
Program Analysis and Compiler Transformations for
Computational Accelerators

by

Taylor Lloyd

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Taylor Lloyd, 2018

Abstract

Heterogeneous computing is becoming increasingly common in high-end com-

puter systems, with vendors often including compute accelerators such as

Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FP-

GAs) for increased throughput and power efficiency. This thesis addresses

the usability and performance of compute accelerators, with an emphasis on

compiler-driven analyses and transformations.

First this thesis studies the challenge of programming for FPGAs. IBM

and Intel both now produce systems with integrated FPGAs, but FPGA pro-

gramming remains extremely challenging. To mitigate this difficulty, FPGA

vendors now ship OpenCL-based High-Level Synthesis (HLS) tools, capable

of generating Hardware Description Language (HDL) from Open Compute

Language (OpenCL) source. Unfortunately, most OpenCL source today is

written to be executed on GPUs, and runs poorly on FPGAs. This thesis

explores traditional compiler analyses and transformations to automatically

transform GPU-targeted OpenCL, achieving speedups up to 6.7x over un-

modified OpenCL benchmarks written for GPUs.

This thesis next addresses the problem of automatically mapping OpenMP

4.X target regions to GPU hardware. In OpenMP, the compiler is responsible

for determining the number and grouping of GPU threads, and the existing

heuristic in LLVM/Clang performs poorly for a large subset of programs. We

perform an exhaustive data collection over 23 OpenMP benchmarks from the

SPEC ACCEL and Unibench suites. From our dataset, we propose a new

ii

grid geometry heuristic resulting in a 25% geomean speedup over geompetries

selected by the original LLVM/Clang heuristic.

The third contribution of this thesis is related to the performance of an

application executing in Graphics Processing Units (GPUs). Such performance

can be significantly degraded by irregular data accesses and by control-flow

divergence. Both of these performance issues arise only in the presence of

thread-divergent expressions—an expression that evaluates to different values

for different threads. This thesis introduces GPUCheck: a static analysis

tool that detects branch divergence and non-coalesceable memory accesses

in GPU programs. GPUCheck relies on a static dataflow analysis to find

thread-dependent expressions and on a novel symbolic analysis to determine

when such expressions could lead to performance issues. Kernels taken from

the Rodinia benchmark suite and repaired by GPUCheck execute up to 30%

faster than the original kernels.

The fourth contribution of this thesis focuses on data transmission in a het-

erogeneous computing system. GPUs can be used as specialized accelerators

to improve network connectivity. We present Run-Length Base-Delta (RLBD)

encoding, a very high-speed compression format and algorithm capable of im-

proving throughput of 40GbE up to 57% on datasets taken from the UCI

Machine Learning Repository.

iii

Preface

Chapter 4 has been published as T. Lloyd, A. Chikin, E. Ochoa, K. Ali, J.N.

Amaral, ”A Case for Better Integration of Host and Target Compilation When

Using OpenCL for FPGAs,” Proceedings of the Fourth International Work-

shop on FPGAs for Software Programmers, in Sept 2017. I was responsi-

ble for identifying transformation opportunities, implementing the device-side

transformation of NDRange kernels to single workitem kernels, evaluating the

experimental results, and drafting the manuscript. A. Chikin was responsible

for implementing pointer restriction and dependence elimination, and draft-

ing the manuscript. E. Ochoa was responsible for implementing the host-side

transformation of NDRange to single workitem kernels, implementing the final

toolchain, running the experiments, and drafting the manuscript. K. Ali and

J.N. Amaral were supervisory authors and contributed to the focus of the final

manuscript and to manuscript edits.

Chapter 6 has been submitted for publication as T. Lloyd, K. Ali, J.N.

Amaral, ”GPUCheck: Detecting CUDA Thread Divergence with Static Anal-

ysis.” I was responsible for designing, implementing, and evaluating the frame-

work and analysis. K. Ali and J.N. Amaral were supervisory authors and

contributed to the experiment design, data analysis, and manuscript edits.

Chapter 5 has been submitted for publication as T. Lloyd, A. Chikin, S.

Kedia, D. Jain, J.N. Amaral, ”Automated GPU Grid Geometry Selection for

OpenMP Kernels.” I supervised and guided the data collection and machine

learning model design. I analyzed the model created by the machine learning

technique and proposed the final heuristic. A. Chikin also supervised data

collection and machine learning model design, and drafted the manuscript. S.

Kedia performed the machine learning model training and evaluation. D. Jain

iv

performed the initial data collection. J.N. Amaral was a supervisory author,

and contributed to manuscript edits.

Chapter 7 was completed in collaboration with IBM Canada and has been

submitted for publication as T. Lloyd, K. Barton, E. Tiotto, J.N. Amaral,

”Run-Length Base-Delta Encoding for High-Speed Compression.” I was re-

sponsible for designing, implementing, and evaluating the framework and anal-

ysis, and drafting the manuscript. K. Barton and E. Tiotto were IBM collab-

orators, and participated in manuscript edits. J.N. Amaral was a supervisory

author, and contributed to manuscript edits.

v

To Maddy

For supporting me, marrying me, and listening to my arcane problems.

vi

Acknowledgements

I’d like to acknowledge my supervisor, Dr J Nelson Amaral, for supporting me

throughout my university career, and always having the right advice. Thank-

you for the many hours teaching and guiding me.

Thank-you also to Dr Karim Ali, for introducing me to static analysis, and

opening me to new perspectives on old topics.

This research has been funded by IBM Center for Advanced Studies (CAS)

Canada, the Intel FPGA University program, the government of Alberta, the

Natural Science and Engineering Research Council (NSERC) and the Univer-

sity of Alberta. Thank-you all for the essential support.

vii

Contents

1 Introduction 1

2 Background 3
2.1 Accelerator Devices . 3

2.1.1 Graphics Processing Units (GPUS) 3
2.1.2 Field-Programmable Gate Arrays (FPGAs) 5

2.2 Accelerator Programming Languages 6
2.2.1 CUDA . 6
2.2.2 OpenMP . 6
2.2.3 OpenCL . 8

2.3 GPU Divergence Analysis . 9
2.4 Software Compression . 10

2.4.1 Lossless Compression 11
2.4.2 Parallel Compression 12
2.4.3 Compression in Networking 12

3 Related Work 14
3.1 FPGA High-Level Synthesis 14

3.1.1 Manually Optimized OpenCL 15
3.1.2 Combined Host/Device Compilation 16

3.2 GPU Parallelism Mapping . 16
3.3 GPU Divergence Analysis . 17
3.4 High-Speed GPU Compression 17

4 A Case for Better Integration of Host and Target Compilation
When Using OpenCL for FPGAs 19
4.1 Introduction . 19
4.2 Optimizing OpenCL for FPGAs 21

4.2.1 restrict Pointers to Enable Simultaneous Memory Op-
erations . 21

4.2.2 Prefer Single-Work-Item kernels over NDRange kernels 22
4.2.3 Pipelining Reduction Operations with Shifting Arrays . 22

4.3 Compiling OpenCL for FPGAs 24
4.3.1 NDRange to Single Work-Item Loop (NDRangeToLoop) 25
4.3.2 Reduction-Dependence Elimination 28
4.3.3 Restrict Pointer Kernel Parameters 30

4.4 Prototype Performance Study 30
4.4.1 Benchmarks . 31
4.4.2 Reduction-Dependence Elimination Efficacy 33

4.5 Concluding Remarks . 34

viii

5 Automated GPU Grid Geometry Selection for OpenMP Ker-
nels 36
5.1 Introduction . 36
5.2 Mapping OpenMP to GPUs 38

5.2.1 Nvidia P100 Geometry 38
5.2.2 OpenMP 4 in LLVM/Clang 39

5.3 Data Collection . 40
5.3.1 Best Discovered Grid Geometry Performance Relative

to Compiler Default 42
5.3.2 Threads Per Block . 42
5.3.3 Number of Blocks . 44

5.4 Modeling with Machine Learning 45
5.4.1 Finding Additional Features 46
5.4.2 Machine Learning Predictor Performance 48

5.5 Production Heuristic . 48
5.5.1 Edge-Case: OpenMP SIMD 54
5.5.2 Implications of Volta 54

5.6 Concluding Remarks . 55

6 GPUCheck: Detecting CUDA Thread Divergence with Static
Analysis 58
6.1 Introduction . 58
6.2 Static Analysis Engine . 61

6.2.1 Thread-Dependence Analysis 61
6.2.2 Arithmetic Control Form (ACF) 64
6.2.3 Inter-procedural Arithmetic Control Form (IACF) . . . 68

6.3 Detecting Divergent Behaviour 69
6.3.1 Divergent-Branch Analysis 70
6.3.2 Non-coalescable Memory Access Analysis 71

6.4 An LLVM Prototype for GPUCheck 73
6.5 Evaluation . 74

6.5.1 Does GPUCheck provide similar results to dynamic pro-
filing? . 75

6.5.2 Do the problems identified by GPUCheck reflect real
performance opportunities? 78

6.5.3 Is GPUCheck performant enough to be used during ac-
tive development? . 82

6.6 Concluding Remarks . 82

7 Run-Length Base-Delta Encoding for High-Speed Compres-
sion 84
7.1 A New Data Compression Algorithm 84
7.2 RLBD Compression Format 86
7.3 RLBD Compression and Decompression 88

7.3.1 Serial Compression . 88
7.3.2 Serial Decompression 90

7.4 GPU-Accelerated RLBD . 91
7.4.1 Parallel Compression 91

7.5 Evaluation . 95
7.5.1 Is RLBD faster than traditional software compression

schemes? . 96
7.5.2 What compression rates are required by modern super-

computing interconnects? 101
7.5.3 Is RLBD compression effective on real-world data? . . 103

ix

7.5.4 What throughput improvements can be expected when
implementing RLBD? 103

7.6 Concluding Remarks . 104

8 Conclusion 106

References 108

x

List of Tables

4.1 Benchmark Execution Time and Applicable Transformations . 30

5.1 Grid Geometry (threads-per-block, blocks) selected for each
benchmark by the LLVM selection, our ML model, our pro-
posed heuristic, and exhaustive search. Speedup is shown rela-
tive to the LLVM selection. Slowdowns are shown as reciprocals
for clarity. Thread-Per-Block values for the the Final Heuristic
selected using leave-one-out strategy as described in 5.3.2. . . 56

6.1 Execution time for GPUCheck vs dynamic profiling. Branches
and accesses show the number of instructions requiring ACF
analysis over all instructions analyzed. 83

7.1 Identifiers for various possible schema. 87
7.2 Machines Used for performance testing 96
7.3 Datasets used for real-world testing 97
7.4 Common high-speed interconnects, their throughput, and com-

pression/decompression throughput requirements by data sav-
ings ratio . 101

xi

List of Acronyms

API Application Program Interface
B∆I Base-Delta Intercept
CPU Central Processing Unit
DMA Direct Memory Access
DS Data Savings
FPGA Field-Programmable Gate Array
HLS High-Level Synthesis
GPU Graphics Processing Unit
LUT Lookup Table
RLBD Run-Length Base-Delta
SIMD Same-Instruction Multiple-Data
SIMT Same-Instruction Multiple-Thread
SM Streaming Multiprocessor

xii

List of Figures

2.1 OpenMP 3 example modified from gemm in the Unibench bench-
mark suite . 7

2.2 OpenMP 4 example simplified from gemm in the Unibench bench-
mark suite . 8

4.1 Altera OpenCL Compilation Flow. From [17]. 20
4.2 Floating-point reduction sample preventing loop pipelining. From

[31]. 23
4.3 Floating-point reduction using a shift register to enable loop

pipelining. From [31]. 24
4.5 Host NDRange kernel invocation 25
4.6 HelloWorld Kernel. From [2]. 27
4.7 After NDRange Transformation [2]. 27
4.8 After Constant Propagation [2]. 27
4.4 Custom OpenCL Compilation Flow 28

5.1 Execution time of kernel 21, as a function of the number and
size of blocks. The best discovered point is 9.8x faster than the
LLVM selection. 37

5.2 Improvement available with the best discovered grid geometry
versus the LLVM selection. 43

5.3 Minimum Execution Time at set threads per block / Minimum
Execution Time. Each line represents 22 of the 23 benchmarks
in a leave-one-out manner. 44

5.4 Minimum Execution Time given 96 threads per block / Min-
imum Execution Time. Average is weighted by the minimum
execution time of each benchmark. 45

5.5 Number of blocks minimizing execution time given 96 threads
per block / Loop Tripcount for each benchmark. 45

5.6 Speedup over the LLVM selection for the Random Forest Model
Predictor grid configuration not including the prediction over-
head. This performance cannot be realized in practice. Results
are shown on a log scale to present equivalent speedups and
slowdowns as equivalently-sized bars. 49

5.7 Final Heuristic Algorithm . 52
5.8 Speedup for our modified heuristic over the LLVM selection.

This performance can be realized in practice. Results are shown
on a log scale. 53

6.1 Original diffusion coefficient calculation in srad. 59
6.2 Modified diffusion coefficient calculation in srad. 59
6.3 Extract from streamcluster. 60
6.4 streamcluster access pattern before (left) and after the code

transformation (right). 60

xiii

6.5 An example illustrating thread dependence. 62
6.6 An example illustrating if-conversion in ψ-SSA, which serves as

inspiration for our ACF analysis. 64
6.7 An example illustrating how ACF handles loops. 68
6.8 An example illustrating the need for Inter-procedural Arith-

metic Control Form (IACF). 68
6.9 GPUCheck Analysis Workflow 70
6.10 Coalescing algorithm in GPUCheck. 72
6.11 Divergency issues found in the Rodinia Benchmark Suite. Black

indicates an issue found only by GPUCheck. White indicates
an issue found only by nvprof. Grey indicates an issue found
by both. The adjacent fractions are the number of issues found
by GPUCheck, over the total issues found. 76

6.12 Original gaussian kernel functions (edited for clarity). 79
6.13 Extract from lavaMD demonstrating buffering in shared memory. 80
6.14 Original halo computation in nw kernels. 81

7.1 Configuration of Header for h = 16, v = 8, s = 2, and c = 6.
Each small light grey box represents one byte. 86

7.2 RLBD Serial Compression Algorithm 89
7.3 RLBD 1-Lookahead Schema Selection 90
7.4 RLBD Serial Decompression Algorithm 91
7.5 2-Stage parallel compression flow 92
7.6 GPU Compression Pipeline 93
7.7 Visualization of thread-level cooperation within a GPU block

during decompression . 94
7.8 Compression Throughput by Algorithm on the Sandybridge ma-

chine . 98
7.9 Throughput of synthetic data compression by schema 99
7.10 Throughput of synthetic data decompression by schema 99
7.11 Throughput vs Data Savings 102

xiv

Chapter 1

Introduction

Heterogeneous computing platforms are emerging as the dominant approach to

supercomputing. GPUs have become an increasingly popular choice in achiev-

ing a superior performance per watt ratio with some of the highest absolute

performance. In the most recent Top500 list [66], six out of the top ten ma-

chines use accelerator devices. The third fastest machine - the Swiss National

Supercomputing Centre’s Piz Daint, for example, delivers its performance with

5, 320 NVIDIA Tesla P100 GPUs. The upcoming Summit supercomputer, to

be deployed at the Oak Ridge National Laboratory, is set to lead the TOP500

list in 2018 with slated peak performance of 200 petaflops from more than

25, 000 NVIDIA V100 GPUs coupled with 9, 200 IBM POWER 9 CPUs [50].

By coupling GPUs to each node, Summit aims to deliver over 200 petaflops

in a power envelope of 10 MW, a five-fold increase over the performance of

the previous Titan supercomputer while consuming only 10% more energy.

Providing even more power efficiency than GPUs, Field-Programmable Gate

Arrays (FPGAs) are beginning to ship in high-end server hardware. Intel is

now shipping Xeon server CPUs with an integrated FPGA, and IBM ships Sys-

tem Z machines with a built-in FPGA. These devices are required to achieve

necessary performance requirements while consuming less power than tradi-

tional CPU-centric systems.

Hardware accelerators such as GPUs and FPGAs can dramatically im-

prove application performance, but require different programming paradigms

for efficient execution. GPUs execute thousands of threads simultaneously,

1

interleaving thread execution to hide instruction latency. FPGAs execute spa-

tially, using deep pipelining to efficiently process tasks. Both models map

poorly to traditional programs optimized for a sequential CPU.

Further complicating accelerator programming, both GPUs and FPGAs

maintain internal memory, and must manage copying of relevant data to and

from the accelerator device. Accelerators are typically connected via a PCIE

bus or equivalent, so for many computations data transfer can actually domi-

nate execution time.

To simplify accelerator programming, compiler and language designers

have taken two approaches, creating new programming languages like CUDA,

OpenCL, OpenMP, and OpenACC. CUDA and OpenCL present programmers

a low-level abstract machine model, allowing developers to take advantage of

architectural characteristics by hiding few device-specific details. By contrast,

OpenMP and OpenACC encourage programmers to express parallelism in their

programs, but provide few machine details. In these languages, the compiler

is responsible for mapping parallelism to the appropriate architectures, with

the goal of hiding architectural details and achieving performance portability

into the future.

This work leverages both styles of accelerator languages, applying compiler

analyses and transformations to take better advantage of GPUs and FPGAs.

This work is a compilation from a number of projects, each presented indepen-

dently by chapter. Chapter 4 presents compiler transformations for OpenCL

when targeting FPGAs, by combining host and device analysis. Chapter 6

presents a compiler analysis for CUDA programs to detect memory access

patterns and conditional branches which may cause performance problems

when executing on GPUs. Chapter 5 presents a compiler heuristic for mapping

OpenMP-parallel programs to GPUs to maximize performance. Finally, Chap-

ter 7 presents a novel compression algorithm, Run-Length Base-Delta (RLBD)

originally intended to compress CPU-GPU data transfers. Unfortunately, per-

formance was insufficient for the intended use, but RLBD can be used with

GPU acceleration to improve supercomputing network performance.

2

Chapter 2

Background

2.1 Accelerator Devices

This body of work concentrates on GPUs and FPGAs, two specific accelerator

devices.

2.1.1 Graphics Processing Units (GPUS)

GPUs are composed of tens to hundreds of streaming multiprocessors (SMs),

each capable of independently executing thousands of threads in parallel. To

efficiently load and execute code on such devices, a shared program kernel is

executed by many threads at once, in a data-parallel fashion. When executing

a kernel on a GPU, threads are grouped into thread blocks. All threads within

a thread-block execute on a single streaming multiprocessor (SM), and are

therefore able to perform cooperative tasks and share intermediate products.

By contrast, threads in different thread-blocks cannot communicate directly.

The number of thread-blocks and the number of threads per block are collec-

tively referred to as a grid geometry and they both must be specified when

initiating a kernel execution.

Each SM is a highly vectorized processing unit, capable of executing an

instruction for a warp of 32 threads each cycle. All threads within the warp

must execute the same instruction, as each SM has only a single instruction

decoder. To hide instruction latency, the SM is fully pipelined and executes

a different warp of threads each cycle, using zero-cost context switching. The

GPU achieves zero-cost context switching by simultaneously holding registers

3

for each thread in a common register file, and using the thread ID as an

offset. Each SM has hardware limits to the number of threads that can be

simultaneously loaded and executed: In addition to the register file having

finite capacity, each SM can hold only a finite number of threads (1024 on the

Nvidia P100) and finite number of blocks (32).

Modern NVidia GPUs issue each instruction to a warp of 32 threads simul-

taneously: All threads in a warp must execute the same instruction each cycle.

Branch divergence occurs when a conditional branch instruction is issued to a

warp and the condition evaluates to a different value for some threads within

the warp. In this case, the hardware must first execute the code in the taken

path—leaving idle the threads that evaluate the condition to false—and sub-

sequently it must execute the not taken path while leaving idle the threads

that evaluate the condition to true. All threads may continue executing when

the control flow reconverges at the join point in the flow graph. Such under-

utilization of processing resources reduces the performance of GPUs. Branch

divergence is problematic because stalled threads are still assigned registers

and execution slots, preventing other threads from being started to perform

useful work.

