objects are given 
below (Tables 13 and 14): 

 
 Table 13: Comparing average ratings at same resolution levels for Dog.

 
 Table 14: Comparing average ratings at same resolution levels for Head.

Table 8: Mean Quality of Users’ Evaluations for Nutcracker (Group 2)
For the dog and head objects the corresponding correlations 

computed to 0.9891 and 0.9947 respectively. 
This study, though not strictly according to psychometric 

guidelines shows a strong association between repeated sets of 
measurements on a “similar” group of judges, leading us to 
believe that the reliability of our study should be fairly high, 
possibly higher than 0.95 (or 95%). 

The number of stimuli was also noted as an important factor 
in [7]. On page 280 of this book it was observed that: “ranking 
becomes difficult and irksome when there are more than 30 to 
40 stimuli.” In consideration of this factor it should be noted 
that we use only 3 stimuli at a time (Figure 8) in our evaluation 
experiment, and total number of stimuli per judge is limited to 
22 per object. We believe that the simplicity of our experiments 
resulting in fewer stimuli is much more likely to produce more 
reliable results than experiments trying to evaluate more factors 
which will obviously result in more stimuli per object. 

Table 9: Standard Deviation of Users’ Evaluations  

for Nutcracker  

 Table 10: Mean Quality of Users’ Evaluations for  Nutcracker 

(Combined) 
Comparing results to recent perceptual experiments 
Compared with recent related perceptual experiments 

[15,21], in which none of the metrics model perceptual quality 
well and only comparative accuracies of different metrics are 
provided, our research provides a perceptually based metric 
that accurately fits the qualitative evaluation results. In 
addition, while previous experiments only consider 
non-textured model, our metric describes how texture 
resolution as well as geometry resolution control the overall 
quality of 3D images. The experiments in [21] use still 2D 
images as stimuli, and Rogowitz et al. proved that still views 
are not sufficient by comparing the results of view-dependent 
2D and view-independent 3D stimuli evaluations [15]. We also 
advance a step further from Rogowitz et al. to provide a 
rotation speed control for visual stimuli. Given this flexibility 
in the experimental interface, the spatial factor can be reduced. 
Viewers have a more dynamic impression of the object and are 
more confident in rating the quality.  

 Table 11: Standard Deviation of Users’ Evaluations for Nutcracker 

(Combined)

The fitting result with one of the objects, Pot, was not 
satisfactory because a distorted Pot was considered acceptable 
by some viewers. It is therefore important to note that our 
quantitative model should only be used to estimate perceptual 
quality of objects for which geometry is an important 
component of perceived shape. For example, stones or 
deformable objects such as flags and balloons are not suitable 
objects for the proposed metric.   Table 12: Comparing average ratings at same resolution levels for 

Nutcracker. 
VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we first discussed factors controlling 3D image 
degradation and quantitative error measures approximating 
qualitative evaluations. A review of literature on evaluating 
depth perception [13] was given, followed by discussion of 

some of the methods for evaluating visual quality of objects not 
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considering depth estimation per se. In previous perceptual 
experiments modeling visual evaluation, the results suggest 
that proposed qualitative error measures are not always good 
indicators of perceptual quality. The correlation of qualitative 
measures, such as “naming time”, to existing standard error 
measures (such as BMP, MSE, MetroMN) was also compared 
in prior research. However, new quantitative measures that are 
designed to model 3D quality have not been proposed. In order 
to extend prior research, we first examined the factors that 
determine the quality of 3D images including geometry 
resolution, texture resolution, shading complexity, frame rate 
and other psycho-visual factors. Of these factors, two (texture 
and geometry resolution) that affect bandwidth requirements 
were considered in our initial research. We designed a 
perceptual experiment and derived from the results a 
quantitative metric that approximates perceptual quality and 
reflects how geometry and texture resolution control the overall 
quality of 3D images. The strengths and limitations of this 
metric were also analyzed. A preliminary study suggested that 
the reliability of the evaluations is possibly higher than 0.95. 

From the figures showing experiment results, we observe 
that the degradation of visual quality follows an exponential 
model for the geometry resolution parameter, and a linear 
model for the texture resolution parameter. This suggests that 
human viewers are far more sensitive to the distortion of texture 
than to that of geometry.  

We plan to increase the strength of our findings by 
increasing the number of parameters in the model. We also 
want to check whether a finer-granularity rating system 
provides better results than the current experiments. Automatic 
simplification methods should be adopted to obtain the simplest 
ideal model, which can reduce preprocessing effort, especially 
if a large number of models are used as stimuli. Finally, it is 
important to incorporate more factors such as distance, shading, 
and visual masking into the proposed metric. 
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