A warp of threads issues instructions simultaneously, causing as many as

32 simultaneous memory access requests to be issued in one execution cycle.

However, the bandwidth available to access a GPU global memory subsystem

is limited. Thus, the hardware in a GPU is able to coalesce (merge) adjacent

or overlapping requests that originated on the same cycle by threads within

a warp into fewer requests, each accessing more data. Once a memory access

request is issued, no threads in a warp can continue executing until all of the

threads have been serviced. Therefore, coalescing multiple memory accesses

into fewer requests dramatically improves throughput. However, the hardware

is only able to coalesce requests if the threads in a warp are accessing adjacent

or overlapping locations in memory, and if the range of accessed addresses

is aligned to a cache line boundary. If the execution of a statement leads

threads to access memory locations that do not fit within an aligned range of

memory addresses, then multiple memory requests are necessary. Therefore,

4

the execution time is longer than in the case where all the accesses for the

warp are coalesced into a single request. Each global memory request requires

hundreds of cycles to be completed. Thus, GPU programs should be structured

to avoid non-coalescable memory accesses.

All SMs share a common global memory, using local caching to reduce la-

tency. The global memory is also attached to a Direct Memory Access (DMA)

controller, which can transfer memory between global GPU memory and CPU

memory without requiring either the CPU or GPU SMs for processing. The

DMA controller allows memory transfers to and from the GPU to be over-

lapped with GPU processing.

Despite the increased reliance on GPUs, the structured style of parallel

processing that GPUs require makes their performance sensitive to two prob-

lems: (1) branch divergence [22], in which adjacent threads exhibit different

control-flow behaviour causing hardware stalls, and (2) non-coalesced memory

accesses [8], in which adjacent threads access disparate memory addresses,

overloading the underlying memory system with requests.

2.1.2 Field-Programmable Gate Arrays (FPGAs)

FPGAs consist of arrays of interconnected programmable logic blocks, which

vary in complexity from simple lookup tables (LUTs) to complete functional

units. LUTs can be wired up via programmable interconnects to form arbitrary

digital circuits.

Typically, circuit configuration is specified via a Hardware Description Lan-

guage (HDL) such as Verilog or VHDL. The HDL is then compiled into a ‘bit-

stream’ - a configuration file that sets the device’s logic blocks and interconnect

switches into a desired state. The compilation process consists of placing cir-

cuits specified by user HDL code to the chip, while considering chip area usage

and interconnect length/congestion. The placed circuits then undergo routing,

i.e., adding wires to correctly connect the placed components. Arriving at an

optimal circuit configuration is a known NP-hard problem. Synthesis takes

from hours to days.

5

2.2 Accelerator Programming Languages

2.2.1 CUDA

CUDA is a parallel programming API created by Nvidia to allow developers

to tightly integrate with their GPUs. Functions written in C/C++/Fortran

can be marked for GPU execution and called by CPU (host) code, while the

CUDA compiler handles compiling and linking GPU executables.

Parallelism in the CUDA programming model is of a SIMT (Single Instruc-

tion Multiple Thread) form. In CUDA, a program is divided into host code

and a series of kernels. The code for each kernel describes the execution of

a single thread, but the programming model assumes that many threads will

execute that same kernel code in parallel. Threads are grouped into blocks,

and a number of blocks are executed simultaneously. The number of threads

per block and the number of blocks are collectively referred to as a grid, and

must be specified each time a kernel is executed.

CUDA is meant to enable tight integration with GPUs, and therefore ex-

poses many GPU-specific features through the addition of new keywords and

intrinsics. In particular, CUDA exposes the threadIdx and blockIdx vari-

ables, which expose the thread numbers during execution, and allow program-

mers to create thread-dependent behaviour. Because GPUs execute threads

in warps of 32, Nvidia also exposes intrinsics to allow threads within a warp

to cooperate at no cost through intrinsic functions like ballot(c) which takes

a predicate from each thread, and returns a 32-bit binary value combining all

of the predicates.

By enabling tight coupling of programs to GPUs, CUDA seeks to enable

high-performance GPU computing through deep programmer knowledge and

understanding.

2.2.2 OpenMP

OpenMP [18] allows programmers to mark sections of code as parallel with-

out worrying about how such parallelism maps to hardware. However, since

high-level programming models like OpenMP abstract the architecture-specific

6

details of code generation, accelerator offloading functionality exacerbates an

age-old problem of such models: compilers must attempt to optimally map

parallelism to each targeted architecture.

1 void gemm_OMP

2 (float *A, float *B, float *C) {

3 #pragma omp parallel for

4 for (i = 0; i < NI; i++) {

5 for (j = 0; j < NJ; j++) {

6 C[i*NJ + j] *= BETA;

7 for (k = 0; k < NK; ++k) {

8 C[i*NJ + j] +=

9 ALPHA * A[i*NK + k]

10 * B[k*NJ + j];

11 }

12 }

13 }

14 }

Figure 2.1: OpenMP 3 example modified
from gemm in the Unibench benchmark
suite

OpenMP is a prescriptive

directive-based programming frame-

work, and an API designed for

both shared and distributed mem-

ory multiprocessing programming

using C, C++, and FORTRAN. It

is made up of a collection of com-

piler directives for controlling exe-

cution of a parallel application, li-

brary routines for interfacing with

the runtime environment, and en-

vironment variables. Figure 2.1

shows an example taken from the

gemm benchmark where the pro-

grammer annotated the loop on

line 4 with the parallel for directive, instructing the compiler that itera-

tions of that loop may be executed in parallel, though the inner loop on line 5

must still be executed serially. The compiler generates code to create worker

threads that will execute in parallel and divides a work task among the worker

threads. However, it is up to the runtime environment to allocate threads

to different processors. This programming model abstracts details of work-

sharing and thread coordination and allows programmers to focus on solving

the task at hand. Moreover, the high level of abstraction makes OpenMP

highly portable, promising, in principle, code scalability from standard work-

stations to supercomputers. However, because compiler heuristics can be sub-

optimal, OpenMP designers included syntax for programmers to provide hints

to the compiler to attempt to improve performance for a given target architec-

ture. The OpenMP language specification has accumulated considerable bloat

to accommodate such hints. Still, the goal of portability of OpenMP through

7

more efficient mapping of parallelism to hardware has attracted considerable

attention [51], [73].

OpenMP 4.x Target Offloading

15 void gemm_OMP

16 (float *A, float *B, float *C) {

17 #pragma omp target

18 \ map(to: A[:NI*NK], B[:NK*NJ])

19 \ map(tofrom: C[:NI*NJ])

20 #pragma omp teams distribute

parallel for

21 for (i = 0; i < NI; i++) {

22 for (j = 0; j < NJ; j++) {

23 C[i*NJ + j] *= BETA;

24 for (k = 0; k < NK; ++k) {

25 C[i*NJ + j] += ALPHA * A[i*NK

+ k]

26 * B[k*NJ +

j];

27 }

28 }

29 }

30 }

Figure 2.2: OpenMP 4 example simplified from
gemm in the Unibench benchmark suite

OpenMP 4.0, introduced in

2014, allows programmers

to specify target regions -

blocks of code to be exe-

cuted on an accelerator de-

vice present in the system.

Variables are mapped to the

device data environment and

the code generation for par-

allel constructs enclosed in

the target region targets

the accelerator architecture.

Figure 2.2 shows the same

parallel segment of the gemm

benchmark as Figure 2.1,

but targeting OpenMP 4.0.

The target region is declared

on line 17, causing the entire loop nest to be executed on the GPU. Lines 18-19

show the data mapping of the arrays, making them available within the tar-

get region. Finally, the outermost loop is made parallel as before on line 20.

The additional teams distribute clause indicates that these loop iterations

should first be divided amongst teams, and then amongst threads within each

team.

2.2.3 OpenCL

OpenCL is an open standard for parallel programming of heterogeneous sys-

tems and a programming language specification [26]. General OpenCL pro-

gram architecture consists of a host device that controls one or multiple com-

8

pute devices by managing memory transfers and task distribution across de-

vices. Compute devices are split into compute units, which, in turn, contain

individual processing elements. OpenCL defines a Same-Instruction Multiple-

Thread (SIMT) data-parallel model where many threads execute the same

instruction on many data items. In OpenCL terminology this model is called

NDRange (for N-dimensional range). OpenCL also provides task-level paral-

lelism that exploits concurrency through stand-alone task distribution across

different compute units.

The main purpose of OpenCL is to enable portable use of various hardware

accelerators. While already popular for GPU accelerators, recent adoption of

the framework as an High-Level Synthesis (HLS) input language has opened

new opportunities to explore FPGA-specific compiler transformations.

2.3 GPU Divergence Analysis

Automated tools exist for most programming languages to detect common

programming mistakes [7], [11], [36]. Such tools make use of static analysis

techniques to verify correct program behaviour. We focus this section quite

narrowly, highlighting prior work on detecting branch divergence and non-

coalescable memory accesses for GPU kernels.

Sampaio et al. [58] propose a conservative divergent-branch analysis over

affine expressions on thread identifiers, now implemented within LLVM. An

extension to their work generalizes to divergent values throughout a GPU ker-

nel. In contrast, GPUCheck does not require affine expressions, and can solve

for non-linear conditions. Moreover, GPUCheck derives divergent expressions

from arbitrary control-flow and data dependencies even across interprocedural

boundaries.

Transforming non-coalescable memory accesses into coalesced accesses has

been an active subject of research. Wu et al. [74] show that given perfect

knowledge of memory access layouts, minimizing non-coalesced accesses is an

NP-hard problem. However, the authors do not consider what analysis might

be used to generate such layouts. GPUCheck is well-suited to perform such

9

a task. Affine polyhedral models have also been used to transform memory

accesses [5], [71]. Venkat et al. [70] have recently extended the polyhedral

model to include limited non-affine expressions. While GPUCheck cannot

currently perform transformations, it identifies non-coalesced accesses, even

when generated indirectly through multiple function invocations. Additionally,

GPUCheck calculates memory access patterns simultaneously for data- and

control-flow dependent values.

Fauzia et al. [19] present an approach that requires dynamic analysis to

identify non-coalesced accesses using memory traces. Their work generates

high-accuracy results, but requires any kernel to be executed, suffering from

the same issues as any dynamic profiler. On the other hand, GPUCheck runs

its analysis without even a GPU present, by calculating inter-thread behaviour.

2.4 Software Compression

Data compression schemes allow for data to be represented with fewer bytes,

which is valuable both to reduce storage requirements and to transmit data

at higher speeds. However, when considering the transmission of compressed

data, one needs to also consider the compression and decompression operations

that must occur at each end. More effective compression schemes tend to re-

quire more computation, reducing the maximum throughput at which they

can operate. Compression schemes therefore exist along a spectrum, where in-

crementally more computation can result in incrementally smaller compressed

data. Over recent years, network and interconnection link speeds have been

increasing faster than compute and memory speeds. With faster networks,

in order for a compression scheme to be advantageous, it must require less

compute resources.

Software compression schemes such as brotli [1], gipfeli [40], lz4 [12] and

Snappy [24] achieve impressive compression ratios across a wide sample of data

at rates up to hundreds of Mbits. Meanwhile, simple compression schemes such

as Base-Delta Intercept (B∆I) achieve limited compression, but are simple

enough to be implemented in hardware at rates of up to hundreds of Gbits [54].

10

Data compression schemes are divided into two categories: lossy and loss-

less. Lossy compression schemes are allowed to discard information to reduce

file sizes, and are used when exact replication of the compressed data is not nec-

essary. Lossy compression is commonly used, for example, to compress JPEG

images and MP3 audio. By contrast, lossless compression schemes must repro-

duce the exact input through decompression. Compression schemes represent

a trade-off between compression ratio and computational requirements.

A compression ratio is a measure of the degree to which a compression

scheme reduces the size of a piece of data, and is defined as sizeoriginal/sizecompressed.

The reciprocal of the compression ratio is known as space savings.

Throughput is a measure of the speed of compression and decompression,

and is measured in bytes/sec. Typically compression and decompression rates

are reported separately because decompression is usually much faster than

compression.

2.4.1 Lossless Compression

Lossless compression is required in many cases, such as when transmitting

files in ZIP format, where an inexact reproduction could result in data cor-

ruption. In particular, whenever compression is intended to be hidden from

users, lossless compression is required. Two well-known lossless compressions

are Run-Length Encoding (RLE) and Lempel-Ziv Compression (LZ).

RLE is a simple compression scheme that encodes repeated values using a

sentinel value (typically a value repeated twice) followed by a count. These

repeated values, known as runs, are thus compressed. Variations exist with

regard to the size of each value, and the method of encoding runs. Run-length

encoding is extremely simple to implement, and has even been implemented

in hardware. Fax machines notably implement RLE for lines of color during

transmission over telephone lines. While trivial to implement, RLE is inef-

fective when the incoming data does not contain long sequences of identical

values.

Lempel-Ziv compression uses the intuition that a recently used value is

likely to be reused. A sliding window of history is maintained during compres-

11

sion, and if an encountered value or sequence is present in the history window,

it is replaced with a code word in the compressed output. During decompres-

sion, the same history window is constructed, such that the code words can be

decoded by referencing the window. Many variations on LZ exist, varying the

size of values and the size of the history window. Most commonly used today

is the LZ4 algorithm [12].

2.4.2 Parallel Compression

Given the general availability of multicore processors, efforts have been made

to parallelize software compression algorithms. Parallel compressors tend to

either partition the input into segments for separate compression [45], or apply

cooperative parallel algorithms. They often achieve sublinear scaling [35], [62].

For GPU parallelism, Sitaridi et al. introduced Gompresso [63], a GPU

algorithm for decompression. Gompresso splits an input file into partitions

and independently compresses each partition with LZ77, a Lempel-Ziv variant.

Gompresso achieved decompression speeds of up to 16 GB/s on an Nvidia

Tesla K40 by exploiting GPU parallelism. However, their algorithm sacrifices

compression ratios, and does not investigate compression throughput.

Others have attempted to use GPUs to offload portions of a compression

algorithm. Shastry et al. use a GPU to perform the Burrows-Wheeler trans-

form in bzip2 compression [61], improving bzip2 throughput by 44% while

leaving the CPU idle half of the time, and thus allowing other operations to

continue.

2.4.3 Compression in Networking

There is a long history of using compression to improve network throughput.

Craft used a variant of LZ compression implemented in hardware to achieve

throughputs of up to 1 Gb/s in 1998 [14]. More recently, and more commonly,

HTTP connections support compression to dramatically reduce webpage load

time [42].

However, modern data centres and supercomputers are connected by fab-

rics operating at 10-40 Gb/s. Therefore, most software compression schemes

12

in use today cannot keep up with the volume of incoming or outgoing data.

13

Chapter 3

Related Work

As this work is a compilation of multiple research projects, related work is

divided here by project.

3.1 FPGA High-Level Synthesis

Czajkowski et al . present an LLVM-based OpenCL compiler prototype for

Altera FPGAs, with a proof of concept executing on the Stratix DE4 [17].

This compiler represents all basic blocks of the program as Control-Data Flow

Graphs (CDFG) with their own inputs and outputs as determined through live-

variable analysis. The CDFG allows for efficient implementation of a module

as a pipelined circuit, as opposed to finite state machine with a datapath

- an approach much better suited to the data-parallel OpenCL model. This

compiler implements the NDRange execution model by issuing individual work

items into a kernel pipeline, one after another. The task-parallelism execution

model, where the kernel code is written in a serial fashion, is implemented in

the compiler by attempting to pipeline every loop in the code. The compiler

also creates a wrapper for the generated kernel circuits to handle the standard

interfaces to the device-memory IO and does all necessary bookkeeping to

track kernel execution and to issue new work-itemss into the pipeline. This

work subsequently became the Intel FPGA OpenCL compiler, upon which our

optimizations are based. Internally, the compiler consists of an LLVM-based

HLS component that compiles OpenCL kernel code into Verilog, which is then

synthesized using standard Intel FPGA Quartus software.

14

Intel FPGA also provides an implementation of the OpenCL API to allow

host code to interface with devices: launch kernels, manage memory transfers,

etc.

Figure 4.1 depicts the compilation flow as provided by Intel FPGA. A

typical execution workflow consists of the host code programmatically loading

a pre-compiled kernel binary file into the FPGA and initiating its execution.

Intel FPGA also provides custom extensions to the OpenCL standard enabling

certain architecture-specific user optimizations. While the prototype described

here uses the Intel FPGA OpenCL toolchain targeting a Stratix V FPGA, the

general concepts are applicable to reconfigurable architectures of other FPGA

vendors.

As of 2015, Xilinx SDAccel development environment provides a HLS

toolchain that is fully compliant with OpenCL 1.0. SDAccel is a closed-source

application and little is known about its inner workings. We can infer from

the user guide that the data-parallel NDRange execution model in this com-

piler is emulated through generation of a 3-dimensional loop-nest that iterates

over the work-group and work-item dimensions [59]. Loop pipelining is one of

the essential optimizations attempted by SDAccel [21]. SDAccel would also

provide a good platform to prototype the analyses and transformations.

3.1.1 Manually Optimized OpenCL

Writing OpenCL code that delivers good performance on FPGAs is an open

problem. Intel publishes a best-practices guide [31] detailing strategies and

patterns that the Intel FPGA OpenCL compiler can efficiently execute. These

patterns served as inspiration for the transformations presented in this paper.

Zohouri et al . [77] performed manual optimizations on six Rodinia OpenCL

benchmarks compiled with the Intel FPGA OpenCL compiler. After these

optimizations, FPGAs could be competitive with GPUs on performance with

dramatically better power efficiency. The effectiveness of these transformations

inspired our compiler transformations.

15

3.1.2 Combined Host/Device Compilation

Lee et al . [38] developed an OpenACC-to-FPGA compiler framework, that

converts OpenACC programs into OpenCL using the open-source OpenARC

compiler, and then uses the Intel FPGA OpenCL compiler for HLS. The ap-

proach benefits from the fact that user-level source code contains device kernel

code embedded into the host control code. This source code is annotated with

pragmas that specify the code blocks that are offloaded to the device. Be-

fore the device code is outlined into a separate OpenCL kernel compilation

unit, their compiler is able to take advantage of certain code-transformation

opportunities that would not have been possible otherwise, such as bypassing

global memory for inter-kernel communication using channels. To the best of

our knowledge, our work is the first to implement combined compilation on

OpenCL source code exposing similar transformation opportunities.

3.2 GPU Parallelism Mapping

Tuning of compile-time and launch-time kernel parameters of GPGPU code

has attracted considerable research in light of GPUs’ popularity. Vollmer

et. al. presented an approach to construct auto-tunable GPU kernels by

expressing them in an embedded DSL [72]. The abstractions enforced by the

DSL both restrict the parameter search spaces, and allow the use of common

search strategies. Lee et. al. developed OpenMPC - an extension to OpenMP

for generation of parallel GPU code before OpenMP 4.0 was announced [39].

Their work allowed for auto-tuning of generated CUDA code through a search

of the optimization space, but left the number of threads and number of blocks

to be specified explicitly by the user through additional pragma directives. A

similar work by Grauer-Gray, on GPU code generated from a high-level HMPP

language, applied auto-tuning on a large optimization space that targeted GPU

kernels [25]. Their approach hard-coded fixed GPU geometries that aimed at

maximizing occupancy.

To the best of our knowledge, our work is the first to investigate automatic

selection of Grid Geometry in the context of OpenMP GPU kernels.

16

Multiple applications of automated learning to parallel systems appear

in the literature. Wang et. al. use neural networks to map parallelism of

OpenMP 3 programs to NUMA computing clusters [73]. In the domain of

heterogeneous computing systems; O’Boyle et. al. use a predictive modeling

approach to select parallel OpenMP 3 loops for translation to OpenCL GPU

kernels [51]. Tournavitis et. al., in the context of auto-parallelizing compilers,

use a machine learning model to map parallelism to hardware while profiling,

with the goal of maximizing the information collected [67].

Coons et. al. attempt to use instruction-placement heuristic algorithms

powered by reinforcement learning technique to reduce communication over-

head on Explicit Dataflow Graph Execution processors [13]. While their learn-

ing approach produces models that match expert hand-tuned heuristics, it

lacks generality. To compensate for the highly-specialized nature of the learned

models, they propose a hierarchical approach where units of code are classified

into groups that perform well with similar heuristics, using the same learning

model for classification. They observe that even when machine learning and

data mining techniques are impractical, these methods can still deliver valu-

able insights to a compiler designer.

3.3 GPU Divergence Analysis

Previous attempts to analyze GPU workloads observe dynamic behaviour on

either a simulator [4] or on physical GPUs [8]. These analyses produce precise

results, but come at a cost. To benefit from dynamic analysis, the application

developer must have access to GPUs with similar characteristics to the target

system, or experience substantial overheads to simulate GPU execution.

3.4 High-Speed GPU Compression

Few attempts have been made to implement lossless compression on GPUs,

mainly due to the negative effect on compression ratios caused by partitioning.

Patel et al . implemented a bzip-like cooperative GPU compression algorithm,

but found performance was actually slower than the CPU-based bzip2 algo-

17

rithm [53]. Ozsoy et al . implemented a partitioned LZ compression algorithm

on GPUs, and achieved a performance throughput 2.2x higher than their par-

allel CPU algorithm [52]. These works both leave substantial room for a

compression algorithm designed for efficiency on a GPU architecture.

18

Chapter 4

A Case for Better Integration of
Host and Target Compilation
When Using OpenCL for
FPGAs

4.1 Introduction

This work seeks to take OpenCL programs meant for GPU execution, and

apply compiler analysis and transformations to enable more efficient FPGA

execution.

OpenCL [64] has emerged as a prominent programming model for FPGA.

Intel and Xilinx release OpenCL compiler toolchains that support hardware

synthesis directly from OpenCL source [17], [21]. GPU-targeted programs

rarely achieve acceptable performance when run unmodified on FPGAs [77],

so new FPGA-specific compiler techniques and insights are required.

In contrast to the data-parallel model favoured by GPUs, Intel FPGA HLS

tools follow a different approach when implementing the NDRange model:

synthesized kernels execute instructions in a pipelined fashion, similar to that

of an assembly line. In an FPGA, this means that a data processing unit

(e.g. a logic block) takes as input the output of a previous data processing

unit. These units can perform concurrent computation because their work

is independent from each other. The reconfigurable fabric on FPGAs makes

SIMT parallelism a poor choice for applications. The pipeline parallelism

19

model improves utilization by requiring fewer copies of each operator, while

maintaining overall throughput [28].

Figure 4.1: Altera OpenCL Compilation
Flow. From [17].

A major feature of OpenCL

is separate host and device com-

pilation, allowing OpenCL device

vendors to specialize in device-

code generation without concern

for host implementations. This

separation enforces strict Applica-

tion Programming Interface (API)

boundaries between host and de-

vice implementations and pre-

vents otherwise trivial compiler

optimizations and analyses. As a

result, workarounds must be intro-

duced to recover lost performance.

For example, Intel FPGA extends

the OpenCL specification with channels that allow kernel operations to be

chained without needing to copy back to memory. If a compiler had access

to the combined host and device code, chaining would be a trivial example of

loop fusion. However, with kernel definitions compiled separately from invo-

cations, programmers must implement additional APIs to realize the benefits

of chaining.

This work builds on existing work by Zouhouri et al . [77] that analyzes and

improves the performance of GPU-targeted OpenCL kernels on Intel FPGA

devices using the Intel FPGA SDK for OpenCL. This paper expands com-

piler analyses to include both host and device compilation and introduces

compiler transformations that benefit from sharing analysis information be-

tween the host and device compilation. In particular, we define three compiler

transformations that transform OpenCL kernels to more closely match the

best-practices published by Intel FPGA:

NDRange to Loop: Convert NDRange kernels, originally intended to be

20

repeatedly executed with a range of thread identifiers (IDs), to a single

body of code that uses a loop induction variable to represent thread IDs.

Restrict Parameters: Improve device-side alias analysis by inspecting host

code and by marking kernel parameters with the restrict attribute

where applicable.

While the above two transformations take advantage of the host and de-

vice compiler information sharing; they also enable the compiler to optimize

the kernel code further by applying single-work-items-specific transformations,

such as:

Reduction-Dependency Elimination: Improve pipelining of reduction loops

by storing partial sums in a shift register to reduce loop-carried depen-

dencies.

These transformations integrate with the Intel FPGA SDK for OpenCL and

are evaluated on the Rodinia benchmark suite [10]. Rodinia benchmark OpenCL

implementations target GPU-like devices and, as such, are an appropriate

baseline for FPGA-specific transformations.

4.2 Optimizing OpenCL for FPGAs

Intel FPGA maintains a best practices guide for writing OpenCL that will

execute efficiently on FPGAs [31]. A subset of these optimizations motivate

the remainder of the work, and are summarized here.

4.2.1 restrict Pointers to Enable Simultaneous Mem-
ory Operations

FPGAs improve performance by executing multiple operations simultaneously.

However, memory operations are defined to behave as if performed in program

order, and can have extremely long latencies. If two memory accesses never

reference the same memory address, then the compiler can safely reorder or

overlap the operations. By marking a pointer passed as kernel parameters with

21

restrict, programmers guarantee that any address accessible through that

pointer is inaccessible through any other pointer. The Intel FPGA OpenCL

compiler can then perform other memory operations simultaneously. As kernel

parameters are passed opaquely from the host to the FPGA, it is otherwise

extremely difficult for the compiler to prove that memory operations are safe

to overlap. Memory operations require hundreds of FPGA cycles, so overlap

is required for an efficient pipeline.

4.2.2 Prefer Single-Work-Item kernels over NDRange
kernels

In an NDRange kernel, the same computation is executed by a large number of

threads to support the data-parallel model. On FPGAs, chip area constraints

prevent massively parallel processing units from being constructed. Instead,

NDRange kernels are pipelined on FPGAs, allowing the stages to be executed

concurrently such that subsequent threads can be started each cycle. All

threads are executed in a single shared pipeline and thus values that do not

differ between threads can be calculated once, and referenced from within

the pipeline. However common intermediate products cannot be expressed in

NDRange kernels, so single-work-items kernels are preferred.

Moreover, loops in NDRange kernels would have to be fully unrolled to

support efficient pipelined execution because a pipeline is constructed across

thread invocations. By converting an NDRange kernel to a single work item,

loop exchange can generate pipelines where not otherwise possible. This con-

version can also enable new transformations such as shift register reduction

(described next). The effectiveness of the pipelined execution model depends

on the target algorithm. Algorithms with little synchronization or control-flow

may not benefit from single work-items execution at all and will have better

performance with NDRange kernels.

4.2.3 Pipelining Reduction Operations with Shifting Ar-
rays

22

1 __kernel
2 void double_add_1(__global double *arr, int

N,
3 __global double *result)
4 {
5 double temp_sum = 0;
6 for (int i = 0; i < N; ++i)
7 temp_sum += arr[i];
8 *result = temp_sum;
9 }

Figure 4.2: Floating-point reduction sam-
ple preventing loop pipelining. From [31].

The performance of the single

work-item execution model de-

pends on the ability to pipeline

loops in the kernel code. Thus, re-

moving loop-carried dependencies

is especially important because

such dependencies induce longer

loop initiation intervals. Reduc-

tion operations, such as the double add 1 method shown in Figure 4.2, cannot

be pipelined well because the intermediate value temp sum must be computed

for each iteration before the next iteration can begin. Floating-point opera-

tions are relatively slow, causing the FPGA to stall for the majority of the

computation. Addressing a similar problem in the context of software loop

pipelining in 1992, Rau et al . [55] first introduced a technique called mod-

ulo scheduling that employs a rotating register file as a means to achieve a

more compact loop schedule and thus reduces the loop initiation time. This

technique was later implemented in hardware in the Intel IA-64 architecture

[60].

As suggested in the best-practices guide [31] and implemented by hand

by Zouhouri et al . [77], a variation of the rotating register technique can be

employed by the programmer manually to minimize pipeline delays caused

by the intermediate value in a reduction operation. Figure 4.3 shows the

same reduction, but with the introduction of a local array to emulate a shift

register. Instead of reducing elements of arr into a single variable, they are

accumulated into a shift register. The shift register’s depth is equal to the

latency, in cycles, of the floating-point operations that form the dependency.

Reduction input is read from the first element of the shift register, and written

into the last. Effectively, this reduces the initiation interval of the loop to

1 cycle. After the loop completes, an extra reduction on the shift register

contents produces the final reduction value. Because the final shift register

summation loop has a smaller trip count, the improved initiation interval of

the original loop yields an overall performance improvement. The Intel FPGA

23

OpenCL compiler looks for the pipelining idiom from Figure 4.3 in OpenCL

code, and efficiently implements it using a shift register in hardware.

4.3 Compiling OpenCL for FPGAs

1 __kernel
2 void double_add_2(__global double *arr, int

N,
3 __global double *result)
4 {
5 double shift_reg[II_CYCLES+1];
6 //Initialize all elements of shift_reg to

0
7 for(int i = 0; i < N; ++i)
8 {
9 shift_reg[II_CYCLES] = shift_reg[0]+arr[

i];
10 #pragma unroll
11 for(int j = 0; j < II_CYCLES; ++j)
12 shift_reg[j] = shift_reg[j+1];
13 }
14 double temp_sum = 0;
15
16 #pragma unroll
17 for(int i = 0; i < II_CYCLES; ++i)
18 temp_sum += shift_reg[i];
19 *result = temp_sum;
20 }

Figure 4.3: Floating-point reduction using
a shift register to enable loop pipelining.
From [31].

The transformations suggested in

the Intel FPGA best-practices

guide are meant to be performed

by programmers. However, a suf-

ficiently capable compiler should

be able to automatically transform

OpenCL device code to deliver

more efficient execution on FP-

GAs. Thus, we integrated some of

the transformations into the Intel

FPGA SDK for OpenCL compiler.

This compiler is a closed-source

application based on the LLVM

compiler infrastructure. Thus, ar-

bitrary compiler passes targeting

LLVM 3.0 can modify the Intermediate Representation (IR) .

Our transformations are performed early in the compilation process be-

cause they attempt to automate best practices when writing source code.

OpenCL is designed to allow for the separate compilation of host and device

code. However, combined compilation allows for optimizations not previously

possible. Moreover, the Intel FPGA compiler already requires some degree

of such coordination by the user. For instance, the compiler may generate

single-work-item code for a kernel that the host invoked in NDRange mode.

Our compiler passes make use of coordination between the host and device

code compilation processes, passing information between the two to enable

certain transformations. A custom compiler driver facilitates combined com-

pilation, accepting as input the host and device source-code files. The driver

24

1 size_t work_dim = 2;
2 size_t gbl_offset[2] = {0, 0};
3 size_t gbl_size[2] = {64, 8};
4 size_t lcl_size[2] = {32, 1};
5 clEnqueueNDRangeKernel(
6 cmd_queue, kernel, work_dim,
7 gbl_offset, gbl_size, lcl_size,
8 wait_list_size, wait_list, event);

Figure 4.5: Host NDRange kernel invocation

coordinates between the Intel FPGA compiler modified with our transforma-

tions and the host compiler, based on LLVM 4, with modifications to analyze

and transform host-to-device communication. To integrate our three transfor-

mations with the Intel FPGA OpenCL Compiler, the host code analyses are

choreographed with the device code transformations (Figure 4.4).

4.3.1 NDRange to Single Work-Item Loop (NDRange-
ToLoop)

Under the OpenCL NDRange model, a kernel function is invoked for a number

of threads (work-itemss) that can cooperate and synchronize within a work-

group. This model maps extremely well to GPUs, which have many Single

Instruction, Multiple Data (SIMD) processors, but makes it difficult for ker-

nel functions to express common work products. On FPGAs, where parallel

kernels are implemented using pipelines, factoring out common work is key

to improving performance. OpenCL allows thread and work-group sizes to be

specified in three dimensions, denoted here as Z, Y , and X. The conversion

of a NDRange kernel into a single work-items, transforms the kernel body into

a series of loops over the respective n dimensions. Each loop executes the

original kernel body for each thread. Thread ID references are remapped to

the appropriate loop induction variable. Unfortunately, however, the number

of dimensions, size, and count of work-groups are specified in host code and

are inaccessible to device compilation. An example host invocation is shown

in Figure 4.5.

Thus it is necessary to recover the number of dimensions, the starting in-

dices of threads in each dimension, the number of threads in each dimension,

25

and the number of threads per work-group in each dimension. To do so we

created a host transformation that injects dummy functions that take as argu-

ment each value of interest. After this transformation, standard LLVM passes

for inter-procedural constant propagation are applied. Calls to the dummy

function are inspected, and constant arguments are transmitted to the device

compiler. This technique can be easily extended to share arbitrary constants

and ranges for device kernel parameters, allowing additional device code spe-

cialization. For generality, the kernel function signature is first modified to

take as argument the work dim, global work offset, global work sizes and

local work size values. Then, the results of the host NDRange invocation

analysis are read, and used in place of the kernel arguments when available.

As long as a kernel contains no synchronization points, which can be ver-

ified by checking the kernel for calls to the OpenCL barrier() function, the

NDRange execution can be emulated through a single loop nest. To emulate

work-groups, the kernel body is wrapped in loops corresponding to any di-

mensions for which get group id() is accessed. Calls to get group id() are

then replaced with accesses to the appropriate loop induction variables. Next,

loops are inserted to emulate work-itemss within each work-group, replacing

accesses to get local id() and get global id() with the appropriate ex-

pressions on the loop induction variables. Finally, accesses to the invocation

dimensions are replaced. As an example, a Hello World kernel is shown in

Figure 4.6. After applying the transformations above, the kernel appears as

depicted in Figure 4.7. Several optimizations can be performed at this point.

Single-iteration loops can be elided entirely, and dead code elimination can re-

move the computation of unnecessary values. By applying these optimizations,

the single-work-items example can be simplified to Figure 4.8.

In NDRange kernels, work-itemss must halt execution at barrier points

until all other work-itemss in the work-group reach the same point. This be-

havior can be preserved after NDRangeToLoop transformation by splitting

work-items loop nests at each barrier point. Our prototype NDRangeToLoop

transformation can only convert NDRange kernels with barriers in top-level

control flow, outside of any conditional statements or loops. When such bar-

26

1 __kernel void hello_world
2 (int tid) {
3
4
5
6
7
8
9

10
11
12
13 unsigned thread_id =
14 get_global_id(0);
15 if (thread_id == tid) {
16 printf("tid #%u\n", tid);
17 }
18
19
20 }

Figure 4.6: HelloWorld Ker-
nel. From [2].

1 __kernel void hello_world
2 (int tid,
3 int offset_x, int offset_y,
4 int offset_z,
5 int global_x, int global_y,
6 int global_z,
7 int local_x, int local_y,
8 int local_z) {
9 int group_sz_x =

10 (global_x-1) / local_x+1;
11 for (int c=0; c<group_sz_x; c++) {
12 for (int f=0; f<local_x; f++) {
13 unsigned thread_id =
14 (c*local_x + offset_x)+f;
15 if (thread_id == tid) {
16 printf("tid #%u\n", tid);
17 }
18 }
19 }
20 }

Figure 4.7: After NDRange
Transformation [2].

1 __kernel void hello_world
2 (int tid,
3 int offset_x, int offset_y,
4 int offset_z,
5 int global_x, int global_y,
6 int global_z,
7 int local_x, int local_y,
8 int local_z) {
9

10
11 for (int c = 0; c < 2 ; c++) {
12 for (int f = 0; f < 32; f++) {
13 unsigned thread_id =
14 (c * 32) + f;
15 if (thread_id == tid) {
16 printf("tid #%u\n", tid);
17 }
18 }
19 }
20 }

Figure 4.8: After Constant
Propagation [2].

riers are encountered, the kernel is partitioned into unsynchronized sections,

and each section is wrapped separately into work-items loop nests.

If values are calculated before and used after a barrier, they must be pre-

served across work-items loops. These values are identified by inspecting in-

struction operands, and then collecting operands calculated in a different par-

tition than the user. Local arrays equal in size to the work-group are allocated,

and each operand is saved into the array as it is calculated. Then, uses in other

partitions are redirected to the allocated array.

After transforming the NDRange kernel to a single work-items kernel, it

is necessary to transform the kernel invocation on the host. To invoke trans-

formed device kernels appropriately, each clEnqueueNDRangeKernel() invo-

cation is replaced with the following routine:

1. Ensure that the kernel about to be executed is one which was trans-

formed. If not, invoke with the original call to clEnqueueNDRangeKernel()

2. Pass the original dimensions and work-group sizes and counts as argu-

ments through clSetKernelArg().

3. Invoke the kernel with clEnqueueTaskKernel() for single work-items

execution.

27

Host Code
(.c/.cpp)

LLVM/Clang

Host Code
(LLVM IR)

OpenCL
Invocation
Analysis

Recovered Work
Sizes for Kernel

Invocations

OpenCL
Invocation

Transformation

Host Code with
Transformed
Invocations
(LLVM IR)

LLVM Host
Compiler

Host Executable

Device OpenCL
Kernels (.cl)

AOC Clang

Device OpenCL
Kernels

(LLVM IR)

NDRangeToLoop
Transformation

Kernel
NDRange-

ToLoop Trans-
formability

Single Work-
Item OpenCL

Kernels
(LLVM IR)

KernelArgRestrict
Transformation

FloatReduce
Transformation

Fully Trans-
formed OpenCL

Kernels
(LLVM IR)

Altera OpenCL
LLVM Compiler

OpenCL
Kernels

Binaries (.aocx)

Figure 4.4: Custom OpenCL Compilation Flow

The prototype imple-

mentation of the NDRange

transformation described

and evaluated in this

work has some limita-

tions. Its NDRange-

ToLoop cannot handle

barriers inside control-

flow. Also, the work-

group size must be known

at compile-time to enable

the allocation of the array

to allow uses across parti-

tions.

4.3.2 Reduction-Dependence
Elimination

The floating-point reduction-

dependence elimination trans-

formation implements an

idiom suggested by the

Intel FPGA Best Prac-

tices Guide [31] as a tech-

nique to remove loop-

carried dependencies by

inferring shift registers for loops that carry out floating-point reductions, as

demonstrated by going from Figure 4.2 to Figure 4.3.

First, an analysis detects all reduction idioms that are safe to transform.

All loops that do not contain other loops are scanned for reduction expressions.

A reduction expression a store to a value where an operand of the stored value

is obtained from a load from the same address. The pattern-matcher handles

two cases: when the reduction value is accessed through a pointer with no

28

offset, and when the reduction value is a memory location specified via a base

address and an indexing expression. The latter case requires the use of exactly

the same indexing expression for both the store and the corresponding load.

Once a reduction expression is found, the analysis must verify if it is safe and

beneficial to apply the transformation. To do so, the analysis performs the

following checks:

• The type of the reduction value must be either 32-bit or 64-bit floating-

point.

• The reduction value must not be used elsewhere in the loop body other

than in the reduction operation.

• If reduction is done on an array element, the indexing expression and

the array base pointer must be loop invariant.

• The binary operations that constitute the reduction must be associative

and commutative.

• If the loop trip count is known at compilation time and is less than the

shift register size, the reduction should not be transformed.

The final loop trip-count check warrants further explanation: calculation of

the final reduction value requires the computation of the sum of the values

in the shift register, which is a loop with exactly the same type of loop-carry

dependency that was eliminated in the transformed reduction loop. This sum-

mation loop has a trip count equal to the number of elements of the shift reg-

ister. Thus, the transformation is only beneficial when the number of original

reduction iterations exceeds the size of the shift register, which is a compiler-

specified constant suitable to the target FPGA. The shift register must have

enough elements to cover the latency of floating-point operations that would

prevent pipelining. In the prototype, targeting the Intel FPGA Stratix V, this

constant is eight, which is the floating-point operation latency for the device.

Code generation consists of the following steps: a shift register array is

created for a given reduction operation. All its values are initialized to zero in

the loop pre-header. The original reduction statement is then rewritten to one

that instead performs a store into the shift register’s tail element. Immediately

after the reduction expression, the values of the shift register are shifted down.

29

Benchmark
Original

Execution (s)

Transformed

Execution (s)
Ratio Restrict NDtoL FPReduce

gaussian 0.28 1.85 6.69 8 4 4

hotspot3D 9.65 25.12 2.60 4 4 8

kmeans 37.52 13.43 0.36 4 4 8∗

nn 0.05 0.05 0.98 8 4 8

srad 105.50 111.70 1.06 4 4 8

Table 4.1: Benchmark Execution Time and Applicable Transformations

In the loop epilog, the final reduction value is computed by performing a sum

over all shift register values and is stored into the original intended reduction

value.

4.3.3 Restrict Pointer Kernel Parameters

When creating a buffer with the OpenCL API clCreateBuffer() function a

programmer can use the CL MEM USE HOST PTR flag to indicate that the buffer

should use memory referenced by the host [34]. Thus, the prototype assumes

that in files that do not contain the CL MEM USE HOST PTR flag there are no

overlapping buffers. Based on this assumption the prototype marks all global

pointers as restrict for kernels in these files. In a refinement to this approach,

the compiler would first mark all buffers that are not allocated in the host

memory and then exclude only the kernels that use more than one such buffer

from having their parameters marked restrict.

4.4 Prototype Performance Study

Several unmodified OpenCL kernels from the Rodinia benchmark suite form

the baseline for a study of the prototype performance. To generate transformed

kernels all the transformations described in this paper are enabled unless oth-

erwise specified. In both the baseline and transformed benchmarks, the host

code that loads and launches kernels had to be hand-modified to load ker-

nels from FPGA-synthesized binaries, rather than compile them from source

at runtime. We evaluate only benchmarks that NDRangeToLoop can trans-

30

form, limiting ourselves to gaussian, hotspot3D, kmeans, nn, and SRAD. The

remaining benchmarks either fail to compile under the Intel FPGA OpenCL

compiler, or are unaltered by our transformations. Out of the benchmarks

tested, pointer restriction was applied to hotspot3D, kmeans, and SRAD.

Reduction-dependence elimination applies to the gaussian and kmeans bench-

marks.

Performance was evaluated on a Terasic DE5-Net board that contains an

Altera Stratix V GX FPGA with 4GB of 1600 MHz DDR3 memory. The

board is connected to a machine with an Intel Core i7-4770 CPU with 32GB

of DDR3 memory, running CentOS 6.7 (Linux 2.6.32). We use the Intel FPGA

SDK for OpenCL version 16.1.0.196. Our transformations on the device code

are implemented against the SDK-compatible LLVM 3.0, while the host code

transformations and analyses are implemented with the LLVM 4 compiler.

Each benchmark was run ten times for both the baseline and the trans-

formed versions with the mean overall execution time reported. Minimal vari-

ance was observed between runs of a given program, never exceeding 0.5% of

the mean. Thus the variance is not reported.

4.4.1 Benchmarks

Table 4.1 shows transformed kernel execution time and ratio over untrans-

formed kernels. The five benchmarks handled by this prototype implemen-

tation can be divided into three groups according to the performance in re-

lation to the baseline. For gaussian and hotspot3d, the transformed code

is significantly slower than the baseline. nn and srad have roughly baseline

performance; and kmeans is 2.6× faster than the baseline.

gaussian

This kernel contains a loop with a memory dependence on load operations. Be-

fore our transformations, the performance impact of the memory dependence is

mitigated because multiple work-items can be simultaneously executed. After

NDRangeToLoop however, the pipelining opportunities are obscured, because

our analysis is unable to determine that the various kernel parameters are

31

independent. Though the introduced loops can be pipelined, the load and

store operations must be executed in order to preserve semantics, and this

effect cannot be mitigated by operator duplication as before our transforma-

tion. Performance could be improved either by not applying NDRangeToLoop

kernel parameters are not marked restrict, or by exposing heuristics from the

underlying compiler.

hotspot3D

This kernel contains a loop-carried dependence. Some loops are therefore not

pipelined, which degrades the overall performance. Additional heuristics that

measure overall kernel capacity for pipelining across all loops would be useful

to decide when NDRangeToLoop transformation would be beneficial.

nn and srad:

Algorithms with little control-flow may not benefit from single work-items

execution. In these benchmarks, the kernels transformed contained at most

two conditional branches. As a result, both the baseline and transformed

benchmarks can issue a new thread each cycle.

kmeans

Both the NDRangeToLoop and Restrict transformations are applied to this

kernel. One of the kernels in kmeans contains a nested loop. Performance

improves dramatically because this nested loop can be fully pipelined only

with the NDRangeToLoop transformation.

Reduction-dependence elimination for kmeans was disabled because it de-

graded performance. The reduction loop nests in a loop that is already fully-

pipelined, and the resulting improved reduction loop initiation interval means

that a new loop iteration is dispatched every cycle for this and the outer loop.

As a result, the loop induction variable increment and the comparison be-

tween the IV and the loop upper bound, together, form 87% of the kernel

critical path (according to the Intel compiler optimization report). In turn,

the FPGA is forced to reduce the operating frequency to accommodate the

32

number of integer operations that must be performed simultaneously on the

induction variables of both loops in the loop nest. There is no way for this

prototype implementation to perform this kind of analysis without access to

the Intel compiler’s internals that perform loop pipelining. However, with ac-

cess to the pipelining code, an analysis could be added to the transformation

that would detect these conditions and deem the transformation unprofitable.

4.4.2 Reduction-Dependence Elimination Efficacy

To measure the impact of the floating-point reduction dependence elimina-

tion as a stand-alone transformation, we evaluated several applications where

the transformation finds opportunities to apply this transformation. For ap-

plications where the transformation analysis finds no opportunities, the code

is left untouched so there is no impact. The following data points are not

general because few single work-items example kernels are available for eval-

uation; rather, they serve as motivating examples of the kinds of gains that

are possible. The data is not presented in an aggregated fashion because the

transformed code varies in source: some are hand-written kernels taken from

[77], some are Rodinia benchmark kernels transformed using the prototype

toolchain.

The single work-items version of the srad benchmark, taken from [77] (the

baseline single work-items implementation), which has a frequently executed

reduction kernel, sees a 2.6× decrease in overall kernel execution time with

the transformation applied.

A hand-written single work-items version of the lud benchmark, from [77],

with the transformation applied only sees a 7% improvement in kernel execu-

tion time. Despite catching several opportunities in a hot region of the kernel

code, the impact is small because the reduction loop has a varying trip count

that depends on the iteration of the containing loop. As a result, some reduc-

tions are smaller than the size of the shift-register and some are larger. The

effect is that these two cases cancel each other out, yielding a marginal overall

improvement. A classical solution to this pattern would be to version the loop

into a portion with a small trip-count that maintains the original reduction

33

pattern, and a portion with a sufficiently large trip-count that is transformed.

However, versioning is costly for FPGAs because it results in higher resource

utilization. In our experiments, loop versioning yielded no benefit.

The gaussian benchmark, after our NDRangeToLoop transformation, ex-

ecutes 3.3× faster with the reduction transformation applied. One of the two

kernels in this benchmark consists of a single reduction operation on an ar-

ray element. After NDRangeToLoop transformation this reduction becomes a

single hot loop.

The only case where eliminating reduction dependence leads to perfor-

mance degradation is in the kmeans benchmark, as described in section 4.4.1.

That scenario appears to be anomalous. However a more robust implemen-

tation of the transformations should include a more thorough profitability

analysis. Such analysis would be best implemented with full access to the

source code for the entire software toolchain.

4.5 Concluding Remarks

Combining compilation of device kernel code and host code these compilation

paths allows for inter-compiler communication which, in turn, enables new,

previously impossible, compiler transformation opportunities. We have im-

plemented three transformations for OpenCL execution on FPGAs using the

combined compilation toolchain and studied their performance. The variable

performance across benchmarks indicates that more analysis is required to

determine when transformations should be applied. A sophisticated analysis

could prevent transformations from occurring when it would be unprofitable;

more specifically, having access to the loop pipelining code of the Intel FPGA

compiler would allow for the application of the NDRangeToLoop transforma-

tion only when the kernel can be pipelined successfully. Access to such code

and analyses would also help with the issue encountered when applying the

reduction-dependency elimination transformation to the kmeans benchmark.

This work is a step forward in the automatic optimization of OpenCL appli-

cations for FPGA execution. While these transformations were only tested on

34

a small number of benchmarks, and experienced varying levels of success, the

performance improvements seen show that these techniques, when applied jud-

isciously, can dramatically improve program performance without programmer

involvement. Such automatic transformations will play a key role in continued

FPGA adoption, as specialized device knowledge can be further reduced and

performance of generic OpenCL programs made truly portable.

35

Chapter 5

Automated GPU Grid
Geometry Selection for
OpenMP Kernels

5.1 Introduction

This work presents two approaches for automatically selecting a GPU grid

geometry for an OpenMP target region, a machine learning model and a hand-

tuned heuristic.

The selection of the grid geometry needed to map target regions to GPU

hardware is a problem that is intuitively well-suited to be solved by a predictive-

modelling approach where a collection of static and dynamic features of the

GPU kernel is extracted from the target region, and a predictor can be con-

structed to output the grid geometry that results in good performance. Our

approach starts with an extensive experimental characterization of the rela-

tionship between grid geometry and performance for the set of all compilable

C/C++ OpenMP benchmarks in the SPEC ACCEL [33] and Unibench [57]

benchmark suites. This search revealed that the performance of an individ-

ual benchmark can be improved by up to 9.8 times, as shown in Figure 5.1.

The geometric mean across all benchmarks indicated that a 36% improvement

over the LLVM grid geometry selection mechanism was possible for this set of

benchmarks if a near-optimal grid geometry could be always selected.

The next step was to use various machine learning techniques to attempt

to model the performance of GPU kernels extracted from OpenMP target

36

regions as a function of static and dynamic program features and of the grid

geometry. Random decision forests, the most successful of our attempted

techniques, produced significant speedups for some benchmarks. The grid ge-

ometry predictions using random-forest resulted in a geometric mean speedup

of 5% relative to the LLVM selection.

Threads per Block

0
200

400
600

800
1000

log_2(Blocks)
0246810121416

Ti
m

e
 (

m
s)

5

10

15

20

25

LLVM Selection

Optimal Value

Figure 5.1: Execution time of kernel 21,
as a function of the number and size
of blocks. The best discovered point is
9.8x faster than the LLVM selection.

Despite their relative success, a

closer examination of the ML pre-

dictors revealed some serious limita-

tions in their applicability to produc-

tion compiler-runtime systems. The

predictor must perform feature eval-

uation at program runtime, immedi-

ately before kernel launch, because

many of the features are runtime

characteristics of parallel loops inside

target regions. Therefore, the time

needed to evaluate features and run

the predictor must be added to the overall kernel execution time. This predic-

tion overhead negated all improvement achieved by the use of more efficient

grid geometry 1.

Nonetheless, the success of the random-forest predictor in generating more

performant grid geometries indicates that the predictor was able to discover

relationships between features, grid geometry and performance. The next step

was to discover an approach that could capture the relationships discovered

by the predictive model with a low-overhead heuristic. Careful examination

of the grid geometry space, coupled with a detailed analysis of the predictions

produced by the random-forest model, led us to discover a relatively simple,

effective, and inexpensive heuristic that can be used in an industrial-strength

compiler to select grid geometry for GPU-intended target regions. This new

1Preliminary results presented by other researchers at workshops indicate that this prob-
lem is more general: the run-time prediction overhead is likely to be a limiting issue that
will have to be addressed in order to make the use of machine learning for code generation
viable.

37

heuristic has the virtue of being simple, but its discovery had eluded several ex-

perienced compiler designers both in industry and in the open-source compiler

community.

This new low-overhead heuristic led to speedups of up to 7x over the LLVM

selection, with a geomean performance improvement of 25.9% for the entire

set of benchmarks across SPEC ACCEL and Unibench.

This chapter makes the following contributions:

1. An exhaustive characterization across the space of possible grid geome-

tries on a variety of benchmarks in order to understand grid geometry

effects on performance.

2. An analysis of the efficacy of existing heuristics in the OpenMP 4.x

implementation for LLVM/Clang, by comparing to an exhaustive search

over possible grid geometries.

3. Description of a methodology to apply machine learning to the problem

of grid geometry selection. The result is substantially improved kernel

execution time, but impractical prediction overhead.

4. A low-overhead heuristic suitable for production compilers with superior

performance compared to the best machine-learning prediction model

investigated.

5.2 Mapping OpenMP to GPUs

This section details hardware limitations of a modern Nvidia GPU, and the

original techniques used by LLVM/Clang to map OpenMP target regions to

GPUs.

5.2.1 Nvidia P100 Geometry

The Nvidia P100 is a modern Nvidia GPU for high-performance computing

composed of 56 streaming multiprocessors (SMs), each can issue an instruction

for 64 threads in each cycle [48]. The P100 has enough registers to maintain

38

the state of 1024 threads simultaneously, and thus each SM can context switch

between threads at no cost and does so each cycle to hide instruction latency.

When assigning blocks of threads to SMs, there are a number of resource

limitations that must be obeyed by the GPU. An SM can only simultaneously

execute up to 32 blocks, and only up to 1024 threads. Even then, all of the

threads can use only up to a total of 64k registers, and the total usage of shared

memory must be less than 64KB. If any of these limits is reached, then the SM

cannot accept any more blocks. Blocks that are not accepted must be queued.

There is, therefore, a trade-off for the selection of the number of threads per

block. A block with more threads can perform more cooperative work, and

is better able to hide latency because there are more threads available for

execution. However, a block with fewer threads is much more likely to fit with

other blocks to share a SM without leading to queuing.

There is also a second trade-off to consider because queuing blocks for

later execution on an SM takes a non-zero amount of time. The trade-off is in

the determination of how much work to schedule per thread after the number

of threads per block is determined: scheduling more work per thread limits

parallelism but also reduces the scheduling overhead.

5.2.2 OpenMP 4 in LLVM/Clang

As implemented in OpenMP 4 for LLVM/Clang, OpenMP target regions

are first outlined into separate procedures, which are then cloned to create a

procedure destined for code generation for the device. The device procedure

then undergoes construct-specific code generation that transforms user code

into a kernel suitable for execution on the GPU. The host code that previously

contained the target region is modified to invoke the outlined device procedure

as a GPU kernel, including queuing data-transfer, etc. The code-generation

process takes the GPU architecture into account, generating data-parallel code

in place of parallel loops, where applicable. The resulting kernel is translated

into Parallel Thread Execution(PTX) - a pseudo-assembly language, designed

by NVIDIA to abstract low-level code generated by compilers from the specifics

of the hardware implementation. The translation from LLVM-IR to PTX is

39

done using Nvidia PTXAS - Nvidia’s proprietary assembler. The GPU driver

finally compiles and executes PTX at runtime.

Adding an extra dimension to the problem of mapping user OpenMP 4.x

programs to GPU code is the GPU Execution model’s heavy reliance on an

efficient grid geometry - the choice of the size and number of blocks that should

be spawned for the given target region. Unlike the lower-levels of abstraction

provided by programming models like CUDA and OpenCL, OpenMP does

not require the programmer to select the number of threads and blocks when

defining a target region. The standard does includes a teams construct to

specify parallel execution across leagues of threads that maps well onto GPU

thread blocks. However, the number of teams selected, as well as the number

of threads, is up to the compiler implementation. The programmer is only

able to specify an upper bound for teams using the num teams clause and

an upper bound for threads using the thread limit clause. The OpenMP 4

for LLVM/Clang implementation currently implements the runtime to fix 128

threads per block, and select the number of blocks to be equal to the number

of parallel loop iterations divided by threads per block. This runtime is used in

at least two production compilers and represents the current state-of-the-art.

5.3 Data Collection

To understand how GPU grid geometry affects the performance of OpenMP 4.x

programs, we gather performance data at various grid geometry configurations.

We evaluate the compiler’s current heuristic against this data, and analyze the

data for trends that may lead to a better approach. Performance data can also

be combined with features extracted statically and dynamically from kernels

to produce a dataset for training machine learning models.

We examine 23 kernels taken from 11 OpenMP C/C++ benchmarks. Bench-

mark applications are taken from the SPEC ACCEL [33] and Unibench [57]

benchmark suites. Data collection was conducted on a workstation machine

with an Intel i7-4770 CPU with 32GB of RAM, running CentOS 6.7. To collect

kernel execution times, we use the CUDA 8 drivers and runtime and a Nvidia

40

Titan X Pascal with a locked clock frequency. Reported times are averaged

over 5 executions. On each execution, for each of the possible grid geometry

configurations, all benchmarks are executed in an interleaved fashion, before

switching to the next grid configuration. The Clang compiler used for this

research currently supports portions of the 4.5 specification. The backwards-

compatibility-breaking features of 4.5 have no impact on our experiments be-

cause the benchmarks did not make use of them.

The grid geometry space can be represented as a (t, b) tuple, where t is the

number of threads per block and b is the number of blocks. Due to architectural

constraints, t can vary between 1 and 1024 threads, while b can vary between

1 and 216 blocks. These ranges yield 216 × 210 = 226 possible combinations,

which are far too many to actually execute. However, because warps are

executed simultaneously, it makes little sense to execute with a number of

threads that does not perfectly fill a warp. Therefore, the search space can

be limited to 216 × 25 = 221 combinations, which is still too large. Trading

accuracy for execution time, instead of testing every block count, we test only

powers of 2, yielding 17 × 32 = 544 total combinations per benchmark. This

approach makes a trade-off: potentially missing the true optimal grid geometry

in between the test points to complete the search in a reasonable amount of

time.

Accurately collecting runtime data for these benchmarks is surprisingly

challenging. For instance, the GPU aggressively scales clock speed to main-

tain performance without overheating, making it difficult to compare results.

Nvidia provides utilities to lock the frequency, but these get automatically

disabled after a period of time whenever the driver is idle. Compounding this

problem, we noticed substantial uptime effects wherein kernels take longer to

execute after the computer has been running for several days. We were unable

to find the cause of this problem. The solution was to re-start the computer

immediately before data collection began.

The last challenge for data collection was the sheer amount of time re-

quired. Locating near-optimal geometry involves spending many cycles exe-

cuting benchmarks using extremely poor configurations, resulting in each data

41

collection taking more than a week. When combined with the frequency and

uptime effects above, it took four attempts to collect accurate and actionable

data.

5.3.1 Best Discovered Grid Geometry Performance Rel-
ative to Compiler Default

An analysis of the collected data allows for a comparison with the simple

heuristic currently used in compilers to determine the limits in the potential

speedup that a change to this heuristic could yield. Figure 5.2 shows the

percentage improvement for each benchmark, over the LLVM selection, when

the best discovered grid geometry is used. Speedups are presented on a log

scale, to present equivalent speedups and slowdowns as equally-sized bars.

Choosing a better grid geometry can yield up to 9.8x improvement, with a

geomean of 36% potential improvement across all tested benchmarks. The

negative improvement seen in a few of the benchmarks is an artifact of the

coarse-grained search used to reduce the data collection time: the course-grain

search simply did not test a grid geometry that was as performant as the one

currently chosen by the compiler. In these cases the performance difference is

marginal (within ≈ 5%).

5.3.2 Threads Per Block

A relevant question is: Is there an optimal number of threads per block? A way

to answer this question is to plot the execution time for a range of threads-

per-block values for the programs available for the study and then to select

the best value. However, this approach has the drawback that it would be

using the same set of programs both to set a parameter and then to mea-

sure performance. To avoid this methodological flaw, the exploration for the

best thread-per-block parameter uses a leave-one-out strategy: each fold is

formed by 22 of the 23 benchmarks. The execution time for each program for

all combinations of number of blocks and threads-per-block for each bench-

mark is determined by exploration. Figure 5.3 plots for each fold (identified

by the benchmark left out in the legend) the ratio between the sum of the

42

minimum execution time for the benchmarks in the fold for a given threads-

per-block value and the sum of the minimum overall execution time. Thus

Figure 5.3 plots the overhead of using a given threads-per-block value over the

best execution time found by the search. For most benchmarks, the overhead

is minimized at either 64 or 96 threads per block, with performance degrading

in both directions. Kernel 18 is a notable outlier that requires explanation.

0 5 10 15 20

1

10

Benchmark

S
p

ee
d
u
p

Figure 5.2: Improvement available with the best
discovered grid geometry versus the LLVM se-
lection.

Based on the results from

this exploration, the number

of threads per block to be

used to evaluate benchmark

6 should be 64, for bench-

mark 18, it should be 32, and

for all other benchmarks 96

threads per blocks should be

used. These numbers ensure

that information from the

benchmark used for evalua-

tion is not used to obtain the

prediction. However, to ob-

tain a model to find the num-

ber of blocks (Section5.3.3) a

single value for the number of threads per block is used, and the most common

one from Figure 5.3 is 96.

SIMD Operations in Kernel 18: Kernel 18 makes use of the omp simd

directive, marking a loop to be parallelized using SIMD units within each

thread. Current GPUs do not have SIMD units, so compilers currently at-

tempt to emulate SIMD operations. If a target region contains a SIMD clause,

the code generator used by Clang currently sets aside a warp of threads to

be used as a large SIMD unit. When each GPU thread reaches the omp simd

loop, it waits for the SIMD warp to execute the operations, then resumes exe-

cution. Because of the dedicated warp, Kernel 18 is penalized for running with

32 threads per warp. When Kernel 18 is left out, the remaining benchmarks

43

performance is minimized at 32 threads per block, because no block-level co-

operation is required.

5.3.3 Number of Blocks

128 256 384 512 640 768 896 1,024
1

1.05

1.1

1.15

E
x
ec

u
ti

on
T

im
e

R
at

io

32 64 96 128 160 192 224 256
1

1.01

1.02

1.03

Threads per BlockE
x
ec

u
ti

on
T

im
e

R
at

io

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23

Figure 5.3: Minimum Execution Time at set
threads per block / Minimum Execution Time.
Each line represents 22 of the 23 benchmarks in
a leave-one-out manner.

Next the model must pre-

dict the total number of

blocks. Figure 5.4 shows

the overhead of forcing

96 threads per block and

varying the block count

for each kernel. Each ker-

nel has a distinct min-

ima, showing that some

factor that varies by ker-

nel affects the ideal block

count.

The heuristic used in

LLVM calculates the num-

ber of blocks as a linear

function of the loop trip-

count – the number of

parallel loop iterations to

be executed. To investi-

gate the validity of that

assumption, Figure 5.5

plots, for each benchmark, the number of blocks required to minimize exe-

cution time when 96 threads per block are created, versus the loop tripcount.

The plot also shows a line for the LLVM heuristic, assuming 96 threads per

block instead of the original 128. If the LLVM heuristic’s assumptions were op-

timal, we would expect a straight line from the bottom left to the top right of

the plot. While there is indeed a weak linear relationship, there is clearly still

some hidden variable, leaving room for a machine-learning model to discover

44

this relationship and improve performance.

20 23 26 29 212 215
100

101

102

103

Blocks

E
x
ec

u
ti

on
T

im
e

R
at

io

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23

Figure 5.4: Minimum Execution Time given 96
threads per block / Minimum Execution Time.
Average is weighted by the minimum execution
time of each benchmark.

5.4 Modeling with Machine Learning

2−1 22 25 28 211 214 217
21

212

223

234

Ideal Blocks

L
o
op

T
ri

p
C

ou
n
t Best Discovered Geometry

LLVM Selection

Figure 5.5: Number of blocks minimizing exe-
cution time given 96 threads per block / Loop
Tripcount for each benchmark.

Our initial goal is to model

the performance of a GPU

kernel generated for a target

region as a function of the

selected grid geometry. The

method is to use offline su-

pervised learning to create a

machine learning model that

captures static and dynamic

kernel characteristics in an

attempt to generate a pre-

diction of the optimal grid

geometry. The model uses the dataset acquired through the exhaustive ex-

45

ploration of the grid geometry space for each kernel to train the predictor and

is evaluated using leave-one-out cross-validation.

5.4.1 Finding Additional Features

Given only a weak linear relationship between the loop tripcount, used by the

LLVM selection, and the ideal number of blocks (described in section 5.3.3),

we investigate the use of additional features which may impact grid geometry.

We introduce simple static analysis techniques to generate additional features,

with the goal of further characterizing such kernels.

Stack Frame Size

The amount of local memory per thread, also known as the size of the stack

frame, is one of the deciding factors in scheduling new thread blocks for execu-

tion on a given Streaming Multiprocessor (SM) . Because the SM has a fixed

limited amount of memory dedicated to it, per-thread local memory usage is

calculated at compile-time by the Nvidia PTX assembler. A sufficiently large

stack frame might mean that only one thread block at a time may be sched-

uled for execution on an SM. Thus, a thread’s stack frame size is a crucial

parameter for deciding the number of blocks (teams) to use.

Register Count

Each SM has a fixed-size register file to be divided among running threads.

For example, the Nvidia P100 has a 256KB register file per SM adding up to

65536 32-bit registers per thread-block. Thus, per-thread register count affects

how many blocks can be scheduled to run on a single SM, and it is important

that the register count is taken into account when choosing the number of

threads and blocks. The per-thread register count is also a value computed at

compile time by the Nvidia PTX assembler.

Directive and Clause Use

Different OpenMP directives and clauses impact the code generated by the

compiler. Separating kernels based on which OpenMP constructs they employ

46

is a way to classify different behavior. Due to limited availability of OpenMP

4.x programs, there is little variety in the types of constructs used in our

benchmark suite. Thus, we restricted this feature to count only the clauses

that may affect inter-thread cooperation within thread-blocks.

Code Size Estimate

One possible reason for the variation in ideal number of blocks is the amount

of work required per parallel loop iteration. If the work is extremely small,

then it may be sensible to assign multiple iterations to a particular thread.

Conversely, if the work required is large then it may make sense to assign

each thread only a single iteration. To accommodate this intuition, we built a

simple static analysis approximating the number of instructions executed per

loop iteration. Each instruction is assumed to have equal cost, with conditional

statements assumed to be evaluating true 50% of the time, and nested loops

assumed to be executing 128 iterations. The resulting estimate of runtime

instructions provides an estimate metric representing the total amount of work

per-thread.

Total Work Estimate

Given that the size estimate feature is an approximate measure of work done

per-thread, an intuitive extension to the feature is the product (size estimate

× tripcount). This feature estimates the overall amount of work to be done

by a given kernel. Ensemble techniques can theoretically capture this type

of relationship as a meaningful feature on their own; however, this combined

size estimate was devised as a means of providing meaningful information to

simpler models with the aim of reducing prediction time.

Random Forest Model

Attempts to build a linear-regression model were not successful. Therefore,

we turn to ensemble approaches. Random Forests are an ensemble learning

method that can be used for both classification and regression. They are a

combination of tree predictors such that each tree depends on the values of a

47

random vector sampled independently and with the same distribution for all

trees in the forest. In this methodology, the model is designed to predict

the execution time of a kernel based on a given grid geometry and the features

already used for the linear regression model. For each kernel, execution times

were obtained for all 544 thread-block combinations. Thus there is a total of

22 ∗ 544 = 11968 training data points and 544 test points (corresponding to

each kernel not used for training). A forest with 2000 trees was empirically de-

termined to yield the most accurate model. The implementation used is based

on Breiman and Cutler’s Random Forests for Classification and Regression [6].

At prediction time, the model is queried for the predicted execution time

at every thread and block combination measured in the data exploration. The

threads per block and block count that correspond to the shortest expected

execution time are then selected for kernel launch.

5.4.2 Machine Learning Predictor Performance

Figure 5.6 shows the speedup over the LLVM selection for all the 23 kernels

when using the best predicted grid geometry by this random forest model . The

graph also displays the optimum speedup achievable through grid geometry,

as shown in Figure 5.2. For data shown in this graph, the predictor is used

to obtain both number of threads and number of threads per block that will

be used for kernel launch. The performance obtained with these predictions

ranges from 68% slower to 6.4 times faster, with a geomean speedup of 5%

across all benchmarks. This result likely indicates that the model was able

to discover relationships between program features that correlate with the

kernel’s performance.

5.5 Production Heuristic

The random forest model successfully predicted the grid geometry and out-

performed the existing compiler heuristic, substantially for some benchmarks.

However, the time taken to perform that prediction at runtime dwarfed the

actual execution time of most benchmarks. With the small workloads used for

48

the grid-geometry space exploration, prediction time would exceed the runtime

of many benchmarks.

0 5 10 15 20

1

10

Benchmark

S
p

ee
d
u
p

Best Discovered Speedup
Random Forest Speedup

Figure 5.6: Speedup over the LLVM selection
for the Random Forest Model Predictor grid
configuration not including the prediction over-
head. This performance cannot be realized in
practice. Results are shown on a log scale to
present equivalent speedups and slowdowns as
equivalently-sized bars.

Having constructed a model

that could improve perfor-

mance, but with impractical

overhead, we first attempt to

create simpler models that

could replicate the predic-

tion accuracy but with lower

overhead. The accuracy of

a new linear model was too

low. Either the relations

are truly non linear or the

feature set, combined with

a limited number of bench-

mark kernels, was insuffi-

cient to build a reasonably

accurate linear relationship

between the grid configura-

tion parameters and execution time.

Next we examined the dataset, with the goal of figuring out the insights the

random forest model had derived. Inspection revealed some intriguing rela-

tionships. A loop iteration is the smallest parallelizable unit of work. However,

the product of threads per block and blocks that minimizes execution time is

often larger than the loop trip-count. Thus, counterintuitively, some threads

must be assigned zero work in this situation. For some benchmarks, the time

is minimized at the first exploration point where all threads are assigned work,

but for others, execution time is minimized when there are dramatically more

threads. Finally, when the loop trip count becomes too large, this relationship

breaks down, and fewer and fewer threads/loop iteration are required.

When execution time is minimized by using more threads than loop iter-

ations, at least some warps of threads are partially empty, because OpenMP

49

loop iterations are first assigned to blocks, and then to threads within a block.

These partially empty warps are then less affected by traditional GPU per-

formance problems such as branch divergence and non-coalesced memory ac-

cesses [76]. However, using the GPU in this manner is extremely inefficient

— the speedup over correct resource utilization is only ≈ 1%, which is negli-

gible. The speedup gain would also be completely negated if the GPU is used

by multiple-programs at the same time because the resources wasted through

over-provisioning would increase the device occupancy, preventing other pro-

grams from being scheduled efficiently.

Based on these insights, the kernels studied can be divided into three

classes, to be handled separately by a new compiler heuristic:

1. Short-Loop Kernels - Kernels that use a small amount of parallelism

are likely not well suited for GPU execution. Such kernels tend to be

naively translated from parallel code written for CPUs and do not con-

sider the unique characteristics of the GPU architecture. The heuristic

can improve the overhead of such benchmarks by creating blocks of 1

thread each, and distributing work across SMs to treat the GPU more

similarly to a large multi-core system. Because blocks of size 1 use so

few resources on each SM, they don’t suffer as much from the resource-

wasting problem described earlier.

These kernels are detected when the loop trip count is less than or equal

to the number of available SMs. For these kernels we use 1 thread per

block and a number of blocks equal to the loop trip count.

2. Ideal-Loop Kernels - Kernels that can use an appreciable fraction of

the GPU are already well-handled by the existing heuristic. No sub-

stantial performance gains can be found here because the grid selected

is already relatively optimal.

These kernels have a loop trip count that is larger than the number of

SMs available on the GPU (28 for our Nvidia Titan X Pascal). For these

kernels, the heuristic prescribes 96 threads per block, and the number of

blocks is
⌈
tripcount

96

⌉
blocks.

50

3. Long-Loop Kernels - Kernels with loop trip counts vastly higher than

the GPU can execute simultaneously generate massive queues of blocks,

preventing opportunistic work. By limiting the number of blocks exe-

cuted to the maximum executable by the device, the queuing overhead

can be reduced substantially.

These kernels can be identified at runtime by inspecting both the maxi-

mum number of blocks the GPU can execute for this kernel, and inspect-

ing the loop trip count provided by the kernel. If the loop trip count

exceeds the product of threads per block and number of blocks, then a

kernel falls into this class. For these kernels, the new heuristic prescribes

the use of 96 threads per block, and the setting of the number of blocks to

the maximum that can be simultaneously loaded on the device without

queuing.

Formalizing the features considered by the heuristic, a GPU device descrip-

tor should specify the following properties:

• SMCount The number of streaming multiprocessors available on the

device.

• ThreadLimit The maximum number of threads an SM can hold simul-

taneously.

• RegisterLimit The maximum number of 32-bit registers an SM can

hold.

• SharedMemLimit The maximum amount of shared memory available

on an SM.

• BlockLimit The maximum number of blocks an SM can hold.

• ThreadsPerBlock An experimental value, the ideal threads per block

for this device.

Section 5.3.2 determined that 96 threads per block is the prediction for

most benchmarks. However to use a proper methodology, the evaluation of the

51

GetGeometry (device, kernel):
if kernel.Parallelism ≤ device.SMCount then

/* Short-Loop Kernels */

threads = 1;
blocks = kernel.Parallelism;

else
threads = device.ThreadsPerBlock;
threadLimit = device.ThreadLimit / device.ThreadsPerBlock;
regLimit = device.RegisterLimit / (kernel.Registers *
device.ThreadsPerBlock);

sharedLimit = device.SharedMemLimit / kernel.SharedMem;
blocksPerSM = min(threadLimit, regLimit, sharedLimit,
device.BlockLimit);

maxBlocks = blocksPerSM * device.SMCount;
kernelBlocks = kernel.Parallelism / threads;
if kernelBlocks ≥ maxBlocks then

/* Long-Loop Kernels */

blocks = maxBlocks;

else
/* Ideal-Loop kernels */

blocks = kernelBlocks;

end

end
return (threads, blocks)

Figure 5.7: Final Heuristic Algorithm

heuristic uses the threads-per-block value predicted by the fold that excluded

the benchmark that is been evaluated.

The heuristic also requires a kernel descriptor that contains the following

properties:

• Registers The number of registers required per thread by a kernel.

• SharedMem The amount of shared memory required per block by a

kernel

• Parallelism The number of parallel work units (typically loop itera-

tions) in a kernel

The heuristic pseudocode is shown in Figure 5.7. This heuristic uses dis-

tinct strategies to generate grid geometry for all three kernel classes. This

52

heuristic meaningfully captures all of the kernels that we studied. It accounts

for the behaviours observed and makes efficient use of resources. A key insight

is to avoid the drastic over provisioning required to truly minimize kernel ex-

ecution time. An evaluation of this new heuristic against the LLVM selection

is shown Figure 5.8. The kernels on the left have long loops, the kernels on

the right have short loops and the ones on the middle have ideal loops. Re-

sults range from 39% slower to 7 times faster, with a geomean speedup of

25.9%. The methodology in the evaluation is identical to the one used for

data collection presented in Section 5.3: five runs were performed for every

configuration, with the mean runtime of each used for all calculations. Vari-

ance among results was statistically insignificant as a result of measures put

in place to reduce it, as described at the end of Section 3.0.

0 5 10 15 20

1

10

Short Ideal Long

Benchmark

S
p

ee
d
u
p

Best Discovered Speedup
Heuristic Speedup

Figure 5.8: Speedup for our modified heuristic
over the LLVM selection. This performance can
be realized in practice. Results are shown on a
log scale.

The speedup comes ex-

clusively from the kernel

with long or short loops

because the kernels with

ideal loops are already well-

optimized for GPUs by the

LLVM selection. There were

only two kernels with short

loops in the sample, the per-

formance for one improved

drastically while the perfor-

mance for the other was un-

affected. Performance im-

provements are observed in

this class of kernels when the

kernel was poorly written for execution in GPUs and the heuristic causes

threads to be separated across SMs. The long-loop kernels generally sees

large performance improvements, with few slowdowns. The proposed heuris-

tic goal is to avoid block queuing. Future heuristics may be able to separate

and identify cases where block queuing is desirable. The proposed heuristic

53

successfully capitalizes on cases where the LLVM selection performed poorly,

while maintaining performance on kernels with ideal loops. The low computa-

tional complexity makes the runtime overhead of the heuristic negligible and

its simplicity allows programmers predictable performance.

The grids chosen for each kernel, and the associated speedups are shown

in Table 5.1.

5.5.1 Edge-Case: OpenMP SIMD

While our proposed heuristic matches, or exceeds, the performance of the ex-

isting heuristic on 22 of 23 kernels, and is within 10% of the best discovered

performance on 19 of 23 kernels, performance was substantially degraded for

one kernel. Benchmark 18 makes use of the omp simd construct, which, ac-

cording to the specification, directs OpenMP implementations to implement

the following loop using SIMD vector units. The selection of threads per

block, using the leave-one-out strategy described in Section 5.3.2, indicates

32 threads to be the value most likely to maximize performance. SIMD ex-

ecution on a GPU is emulated using additional dedicated warps of threads,

because current GPUs do not have SIMD units. Thus, as an artifact of the

code-generation scheme, the SIMD region is serialized, leading to poor perfor-

mance. Intrinsically, until GPUs incorporate SIMD units, code-generation for

the simd pragma in GPU code will remain a crutch that leads to inefficient

code. Still, to maximize performance, the correct strategy is to allocate extra

warps to accommodate the SIMD construct code generation. The near-optimal

grid geometry configuration discovered for this kernel indicates that blocks of

256 threads lead to good performance. To generalize this insight, more code

that utilizes SIMD constructs is needed.

5.5.2 Implications of Volta

The Volta architecture, recently launched by NVIDIA, introduces several changes

that would require minor adjustments to the heuristic approach presented in

this paper [49]. Pascal generation cards, which have been used in this work,

have SMs that can issue an instruction for 64 threads per cycle. This number

54

gives insight to the discovery made during grid geometry search space explo-

ration that experimentally deemed 96 threads per block to be a reasonable

choice for most OpenMP kernels we have encountered. By only slightly over

prescribing the number of threads per block to the number of threads that

can be issued an instruction each cycle, a sufficient amount of latency-hiding

can be achieved without suffering the excessive scheduling overhead. In Volta,

individual SMs have higher core counts and can issue an instruction to double

the number of threads per cycle. While we expect our insights to scale sim-

ilarly to the new architecture, a new set of experiments, similar to the ones

performed in section 3, is required to derive the ThreadsPerBlock value for

Volta-based devices.

5.6 Concluding Remarks

Finding a heuristic that can perform well on a diverse set of programs can be

a challenging task that requires extensive analysis. Compiler construction has

a long history of optimizers that consist of such heuristics, with hand-tuned

parameters evolving over time out of years of expertise and experiments by

researchers and developers. Machine learning has been recently gaining trac-

tion as a tool in the compiler researcher’s toolbox that can model characteris-

tics of program behavior useful for compile-time decisions. Despite strengths

in capturing unknown relationships to produce meaningful predictions, using

machine learning to model program performance has drawbacks. Collecting

sufficient programs to successfully predict performance can be more difficult

than to invent a heuristic that achieves the same result. Moreover, even for

successful and powerful models, usage of dynamic program features can make

such predictor systems infeasible because of incurred prediction time costs. In

this paper we have demonstrated the problem of tuning the GPU grid geometry

for specific kernels generated from OpenMP 4.x programs that use accelerator

offloading constructs. Based on a set of static and dynamic features, approx-

imating the thread and block values to maximize efficient hardware resource

utilization is a problem that intuitively lends itself to a modelling approach.

55

Benchmark LLVM ML Model Final Heuristic Best-Discovered Configuration

Grid Geometry Grid Geometry Speedup Grid Geometry Speedup Grid Geometry Speedup

1 (128,1) (96,256) 1/1.380 (1,10) 1/1.047 (64,8) 1.064
2 (128,1) (96,1024) 1/23.784 (1,10) 1.930 (32,2) 2.371
3 (128,4) (96,512) 1.005 (64,8) 1.005 (64,4096) 1.006
4 (128,4) (96,512) 1.002 (64,8) 1.002 (64,512) 1/1.005
5 (128,4) (96,2048) 1.004 (64,8) 1.006 (32,256) 1.018
6 (128,8) (96,256) 1.002 (64,16) 1.005 (32,4096) 1.028
7 (128,8) (96,1024) 1/1.030 (64,16) 1.003 (96,128) 1.107
8 (128,8) (96,1024) 1/1.028 (64,16) 1.000 (96,128) 1.111
9 (128,8) (96,1024) 1/1.001 (64,16) 1.004 (32,2048) 1.019

10 (128,16) (96,512) 1/1.009 (64,32) 1/1.000 (96,128) 1.047
11 (128,16) (96,256) 1/1.015 (32,64) 1.022 (512,32) 1.029
12 (128,24) (96,512) 1/2.386 (64,48) 1.001 (32,128) 1/1.055
13 (128,64) (96,512) 1/1.002 (64,128) 1.008 (64,128) 1.001
14 (128,64) (96,1024) 1.002 (64,128) 1.003 (160,128) 1.003
15 (128,64) (96,2048) 1/1.010 (96,256) 1.001 (320,32) 1.004
16 (128,79) (96,512) 1/1.316 (64,156) 1/1.002 (192,64) 1/1.054
17 (128,79) (96,512) 1/1.259 (64,156) 1.003 (160,64) 1/1.041
18 (128,256) (96,512) 1/1.001 (64,448) 1/1.648 (256,128) 1.045
19 (128,1024) (96,256) 3.009 (64,448) 3.014 (128,128) 3.147
20 (128,8192) (96,512) 3.877 (64,448) 4.261 (256,128) 4.630
21 (128,10157) (96,512) 1/1.026 (64,448) 1.041 (96,128) 1.617
22 (128,32768) (96,512) 8.554 (64,448) 7.541 (384,128) 9.779
23 (128,125986) (96,1024) 1.502 (64,448) 1.675 (384,1024) 1.598

Table 5.1: Grid Geometry (threads-per-block, blocks) selected for each bench-
mark by the LLVM selection, our ML model, our proposed heuristic, and
exhaustive search. Speedup is shown relative to the LLVM selection. Slow-
downs are shown as reciprocals for clarity. Thread-Per-Block values for the
the Final Heuristic selected using leave-one-out strategy as described in 5.3.2.

56

Yet, because prediction relies on the parallel loop tripcount being a key feature

in estimating the amount of parallelism exhibited by the code, even a success-

fully tuned model proved unusable because the prediction time often exceeded

kernel execution time. Despite the limited practicality of the machine learning

model for this problem, its success in generating superior grid geometry led

to useful insights that could be learned by examining the trends discovered in

the trained model. These insights, in turn, enabled the creation of a heuristic.

This hybrid approach of machine learning as a means to inform or guide re-

searchers shows that predictive models can not only be used to directly make

decisions, but also to aid the creation of heuristics through expert knowledge.

57

Chapter 6

GPUCheck: Detecting CUDA
Thread Divergence with Static
Analysis

6.1 Introduction

This chapter addresses the following research problem: given a program con-

taining portions that are designated for execution on GPUs, detect and report

branch divergences and non-coalescable memory accesses. To achieve that, we

present GPUCheck, a static analysis tool built on top of a novel static analysis

framework, that identifies and reports the locations in a given program source

code that are likely to exhibit poor GPU performance. We also describe a pro-

totype implementation of GPUCheck on top of the Clang/LLVM compiler [37]

that works on an intermediate representation of the program, with mappings to

the original source code. GPUCheck uses our novel inter-procedural, context-

sensitive Arithmetic Control Form (ACF), a representation for static address

range analysis and conditional expression analysis. Our prototype identifies

performance issues in 17 well-known Rodinia benchmarks [10], including the

example in Figure 6.1.

Static analysis can detect divergence performance issues in many common

cases. For the majority of programs, branch divergence occurs in a GPU when

the condition evaluated by the branch depends, either directly or indirectly,

on the thread index. Therefore, branch-divergence detection can be defined

as a taint-analysis problem [3] that identifies whether variables and memory

58

21 den = (qsqr-q0sqr) / (q0sqr * (1+q0sqr)) ;

22 c = 1.0 / (1.0+den) ;

23 if (c < 0){temp_result[ty][tx] = 0;}

24 else if (c > 1) {temp_result[ty][tx] = 1;}

25 else {temp_result[ty][tx] = c;}

Figure 6.1: Original diffusion coefficient calculation in srad.

26 den = (qsqr-q0sqr) / (q0sqr * (1+q0sqr)) ;

27 c = min(max(1.0f / (1.0f+den),0.0f),1.0f) ;

28 temp_result[ty][tx] = c;

Figure 6.2: Modified diffusion coefficient calculation in srad.

locations may be tainted by the thread index. A branch whose computation

is tainted by the thread index may exhibit divergent behaviour. However, this

check alone might lead to many false positives. Thus, such divergence analysis

must be combined with a pruning algorithm to provide helpful feedback to

programmers.

The example in Figure 6.1, taken from the srad benchmark in the Ro-

dinia suite [10], illustrates branch divergence. To ensure that the coefficient

c stays within the range 0 to 1, the code tests the value of c and makes the

appropriate correction. However, the value qsqr is derived from data calcu-

lated from each thread’s location in a 2D grid. Therefore, the value of c is

different for each thread, causing potential control-flow divergence: a different

group of threads may execute each of the statements in lines 23–24, leading

to three execution cycles, each requires a memory access. Figure 6.2 shows

an alternative implementation, where testing the value of c is a computation

of min and max operations that are available as instructions in NVidia GPUs.

In the transformed code, all threads execute the memory-access statement in

Line 27 simultaneously. By modifying the example to avoid the divergence,

performance can be substantially improved.

GPUCheck tends to be substantially faster than dynamic techniques, be-

cause it does not need to execute a program to perform its analysis. On the

Rodinia benchmark suite, the median completion time for GPUCheck’s anal-

59

29 kernel_compute_cost(int num,

int dim, long x,

30 Point *p, float *

coord_d, ...) {

31

32 const int tid;

33 tid = blockDim.x * bid +

threadIdx.x;

34 ...

35 float x_cost = d_dist(tid, x

, num, dim, coord_d) * p

[tid].weight;

(a) Noncoalescable memory accesses

36 kernel_compute_cost(int num,

int dim, long x,

37 float *p_x, float *p_y,

float *p_z,

38 float *p_weight, float

*coord_d, ...) {

39 const int tid;

40 tid = blockDim.x * bid +

threadIdx.x;

41 ...

42 float x_cost = d_dist(tid, x

, num, dim, coord_d) *

p_weight[tid];

(b) Perfectly coalesced accesses

Figure 6.3: Extract from streamcluster.

32-byte cache line 32-byte cache line 32-byte cache line

warp of 32 threads warp of 32 threads

32-byte cache line 32-byte cache line 32-byte cache line

Figure 6.4: streamcluster access pattern before (left) and after the code
transformation (right).

ysis is 210 ms, in comparison with 36.36 seconds required by Nvidia’s own

dynamic profiler nvprof [47].

In summary, this chapter makes the following contributions:

1. Arithmetic Control Form (ACF), a representation for statically comput-

ing differences between expressions computed by various threads.

2. GPUCheck, a static analysis tool that identifies common sources of per-

formance degradation in GPU programs.

Figure 6.3a shows an extract from the streamcluster benchmark that

illustrates a non-coalescable memory access, as detected by GPUCheck. The

code computes a weighted Euclidean distance between points, using the array

of structures p[tid].weight in the computation. The data structure Point

occupies six 32-bit words as shown on the left of Figure 6.4, and there is a

60

gap between the weight field, shown in grey, of subsequent structures. As

a consequence, the execution of the code in Line 35 of Figure 6.3a leads to

the coalescing pattern shown on the left of Figure 6.4 where each memory

transaction, represented by the ellipses, fetches few weight fields. A fix to

this issue consists in using separate arrays for each member in the struct as

shown in Figure 6.3b. The right of Figure 6.4 shows the placement in memory

of the array p weight. In this pattern, the accesses are coalesced into fewer

memory transactions, each bringing the maximum number of weight fields

allowed by the memory bandwidth.

6.2 Static Analysis Engine

The core of GPUCheck is a series of static analyses, which combine to deter-

mine how execution behaviour differs between threads, and the effects those

differences can have on performance. In this section, we provide an overview

of thread-dependence analysis and Arithmetic Control Form.

6.2.1 Thread-Dependence Analysis

An expression is thread dependent if it generates different values depending

on the thread executing it at runtime. To detect potential thread-dependent

expressions statically, GPUCheck identifies sources of thread dependence and

propagates them through their uses in the program. As a motivating example,

consider the pseudocode in Figure 6.5 where a is thread dependent, because

it contains the value of the thread identifier threadIdx. Similarly, c is thread

dependent, because it derives from a. However, is b thread dependent? The

answer depends on the analyzed program point. For instance, at the point

immediately after Line 46, the value of b is a constant 1, and at the point

immediately after Line 48, b is a constant 0. However, b as used at Line 51 is

clearly thread dependent, as the value depends on the if-condition. Given this

intuition, we define thread dependence as follows:

Definition 1. An expression is thread dependent at a program point p if it

may evaluate to different values by different threads at p.

61

43 a = threadIdx;

44 c = a % 2;

45 if(c) {

46 b = 1;

47 } else {

48 b = 0;

49 }

50 Arr[a] = 0;

51 Arr[b] = 0;

Figure 6.5: An example illustrat-
ing thread dependence.

If a given expression is not a source

of thread dependence, then it can only

be thread dependent through data-flow

dependencies or control-flow dependen-

cies. Detecting thread dependence through

data-flow dependencies is trivial, as an

operand of the expression must also be

thread dependent. However, calculating

thread dependence caused by control-flow

dependencies requires additional analysis.

Control-flow thread dependence occurs when a conditional branch evaluates a

thread-dependent expression that may evaluate to different values depending

on the execution path.

Divergence—both for branches and for memory access addresses—originates

from source statements and is propagated to other expressions in the program

through control-flow and data-flow dependencies. For each expression in the

program, the thread-dependence analysis in GPUCheck computes a boolean

value that determines if the expression is thread dependent. GPUCheck re-

gards source statements as tainting statements and employs a taint analysis to

determine which expressions are tainted by thread-dependent calculations. In

a GPU program, a statement may be a source of thread dependence due to a

variety of operations. For instance, a statement that randomly generates val-

ues, or performs an atomic operation such as compare-and-swap, may compute

values that may be unique to each thread. However GPUCheck only consid-

ers statements retrieving the GPU thread identifiers (threadIdx) as sources of

divergence.

GPUCheck uses an Interprocedural Finite Distributive Subset (IFDS) [44]

taint analysis over a static single assignment (SSA) intermediate representa-

tion. Thread-dependence information is propagated through the IFDS super-

graph representation of the program [56]. Given the set D of all SSA ex-

pressions in the program, the dataflow problem consists in determining which

subset of D is thread dependent at each point in the program. The thread-

62

dependence property is propagated through distributive dataflow functions

that can be decomposed into micro-functions. Each micro-function fx(y) ex-

presses the propagation of the expression x ∈ D through the statement that

defines the expression y ∈ D. The special function gen creates and propagates

the thread-dependence property regardless of the prior state, the function prop

propagates the input thread-dependence state to output, and the function kill

propagates no thread-dependence property, regardless of input. The use of an

expression x in a program statement does not change the thread-dependence

property of x. Therefore, for each statement that defines an expression d ∈ D,

the thread-dependence property of each expression x where x 6= d remains

unchanged: fx(d) = prop. If the statement that defines d reads the thread

identifier, then d is a source of thread dependence and the micro-function

fd(d) = gen. Otherwise, fd(d) depends on the thread-dependence property

of the operands used in the statement that defines d and on the control-flow

dependencies of the statement that defines d. To compute fd(d), let O(y) be

the set of expressions that are used in the statement that defines expression y.

Let CDG(y) be the set of basic blocks that the statement that defines y is con-

trol dependent on, as determined by a control-dependence graph (CDG) [20].

Then CDG(y) is the set of basic blocks that determines whether or not y ex-

ecutes. Let cd(y) be the set of expressions used as conditions for branches

exiting each basic block in CDG(y). The value of fd(d) is then given by:

fd(d) =
⋃

o∈O(d)

(
fo(d) ∪

⋃
c∈cd(o)\cd(d)

fc(d)
)

(6.1)

Intuitively, ∪
o∈O

fo(d) captures thread dependence over data dependencies by

combining the thread dependence of all operands of d. The control depen-

dences for an operand o ∈ O(d) of the definition d (denoted cd(o)) are the

decisions that lead to the execution of the expression that defines o. To cap-

ture relevant control dependences, the analysis computes the conditions that

are required to reach an operand of d, but not d itself, producing the set differ-

ence cd(o)\cd(d). Such conditions are control dependences, and are combined

to produce fd(d).

63

52 int readBounded(int* a) {

53 int tx = threadIdx.x;

54 if(tx > 256)

55 tx = 256;

56 int *addr = a + tx;

57 return *addr;

58 }

(a) A bounded array access.

59 tx0 = threadIdx.x

60 p1 = tx > 256

61 p1? tx1 = 256

62 tx = ψ(tx0, p1?tx1)

63 tmp = 4 * tx

64 addr = a + tmp

65 return addr

(b) If-converted ψ-SSA form for the code
in (a).

Figure 6.6: An example illustrating if-conversion in ψ-SSA, which serves as
inspiration for our ACF analysis.

6.2.2 Arithmetic Control Form (ACF)

The thread-dependence analysis determines which expressions in the program

are thread-dependent. The intuition is that a conditional expression that

is thread dependent is a potential source of control-flow divergence, and a

memory-access expression that is thread dependent is a potential source of

non-coalescable memory accesses. However, this intuition alone would lead to

numerous false positives, i.e., GPUCheck would be signalling potential diver-

gences that are not actual divergences. For memory accesses, we are interested

in determining if the range of addresses accessed by all threads in a warp falls

within a single cache line. To achieve that, we have designed the Arithmetic

Control Form (ACF) analysis. Given a thread-dependent expression, ACF

determines the difference between the value of this expression as computed by

each thread.

The value computed by an expression depends not only on the flow of val-

ues through expressions, but also on the conditional statements in the code.

Existing work in support of if-conversion in SSA form [43], [65] serves as an

inspiration for ACF. Ferriere and Stoutchinin [65] introduced ψ-nodes to rep-

resent the flow of SSA values through a segment of straight-line code in the

presence of predicated execution. Intuitively, a ψ-node combines the results

of multiple predicated instructions, unifying values in straight-line code in the

same way φ-nodes unify values from differing basic blocks in traditional SSA.

64

Figure 6.6a shows a simple bounded array indexing operation. The ψ-SSA

form for this code is shown in Figure 6.6b after if-conversion. The transformed

code is in single-assignment form and the if-statement conditional expression

is stored in predicate register p1. The ψ-node thus uses predicates to select

between multiple possible values.

In the ψ-SSA form, ψ-nodes are equivalent to the sum of all incoming

values multiplied by the associated incoming predicate. ACF extends this

notion by computing complex predicates through as much of the program’s

control-flow as necessary to obtain an expression that precisely captures all

possible execution traces. Intuitively, an ACF value for an expression is equal

to a sum, where each summed element corresponds to a control-flow path and

has a value equal to the expression as computed along that path, multiplied

by the conditions required to execute that path.

For each execution of the code, a single predicate combination evaluates to

1 and all the other combinations evaluate to 0. Through this transformation,

ACF produces a symbolic equation for each expression of interest. In essence,

ACF is an alternative program representation, suited for analysis rather than

actual execution. ACF represents the value generated by each expression as

a tree of arithmetic operations, constants, and unknown values. For each ex-

pression of interest in a given CUDA kernel, ACF computes the differences be-

tween the expression as it is evaluated by each thread. Threads are computed

by substituting constant thread identifiers, and simplification is performed

by merging common predicates and cancelling non-thread-dependent subex-

pressions. In practice, most differences statically evaluate to a constant after

simplification and thus can be used to determine if a tainted expression leads

to either thread divergence or non-coalesced accesses. Consider the example

code in Figure 6.6a, which implements a bounded array access. To compute

the address accessed by each thread in Line 56, ACF analyzes all possible

paths through the function. In this case, there are two paths, corresponding

to the if case or the else case. Let v be a variable in the program. In ACF, the

notation [v] indicates that v is represented symbolically, and ACF(v) is the

ACF value for v. A subscript indicates that a reference is thread-dependent,

65

and specifies the thread. The ACF value for the address on Line 56 is then

defined as:

ACFt(addr) =

([threadIdx.xt] > 256) ∗ ([a] + 4 ∗ 256) +

([threadIdx.xt] ≤ 256) ∗ ([a] + 4 ∗ [threadIdx.xt])

Whenever possible, ACF replaces variable references with their definitions.

For example, [threadIdx.xt] is used instead of tx in the ACF representation

of the code in Figure 6.6a. An unknown value, such as [a] in Figure 6.6a,

is represented symbolically. Given the ACF representation for the code in

Figure 6.6a, a consuming analysis may query for the difference between the

addr returned by threads 0 and 1: ACF1(addr) − ACF0(addr). The thread-

dependence analysis determines which symbolic references, such as [a], are not

thread dependent. Such references cancel out in the computation of differences.

ACF1(addr)− ACF0(addr)

= ((1 > 256) ∗ ([a] + 4 ∗ 256) + (1 ≤ 256) ∗ ([a] + 4 ∗ 1))

− ((0 > 256) ∗ ([a] + 4 ∗ 256) + (1 ≤ 256) ∗ ([a] + 4 ∗ 0))

= ([a] + 4)− [a]

= 4

For loops, ACF has to deal with loop induction variables. Similar to un-

known variables, ACF handles a loop induction variable iv symbolically, using

the following notation: ACF(iv) = [iv]. For instance, Figure 6.7 shows a sim-

ple parallel implementation for memcpy. The query ACF(srcaddr) is used to

determine the value of srcaddr. To solve this query, ACF captures the com-

mon behaviour across all loop iterations, under the assumption that if values

common within the loop are not thread dependent, they will often cancel when

a difference is calculated. ACF(srcaddr) is therefore calculated as follows:

ACFt(srcaddr) = [src] + [i] + [threadIdx.xt]

ACF treats the index variable [i] symbolically. If both the initialization

expression and the reinitialization expression for [i] are thread independent,

66

then the value of [i] is also thread independent. Thus, when computing

the difference between expressions involving [i] for any loop iteration, the

symbolic value [i] disappears, resulting in either a constant distance between

threads or a distance that depends either on the thread identifier or on other

symbolic variables.

To calculate the ACF representation for the function call c = f(〈args〉)

with the return expression ret , GPUCheck first calculates ACF(ret), then

replaces any arguments in ACF(ret) with the actuals in 〈args〉. For the code

example in Figure 6.8, ACF(y) is calculated as follows:

ACF(y) = ACF(a(x))

= [i]− 16

= ACF(x)− 16

ACF(x) = ACF(b(4))

= [j] + 8

= 12

ACF(y) = 12− 16 = −4

In this example, calls are resolved down the call stack. However, in many

cases, branch divergence and memory coalescing analyses require upward call

resolution, because the analysis is performed inside a nested function. For

instance, in the example in Figure 6.8, what is ACF(br)? In ACF, the answer

can only be [j] + 8. To provide more precise results, an inter-procedural ACF

is needed.

67

66 void memcpy (char* tgt,

67 char* src,

68 size_t sz) {

69 int tx = threadIdx.x;

70 int dim = blockDim.x;

71 for(int i=0; i+tx<sz; i+=dim)

{

72 char *tgtaddr = tgt + i +

tx;

73 char *srcaddr = src + i +

tx;

74 *tgtaddr = *srcaddr;

75 }

76 }

Figure 6.7: An example illustrating how
ACF handles loops.

6.2.3 Inter-procedural Arithmetic Control Form (IACF)

77 int a(int i) {

78 int ar = i - 16;

79 return ar;

80 }

81 int b(int j) {

82 int br = j + 8;

83 return br;

84 }

85 int main() {

86 int x = b(4);

87 int y = a(x);

88 int z = b(y);

89 return y;

90 }

Figure 6.8: An example illustrat-
ing the need for Inter-procedural
Arithmetic Control Form (IACF).

To operate inter-procedurally, GPUCheck

maps the actual arguments from a func-

tion call to the formal parameters in the

function definition. This mapping may

lead to multiple ACF representations for a

given program expression—potentially one

for each calling context.

Producing IACF requires an inter-

procedural control-flow graph (ICFG).

GPUCheck constructs a set of IACF rep-

resentations iteratively by first calculating

the ACF representation in the function’s

context. GPUCheck then inspects this rep-

resentation for references to the function’s

arguments. For each reference to a func-

tion argument, GPUCheck identifies all non-recursive call sites to the function,

and substitutes the actual arguments for the formal parameters for each call

68

site. This process continues until all arguments corresponding to non-recursive

function calls have been replaced. Similar to loop induction variables, argu-

ments to recursive calls remain symbolic references. Therefore, IACF general-

izes over recursive paths similarly to looping paths, sacrificing some precision

for performance.

For the example in Figure 6.8, the best approximation that the intra-

procedure analysis produces for the possible values of br in Line 82 is ACF(br) =

[j] + 8. IACF produces a more precise result. IACF discovers that there is a

set of two possible values for br, because there are two calls to the function

b(), b(4) in Line 86 and b(y) in Line 88.

IACF(br) = {[j] + 8}

= {ACF(4) + 8,ACF(y) + 8}

= {12, 4}

While IACF sets may grow arbitrarily large, GPU kernels tend to have

small call graphs. In our experimental evaluation with the Rodinia bench-

mark suite, we found at most 6 IACF expressions for any given expression.

The Rodinia benchmark suite claims to be representative of typical GPU appli-

cations, thus IACF performs adequately for GPU code. In applications where

memory space or computational time is limited, ending IACF expansion when

a set reaches a specified maximum size (similar to k-limiting [32]) allows for

sacrificing precision to improve performance.

Figure 6.9 outlines the various analyses in GPUCheck and their depen-

dences. Figure 6.9 also includes the dependent performance detection analyses

detailed in Section 6.3.

6.3 Detecting Divergent Behaviour

We have implemented the detection algorithms in GPUCheck using IACF

expression sets. These algorithms calculate differences between IACF expres-

sions evaluated by different threads in a warp to detect thread-dependent

behaviour. IACF expressions typically contain many run-time references that

69

Control-Flow
Graph (CFG)

Memory
Dependence

Analysis

Thread-
Dependence

Analysis

Arithmetic
Control Form

Analysis

Interprocedural
Control-Flow

Graph (ICFG)
Interprocedural

Arithmetic
Control Form

Analysis

Branch Divergence
Detection

Non-coalescable
Memory Access

Detection

Figure 6.9: GPUCheck Analysis Workflow

the thread-divergence analysis have determined not to be thread dependent.

In the calculation of the difference between two IACF expressions evaluated by

different threads, thread-independent run-time references cancel out. In many

cases, the result of the difference is a constant offset between the accesses in

two threads that can be used for performance analysis.

6.3.1 Divergent-Branch Analysis

Divergent-branch analysis takes as input the set of thread-dependent condi-

tional branches in the program under analysis, as discovered by the thread-

dependence analysis. To improve the precision of GPUCheck, the analysis

assumes a constant grid of 256 threads per block and 1 block per grid. It is

better to use the actual grid that is created at runtime, but the grid is defined

in host code and therefore not available during device-code analysis. The use

of a constant grid can cause false positives or negatives: some CUDA code

may assume the use of particular grid geometry. Typical CUDA code queries

and adapts to arbitrary geometry, but if source code expects a particular grid

then GPUCheck may produce unsound results. Because the results produced

by GPUCheck are used to raise warnings, trading potential unsoundness for

improved precision is a reasonable tradeoff.

GPUCheck constructs IACF expression sets for each thread-dependent con-

70

ditional branch. For each IACF expression IACFt(e), and for each thread tx in

a warp of threads t0 . . . t31, GPUCheck calculates the difference IACFtx(e) −

IACFt0(e). If any difference is non-zero, the warp of threads is branch diver-

gent. GPUCheck calculates the divergence of each branch over all warps as
warpsdivergent
warpstotal

. If a branch exceeds a threshold n, then GPUCheck considers the

branch sufficiently divergent, and reports it to the programmer as a warning.

6.3.2 Non-coalescable Memory Access Analysis

GPUCheck uses IACF to estimate the number of requests required to fulfill a

memory operation that accesses a thread-dependent address. The analysis in

this paper only models accesses to global memory. Shared-memory accesses

require different access patterns for coalescing to occur. Moreover, penalties for

non-coalescable accesses are substantially lower in shared memory. Therefore,

GPUCheck does not attempt to analyze shared-memory accesses.

GPUCheck uses an address-space analysis to identify memory operations

on pointers that may point to global memory. Non-coalescable memory access

analysis takes the set of thread-dependent addresses from loads and stores that

may point to global memory as input. Similar to divergent-branch detection,

the analysis assumes a constant grid to improve precision at the expense of

possible unsound results. For each IACF expression, and for each thread x,

the analysis calculates the difference IACFtx(addr)− IACFt0(addr).

The calculated differences are either constant, in which case they are col-

lected in a set C, or non-constant, in which case they iterate a counter non-

const. There are two reasons an IACF difference could be non-constant. Either

the IACF analysis is imprecise, leaving constant but unknown values in the ex-

pression, or the expression is data dependent. Non-coalescable memory access

detection assumes that the IACF analysis is precise, and therefore reports any

non-constant expressions as non-coalescable addresses. For constant address

differences, all accesses within a 256-byte range can be coalesced into a com-

mon request. Figure 6.10 presents the coalescing algorithm that GPUCheck

uses to calculate the number of memory requests required for a given mem-

ory access, given a set of constant offsets C and a number of non-constant

71

Function coalescedRequests(C, nonconst)
requests={ };
for c ∈ C do

fit = false;
for r ∈ requests do

if c ≥ r.low && c ≤ r.high then
fit = true;

else if c ≥ r.high - 256 && c ≤ r.high then
r.low = c;
fit = true;

else if c ≤ r.low + 256 && c ≥ r.low then
r.high = c + 8;
fit = true;

end
if fit 6= true then

requests.append((low: c, high: c+8));
end

end
return requests.size + nonconst;

Figure 6.10: Coalescing algorithm in GPUCheck.

accesses nonconst. The algorithm computes the number of required requests

by greedily calculating the minimum number of 256-byte spans (from r.low

to r.high) that can serve all of the constant offsets in C. The idea is that

complete coalescing only occurs when all the accesses are to the same 256-

byte cache line. However, our coalescing algorithm considers only the size of

requests, and cannot identify when additional requests are required because of

unaligned addresses. This imprecision results from canceling of symbolic val-

ues, including the base address, when computing differences between the ACF

form of the addressing expression for different threads. A memory access that

requires more than maxRequests per warp is deemed to be non-coalescable,

where maxRequests is a configurable value. GPUCheck reports such accesses

to the programmer.

72

6.4 An LLVM Prototype for GPUCheck

We have implemented a prototype of GPUCheck on top of the LLVM com-

piler infrastructure. Since the release of gpucc [75], Clang is able to compile

CUDA programs to LLVM IR. Using gpucc, GPUCheck can operate on CUDA

programs just like any other LLVM GPU language.

GPUCheck generates ACF on demand from LLVM’s SSA representation,

which requires a memory-dependence analysis and a control-dependence graph [16].

Given an expression e, the computation of ACF(e) requires the computation

of the ACF for each of the operands of e. GPUCheck memoizes the ACF

for these operands and makes them available when needed for future ACF

computations. Once the ACF for all operands of e is determined, arithmetic

operations can be trivially converted to ACF to compute ACF(e).

GPUCheck calculates predicates only for φ-nodes to select the correct

operand because the input is already in SSA form. φ-nodes merge values over

multiple incoming control-flow paths by specifying a mapping of each prede-

cessor basic block to a value. To calculate the ACF expression for a φ-node,

GPUCheck first calculates a predicate for each predecessor basic block b that

evaluates true iff the φ-node is immediately preceded at runtime by b. The

ACF value for the φ-node is then simply the sum of each predicate multiplied

by the associated definition.

Let CDG(e) be the set of control dependences for an expression e, as de-

termined by the program control-dependence graph. Let cond(e) refer to the

set of conditional expressions corresponding to each control dependence in

CDG(e) that results in the execution of e. Finally, let operand(x) denote the

expression operands to a φ-node x. To determine the value of a φ-node, the

ACF representation for each operand expression is multiplied against the ACF

representation of each conditional expression cond(e) required to reach that

operand (Equation 6.2).

ACF(φ) =
∑

i∈operand(φ)

(∏
c∈cond(i)

ACF(c)
)
∗ ACF(i) (6.2)

73

If a φ-node contains a cyclic reference (e.g., loop induction variables), its

ACF representation remains symbolic (i.e., ACF(φloop) = [φloop]). Otherwise,

for each operand, all conditions required to select that value are converted to

ACF representation, and multiplied against the value.

To resolve dependences between operations with memory, the generation

of ACF requires a pointer-aware memory-dependence analysis as presented by

Horwitz et al . [30], that provides a set of dominating stores for each memory

load where possible. If a dominating store exists, the ACF representation uses

the stored value to be used in place of the load instruction. Otherwise, the

load becomes a symbolic reference.

The memory-dependence analysis propagates the effects of the statements

of a procedure on memory—through an inter-procedural memory dependence

analysis, on the local variables of the caller, and on global variables.

6.5 Evaluation

The main goal of GPUCheck is to assist developers by detecting potential

performance-limiting issues in GPU programs at compile-time so that they

can be eliminated to improve performance. Ideally, GPUCheck would run

every time code is compiled. Therefore, the analysis must be sufficiently fast

to avoid interrupting development.

This section reports on a performance evaluation of the LLVM GPUCheck

prototype. For this evaluation, we define a divergent branch as one where

more than 25% of warps diverge and noncoalescable memory accesses require

at least 4 requests per warp. Our evaluation uses the CUDA implementation

of the Rodinia heterogeneous computing benchmarks [10], a benchmark suite

that attempts to capture a representative sample of GPU computing tasks.

Prior to GPUCheck, developers could only detect GPU performance is-

sues through dynamic profiling: executing programs against testing data,

and recording characteristics of the execution. To facilitate profiling, NVidia

provides nvprof, a dynamic profiler. Both nvprof and GPUCheck identify

non-coalesced memory accesses and divergent branches. Additionally, nvprof

74

detects a wide variety of other issues, including determining overall occu-

pancy [47].

To provide a comparison, we profiled each Rodinia benchmark through

nvprof, collecting all --analysis-metrics, which includes branch divergence

counters for each branch in the source code, dynamic memory coalescing coun-

ters for each memory access in source code, as well as occupancy information

and the dynamic instruction mix. Through debug information, assembly-level

performance counters are associated with lines in the original source. If nvprof

reports a line as divergent, or a memory operation requiring at least four re-

quests, then that line is deemed either divergent or non-coalescable. We then

run GPUCheck, converting the software source into LLVM IR and linking all

device modules. Next, all branch instructions and memory operations are an-

alyzed. GPUCheck uses debug source information to report offending source

lines. The benchmarks are compiled using NVCC from CUDA 8 at optimiza-

tion level -O2 with lineinfo included. We then executed and profiled the

benchmarks on an NVidia Pascal Titan X, using a host system running on

an Intel i7-4770 with 32GB of RAM running CentOS 6. The CUDA imple-

mentations of cfd, hybridsort, kmeans, mummergpu, and dwt2d cannot be

compiled with Clang/LLVM due to incomplete CUDA support, and so were

not included in this evaluation. Therefore 17 benchmarks from the Rodinia

suite are analyzed.

We evaluate GPUCheck through the following research questions: Does

GPUCheck provide similar results to dynamic profiling? Do the problems

identified by GPUCheck reflect real performance opportunities? Is GPUCheck

performant enough to be used during active development?

6.5.1 Does GPUCheck provide similar results to dy-
namic profiling?

Figure 6.11 shows divergent branches and non-coalescable memory accesses as

found by both the NVidia dynamic profiler and by GPUCheck. Differences in

methodology cause GPUCheck and nvprof to report different but overlapping

sets of divergency issues. As shown in Figure 6.11, GPUCheck discovers 170

75

Benchmark Divergent Branches Noncoalescable Accesses

backprop
3

3

7

8

bfs
4

4

4

4

b+tree
11

11

1

1

gaussian
3

3

3

3

heartwall
74

76

17

22

hotspot
4

4

0

2

hotspot3D
2

2

5

5

huffman
9

16

12

12

lavaMD
4

4

0

6

leukocyte
13

14

3

4

lud
5

5

0

0

myocyte
14

14

14

14

nn
1

1

0

1

nw
6

6

8

8

pathfinder
5

5

0

0

srad
10

12

8

8

streamcluster
2

2

2

4

Figure 6.11: Divergency issues found in the Rodinia Benchmark Suite. Black
indicates an issue found only by GPUCheck. White indicates an issue found
only by nvprof. Grey indicates an issue found by both. The adjacent fractions
are the number of issues found by GPUCheck, over the total issues found.

76

divergent branches and 84 uncoalesced accesses, while nvprof detects only 52

and 37, respectively. GPUCheck also detects 76.9 % of branch divergences

and 51.4 % of noncoalescable accesses detected by nvprof.

Ideally, both GPUCheck and nvprof would identify all possible issues in

all benchmarks, however GPUCheck and nvprof have limitations. For a given

instruction, nvprof aggregates across all executions. A memory operation

that generates 32 requests per warp (i.e., fully non-coalescable) 10% of the

time would therefore be reported by nvprof as requiring 3 requests per ac-

cess, while GPUCheck would correctly identify the non-coalescable access. A

similar strategy is used by nvprof for divergent branches. When inspecting

branches, GPUCheck and nvprof use different thresholds to identify diver-

gence. GPUCheck statically analyzes the branch condition per warp, reporting

if more than 40% of warps are divergent, or data-dependent with unknown in-

put. By contrast, nvprof uses an unknown threshold of all runtime executions

of a warp, causing occasional disagreement on whether a particular branch is

divergent.

Due to the ACF difference method of detection, GPUCheck is unaware

of any memory requests per warp required due to alignment issues. This can

cause partially coalescable accesses to fall below the threshold of 4 requests per

warp when analyzed with GPUCheck, but above this threshold when profiled.

Additional analysis to determine address alignment could be used to help

resolve this issue.

As a static analysis tool, GPUCheck analyzes kernels and code paths that

may never be executed at runtime. This feature allows GPUCheck to identify

performance issues throughout the code, while nvprof is limited to code paths

actually exercised by the provided workloads.

We view GPUCheck as complementary to nvprof, with each tool providing

useful insights unavailable from the other, though there is substantial overlap.

GPUCheck discovers new divergency issues, in addition to reporting existing

divergency issues earlier in the development process.

77

6.5.2 Do the problems identified by GPUCheck reflect
real performance opportunities?

Of the benchmarks where GPUCheck reported non-coalesced accesses or branch

divergence, we select four benchmarks (gaussian, lavaMD, nw, and srad) to

demonstrate the performance gains that may be obtained even on applications

that are expected to be optimized. For each benchmark, we fix any issues de-

tected by GPUCheck, and execute both our modified and the original code

three times each on the same experimental machine used to collect the pro-

filing information. We measure speedups over mean kernel execution time.

By modifying the benchmarks to act on reports from GPUCheck, GPU kernel

performance was improved by 5.5–25.6%.

Gaussian Elimination (gaussian)

The gaussian benchmark in the Rodinia benchmark suite uses two kernels,

Fan1 and Fan2, to solve for variables in a linear system of arbitrary size.

Figure 6.12 shows simplified excerpts of both kernels. GPUCheck identifies

non-coalesced memory accesses in Fan1 at Line 97 and in Fan2 at Line 106 and

Line 110, both missed by nvprof. However, nvprof and GPUCheck identify

divergent branches at the boundary checks in Fan1 and Fan2, because the grid

geometry of threads and blocks is not an exact match for the problem size.

Better tuning of the grid to match the problem size may improve performance,

but we did not make that change. Instead, we concentrate on the 2 non-

coalesced accesses picked up only by GPUCheck.

In Fan1, the first element in each row of the matrix is initialized by a thread.

The access stride by adjacent threads is the width of a row, because the matrix

is stored in row-major format. Changing the indexing of the matrix to column-

major format allows these accesses to be coalesced. With this change, Fan1

initializes adjacent elements in each thread. When changing storage schemas,

it is often necessary to consider how other accesses will be affected. Fan1

and Fan2 operate on the same matrix, thus the access pattern in Fan2 is also

changed by this transformation.

78

91 __global__ void Fan1 (...) {

92 int xidx =

93 blockIdx.x * blockDim.x +

threadIdx.x;

94 if(xidx >= Size-1-t) return;

95 int off = Size*(t+1)+t;

96 m_cuda[Size*xidx+off] =

97 a_cuda[Size*xidx+off] /

a_cuda[Size*t+t];

98

99 }

100 __global__ void Fan2(...) {

101 ...

102 if(yidx >= Size-1-t) return;

103 if(xidx >= Size-t) return;

104 ...

105 a_cuda[Size*xidx+yidx+off] -=

106 m_cuda[Size*xidx+off] *

107 a_cuda[Size*t+yidx+t];

108 if(yidx == 0) {

109 b_cuda[xidx+1+t] -=

110 m_cuda[Size*xidx+yidx+off]

*

111 b_cuda[t];

112 }

Figure 6.12: Original gaussian kernel func-
tions (edited for clarity).

Fortunately, Fan2 is a two-

dimensional CUDA kernel. Re-

versing the matrix storage

schema in Fan2 is equivalent to

exchanging the x and y thread

dimensions in the kernel. We

do not present the modified

code here because the mod-

ifications are trivial changes

to the array indexing oper-

ations replacing threadIdx.x

with threadIdx.y and vice-

versa.

After applying the modifi-

cations based on the output of

GPUCheck, Fan1 runs 11.5%

faster and Fan2 runs 5.9%

faster than the original code.

Overall, the gaussian kernels

complete 8.8% faster. The non-

coalescable memory accesses reported by GPUCheck are not detected by

nvprof, and were previously undetectable by automated means.

LavaMD (lavaMD)

LavaMD is an N-body computation for simulating molecular dynamics inter-

actions. It was originally produced by the Lawrence Livermore National Lab-

oratory, and is derived from the ddcMD application, which performs the same

computation sequentially. The lavaMD benchmark’s kernel makes heavy use

of shared memory buffers, copying memory in tiles for efficient memory access

patterns as shown in Figure 6.13. However, the buffer size NUMBER PAR PER BOX

is carried over from previous CPU implementations, and set to 100 in the orig-

inal benchmark. By contrast, this kernel is launched with 128 threads, leaving

79

nearly a quarter of threads idle through these loops.

113 int wtx = threadIdx.x;

114 ...

115 while(wtx<NUMBER_PAR_PER_BOX){

116 rA_shared[wtx] = rA[wtx];

117 wtx = wtx + NUMBER_THREADS

;

118 }

Figure 6.13: Extract from lavaMD

demonstrating buffering in shared
memory.

Both GPUCheck and nvprof

identify the loop at Line 115 in Fig-

ure 6.13 as a source of branch diver-

gence. We fixed this issue by modi-

fying the shared memory buffers and

number of threads per block to 96 el-

ements. By using a power of two for

the shared memory sizes, the alloca-

tions divide evenly into the device’s

shared memory space, improving uti-

lization. Additionally, reducing the

number of idle threads allows more throughput per thread. With only these

values changed, the lavaMD kernel executes 25.6% faster. There are 6 addi-

tional non-coalescable memory accesses detected by nvprof, caused by poor

memory alignment while copying data to shared memory. GPUCheck missed

these accesses, because it currently cannot identify alignment issues.

Needleman-Wunsch (nw)

Needleman-Wunsch is an algorithm from the field of bioinformatics used to

align proteins and nucleotides. The implementation in the Rodinia bench-

mark suite executes as a tiled matrix computation with a halo. Figure 6.14

shows the halo initialization from the original kernels. GPUCheck identifies

the northwest corner setup as a point of divergence, and the west side setup

as an non-coalesced access.

The divergence can be resolved by allowing all threads within the first warp

to setup the corner, providing a small improvement by avoiding divergence.

In this case, the non-coalesced access cannot be fixed because threads must

read across both rows and columns of the matrix. Performance can still be

improved, because this non-coalesced access is tightly synchronized. The syn-

chronization points above and below this access hurt performance, because all

threads in the block must wait while the access completes. A cursory inspec-

80

119 if (tx == 0)

120 temp[tx][0] = matrix_cuda[index_nw];

121 ...

122 __syncthreads();

123 temp[tx + 1][0] = matrix_cuda[index_w + cols * tx];

124 __syncthreads();

125 temp[0][tx + 1] = matrix_cuda[index_n];

126 __syncthreads();

Figure 6.14: Original halo computation in nw kernels.

tion shows that all threads write to different elements of temp, and thus all of

the halo setup can be synchronized together, eliminating extra synchronization

in Lines 122 and 124. By providing other warps with work to perform while

resolving each non-coalesced access, performance can still be improved. When

we apply both transformations, the nw kernels execute 5.5% faster.

Speckle Reducing Anisotropic Diffusion (srad)

The srad algorithm attempts to remove correlated noise, or speckles from

imagery without destroying underlying information. This algorithm has ap-

plications in various imaging technologies such as ultrasound or radar.

One step of the srad computation calculates a coefficient of diffusion c, a

value between 0 and 1, based on a stencil of nearby values. GPUCheck iden-

tifies branch divergence in this code, pointing to repeated conditional mem-

ory operations as shown in Figure 6.1 on Lines 23, 24, and 25. Figure 6.2

presents our modified code that uses arithmetic min and max, which have

single-instruction implementations on the GPU, to remove the conditional be-

haviour entirely. Our modified srad kernel executes 30.8% faster. srad con-

tains a second kernel, in which GPUCheck found no issues, thus the overall

srad kernel execution time is improved by 15.7%. Dynamic profiling through

nvprof fails at detecting this issue, which is representative of the performance

gains from repairing branch divergence problems using GPUCheck.

81

6.5.3 Is GPUCheck performant enough to be used dur-
ing active development?

GPUCheck is intended to be used actively during the development of GPU

algorithms and applications. Therefore, the performance of the analysis is im-

portant. The analysis time reported for each benchmark consists of the time

for the branch divergence, memory coalescing, and supporting analyses. These

times are representative if the application is typically compiled using Clang/L-

LVM, allowing GPUCheck to actively raise warnings during compilation.

Table 6.1 shows the execution time required for each benchmark. We cap-

tured all timing results on a machine with an Intel i7-4770 processor, 32GB

RAM, and NVidia Titan X Pascal GPU. GPUCheck completes its analysis

in 90 ms to 5.5 s for each benchmark, with a mean analysis time of 596 ms,

typically within Nielsen’s recommended threshold for interactive user inter-

faces [46]. Therefore, GPUCheck can be integrated seamlessly into existing de-

velopment environments, without adding much overhead to the normal work-

flow of developers. The notable outlier is heartwall, which executes for over

5 seconds. The heartwall benchmark program contains a large number of

thread-dependent code paths, leading to ACF expressions being generated for

171 expressions. By comparison, only 46 expressions are inspected in myocyte,

the next slowest analysis. Because GPUCheck scales with code size and not

with workload size, GPUCheck can more efficiently handle benchmarks with

long execution time.

6.6 Concluding Remarks

In this paper, we introduce GPUCheck, a static analysis tool that reasons

about GPU program behaviour. Compared to profiling, GPUCheck has the

following advantages:

1. GPUCheck’s analysis time scales with the code size, while profiling time

scales with actual program execution time. The difference in times can

be very significant, because GPU programs tend to be highly parallel.

82

Benchmark Branches Accesses GPUCheck Time (s) Profiling Time (s)

backprop 4/13 18/145 0.14 2.38
bfs 6/12 14/67 0.12 24.38
b+tree 14/33 25/214 0.30 4.73
gaussian 4/9 7/69 0.09 5.02
heartwall 90/258 81/1364 5.53 281.23
hotspot 16/48 3/194 0.26 1.86
hotspot3D 4/16 21/195 0.43 105.55
huffman 13/41 28/277 0.28 41.26
lavaMD 6/29 9/162 0.15 21.16
leukocyte 15/66 3/332 0.21 57.79
lud 5/77 11/272 0.29 36.36
myocyte 27/4216 19/7499 1.25 1880.55
nn 1/2 5/32 0.09 1.37
nw 6/50 10/280 0.19 201.21
pathfinder 10/37 3/111 0.14 6.73
srad 18/58 25/540 0.53 8.04
streamcluster 2/9 9/82 0.13 2080.28

Table 6.1: Execution time for GPUCheck vs dynamic profiling. Branches
and accesses show the number of instructions requiring ACF analysis over all
instructions analyzed.

2. Since GPUCheck uses static analysis, it needs no test data and takes

into consideration all possible executions through the code. In contrast,

profiling can detect only issues that actually occur in the test data.

3. GPUCheck does not require a physical GPU to identify problems, be-

cause it does not execute GPU code. When there is competition for the

use of GPU computation, GPUCheck frees up more GPU time for useful

work.

GPUCheck detects branch divergences and non-coalescable memory ac-

cesses on 17 programs from the Rodinia benchmark suite. Fixing those issues

improves performance, in terms of running time, by 5.5–25.6%. A prototype

demonstrates that GPUCheck is complementary to dynamic profiling, and rep-

resents a strong foundation on which future analysis of parallel systems can

be built.

83

Chapter 7

Run-Length Base-Delta
Encoding for High-Speed
Compression

7.1 A New Data Compression Algorithm

This paper introduces Run-Length Base-Delta (RLBD) encoding, a lightweight

software compression scheme suitable for very high-speed transfers. RLBD

builds upon ideas developed for cache compression, to produce a generally-

applicable compression algorithm.

Base-Delta Intercept (B∆I) [54] exploits the key idea that values stored

close to each other in memory tend to be distributed within a small value range.

Sequences of values meeting this criteria are said to exhibit value locality.

When this property holds, the values stored within a cache line are likely to

be similar. Therefore, the differences between the values in a cache line can

be stored in less space than the values themselves. RLBD generalizes this idea

by assuming that arbitrary data that needs to be transferred over a network

likely exhibits value locality. This value-locality property indeed holds for

many real-world integer arrays and matrices, but interestingly can also be

applied to floating-point types. Excluding the sign bit, binary floating-point

representations, when interpreted as integers, share ordering (i.e. an integer

comparison of positive floating-point values returns the correct result) [23].

This property of the floating-point representation leads to the value-locality

property to be true for many floating-point arrays and matrices.

84

Most software compression schemes relies on storing patterns that have

been observed into a history buffer. Compression is achieved by storing/-

transmitting each pattern once and then storing/transmitting a pointer to the

buffer for each pattern occurrence. This scheme allows repeated sequences

and subsequences to be efficiently compressed, but also means that the overall

compression ratio is dependent on the content of the history buffer. For such

compressing schemes, dividing data to be compressed into segments, as done

in the B∆I solution, reduces the possible compression. RLBD, just like B∆I,

uses value locality to provide compression, but it does not limit the compressed

segment to a fix size such as the length of a cache line or of a memory page.

Therefore, as opposed to traditional pattern recognition and history buffers,

RLBD allows segmentation and parallelization without sacrificing compression

ratios. Value locality should be equally applicable regardless of starting point.

Thus the data to be compressed can be partitioned to suit highly parallel ar-

chitectures such as modern GPUs. Similarly, decompressors do not need to

construct a history buffer, and can start at any valid RLBD frame.

This paper makes the following contributions:

• a new high-speed compression algorithm, Run-Length Base-Delta (RLBD),

which exploits low dynamic range in high-speed data transfers to perform

compression with minimal memory and computation overhead.

• a directory structure suitable for enabling parallel compression and de-

compression on GPUs, such that RLBD compression and decompression

can be offloaded to a GPU compute accelerator.

• an evaluation of RLBD on datasets representative of real-world data

transfers.

• an evaluation of the proposed algorithm on synthetic datasets to deter-

mine the expected compression and decompression throughput for both

CPUs and GPUs.

85

7.2 RLBD Compression Format

RLBD uses the intuition that data that is stored nearby in memory is likely

to contain similar values. This is often the case, for instance, with arrays or

matrices of numbers use for graphics and for scientific computation. Therefore,

compression may be achieved by replacing the full binary representation for all

the similar values with a selected base value, and the differences between the

base and subsequent values. This difference is the delta between the current

value and the base value. This computed delta can be stored in fewer bytes

than the original values because the values are similar, resulting in successful

compression.

A Run-Length Base-Delta encoded stream is formatted as at least one h-

byte header, followed by n deltas of size b, where n and b are specified in the

header, collectively forming a frame. The header is formatted as an v-byte

base value followed by an s-byte scheme identifier and a c-byte counter, where

h = v + s+ c.

For instance, a given RLBD encoding implemented with h = 16, v = 8,

s = 2, and c = 6 has a header configuration as shown in Figure 7.1. The

header is of fixed size, and specifies the encoding schema to the next header,

as well as the position of the next header.

Figure 7.1: Configuration of Header
for h = 16, v = 8, s = 2, and c =
6. Each small light grey box represents
one byte.

The base field in the header de-

fines the point of reference for all

deltas in this header, as well as the

first bytes of the decoded stream.

The base value is either 4 or 8 bytes,

as determined by the schema. Valid

options for the Schema Identifier for

this example are shown in Table 7.1.

A hexadecimal number is preceded

by 0x.

Appended to the header is an array of n d-byte deltas, where d is deter-

mined by the Schema in the header, and n is the value written to the Delta

86

Schema Identifier
8-byte Base, 0-byte Deltas 0x0800
8-byte Base, 1-byte Deltas 0x0801
8-byte Base, 2-byte Deltas 0x0802
8-byte Base, 4-byte Deltas 0x0804
8-byte Base, 8-byte Deltas 0x0808
4-byte Base, 1-byte Deltas 0x0401
4-byte Base, 2-byte Deltas 0x0402

Table 7.1: Identifiers for various possible schema.

Counter. The header and array of deltas describe a sequence of n + 1 v-byte

values, where v is the base size specified by the Schema. The header and

array of deltas are together referred to as a frame. The decoded sequence

corresponding to a frame is determined by the following function:

value[i]←

{
base, if i = 0

base+ delta[i− 1], otherwise

As an example to illustrate the RLBD encoding, consider the transmission

of the following sequence of data using an eight-byte base with a one-byte

delta:

0x0000000080008000 0x0000000080008008

0x0000000080008010 0x0000000080008018

0x0000000080008020 0x0000000080008028

0x0000000080008030 0x0000000080008038

0x0000000080008040 0x0000000080008048

0x0000000080008050 0x0000000080008058

With the RLBD encoding illustrated in Figure 7.1 and Table 7.1, this data

is represented in compressed form as follows:

0x0000000080008000 0x080100000000000B

0x0810182028303840 0x485058

resulting in a compression ratio of 96/27 = 3.55.

87

7.3 RLBD Compression and Decompression

Lossless software compression schemes typically detect repeating patterns to

perform compression through the replacement of such patterns by a reference

to their storage. By contrast, RLBD exploits only the low variation in value

between data items that appear close to each other in the data stream. There-

fore RLBD does not need to store or inspect past values.

7.3.1 Serial Compression

Compression can be performed reading each incoming value from the uncom-

pressed stream exactly once, using the algorithm shown in Figure 7.2. An

RLBD compressor composes a series of frames by first selecting a schema then

computing and storing deltas from the first value until either a maximum is

reached, or a delta cannot be encoded using the specified schema.

Schema selection is critical to the performance of the RLBD compressor

to maximize both the compression ratio and the compression throughput. We

propose a 1-Lookahead (1LA) schema selection algorithm, shown in Figure 7.3.

The 1LA algorithm reads both a 4- and an 8-byte bases, as well as the imme-

diate following value, selecting the schema with the highest compression ratio

that is valid for the following value. The 1LA algorithm is unique in that it

allows for an implementation where every value in the uncompressed stream

is read exactly once, requiring no caching for performance. However, it may

suffer from overhead because once a schema is selected a full header will be

written by the compressor. If too few deltas can be encoded, the compressed

output may be marginally larger than the input.

Once a schema is selected, the compression algorithm could use it until a

delta can no longer be encoded. However, different schemas produce different

compression ratios, ranging from ∞ to 1.0 excluding headers, but are more

generally applicable as compression ratios are reduced. It therefore makes

sense to occasionally stop to inspect whether a more efficient schema can

be selected. However, the better the current schema, the less likely that an

improvement is possible. Therefore, in the prototype implementation of RLBD

88

Function Compress(byte *input, byte *output, size)
while size > 0 do

(schema, baseSz, deltaSz, base) = Schema(input);
maxBytes = min(128*baseSz/deltaSz, size);
byte* header = output ;
output += 16;
deltas = 0;
while maxBytes > 0 do

delta = input[0..baseSz]-base;
if minbytes(delta) > deltaSz then

break;
end
output [0..deltaSz -1] = delta;
deltas += 1;
output += deltaSz ;
input += baseSz ;
maxBytes -= baseSz ;
size -= baseSz ;

end
header [0..7] = base;
header [8..9] = schema;
header [10..15] = deltas ;

end

Figure 7.2: RLBD Serial Compression Algorithm

89

a compression-ratio dependent maximum number of bytes to encode is set:

maxBytes = min(128 ∗ compression ratio, 248 − 1)

Using this methodology, the worst-case compression ratio (random noise,

encoded using 8-byte deltas) is limited to 0.941 because a header will be intro-

duced at most every 128 bytes. By comparison, the compression algorithm will

encode as many 0-byte deltas as can fit into a header. Scaling the frequency

at which the input stream is inspected for schema selection may lead the com-

pression algorithm to discover more opportunities for better compression.

Function Schema(byte *input)
base8 = input [0..7];
next8 = input [8..15];
diff8 = next8-base8;
deltaSize8 = minbytes(diff8);
base4 = base8[0..3];
next4 = base8[4..7];
diff4 = next4-base4;
deltaSize4 = minbytes(diff4);
if deltaSize8 == 0 then

return (0x0800, 8, 0, base8);
else if deltaSize8 == 1 then

return (0x0801, 8, 1, base8);
else if deltaSize8 == 2 then

return (0x0802, 8, 2, base8);
else if deltaSize4 == 1 then

return (0x0401, 4, 1, base4);
else if deltaSize8 == 4 then

return (0x0804, 8, 4, base8);
else if deltaSize4 == 2 then

return (0x0402, 4, 2, base4);
end

Figure 7.3: RLBD 1-Lookahead Schema Selection

7.3.2 Serial Decompression

The serial decompression algorithm is very straightforward as shown in Al-

gorithm 7.4. This algorithm simply parses the compressed stream frame-by-

frame. There is no need for caching history, the decompression algorithm reads

data from the compressed stream exactly once.

90

Function Decompress(byte *input, byte *output, size)
while size > 0 do

base = input [0..7];
schema = input [8..9];
baseSz = schema >> 8;
deltaSz = schema && 0x00FF;
deltas = input [10..15];
input += 16;
size -= 16;
while deltas > 0 do

output [0..baseSz] = input [0..deltaSz] + base;
input += deltaSz ;
output += baseSz ;
size -= deltaSz ;
deltas -= 1;

end

end

Figure 7.4: RLBD Serial Decompression Algorithm

7.4 GPU-Accelerated RLBD

RLBD compression may benefit from CPU parallelization, but it is being con-

sidered for use in supercomputing environments, where CPU utilization is at a

premium. However, compute accelerator devices like GPUs require parallelism

for efficient usage. We therefore present parallel compression and decompres-

sion algorithms suitable for such devices.

7.4.1 Parallel Compression

A simple approach to perform compression in parallel consists in dividing

the data to be compressed into n partitions, thus allowing n compressors to

independently compress their assigned section. This strategy is suitable to

RLBD because it requires no caching of the data stream frequent patterns to

produce efficient compression, and therefore the compression can start at an

arbitrary point in the uncompressed stream without any significant effect on

compression ratios.

To similarly enable parallel decompression, the decompression algorithm

91

must know the uncompressed offset associated with the header of the first

frame in the partition, to decompress to the appropriate location. To enable

parallel decompression, we introduce a Data-Segment Directory (DSD). To

perform decompression of an RLBD stream, a decompressor requires a target

address for the uncompressed data, a source address for the compressed data,

and the length of the compressed data. To begin decompression at an arbitrary

target address, a warm-up interval is also required to allow a header to be

partially processed before decompression actually begins writing uncompressed

data. Together, the source address, target address, compressed size, and warm-

up interval form an initialization vector (IV). These IVs can be generated

during compression, and appended to the end of an RLBD stream at the cost

of a small overhead. The set of IVs forms a DSD.

Uncompressed
Data

Compressed
Partitions

Compressed
Output

Data-Segment
Directory

RLBD
Compression Normalization

Figure 7.5: 2-Stage parallel compression flow

Parallel RLBD com-

pression therefore involves

first separating the un-

compressed data into par-

titions and compressing

them in parallel, then

combining each compressed

partition into a single

compressed body and as-

sembling a DSD. To en-

able similar levels of parallelism for both compression and decompression, we

construct a DSD Directory with IVs pointing to the start of each partition.

Figure 7.5 shows the 2-step process, and resulting compressed data and DSD

assuming four partitions.

GPU Compression

The overhead required for both the post-processing step and for the spawning

of threads makes CPU-parallel RLBD infeasible in practice for current CPUs.

However, the GPU architecture with its highly-parallel design and extremely

fast GDDR5/HBM2 memory [68] lends itself well to parallel processing. In

92

P0 to CPU

Pin P0CPU

DMA

GPU

HtoD

DtoH

Time

P0 to GPU

Compress
P0

Unpin P0
Pin P1

P1 to GPU

P1 to CPU

Compress
P1

Pin P2

P2 to GPU

P2 to CPU

Compress
P2

Pin P3

P3 to GPU

P3 to CPU

Compress
P3

Unpin P1 Unpin P2 Unpin P3
Pin P4

P4 to GPU

P4 to CPU

Compress
P4

Unpin P4

Figure 7.6: GPU Compression Pipeline

addition, GPUs have two levels of parallelism: block-level independent paral-

lelism and thread-level cooperative parallelism.

When compressing a frame, threads cooperatively compute deltas from

the shared base. GPUs execute instructions for a full warp of 32 threads

simultaneously, so if fewer than 32 threads have useful work, computation is

wasted. To reduce instances of extremely short RLBD frames, compression

on the GPU increases the lookahead to 8LA. 8LA ensures for each frame that

at least 8 of 32 threads can perform work, increasing GPU utilization. While

increasing lookahead could reduce the compression ratio by ignoring short

compression opportunities, it also prevents overly short frames that would be

larger than the uncompressed data. These effects tend to cancel each other in

practice, as shown in the evaluation.

GPUs maintain a separate memory from the CPU, and manage data trans-

fers through Direct Memory Access (DMA) hardware. DMA hardware allows

the memory transfer to occur without involving either the CPU or GPU, and

enables pipelining to hide transfer costs. However, to allow the CPU to per-

form other tasks while transferring, the operating system must be informed

about the memory pages involved to prevent relocation or paging out. Such

memory is pinned to allow for asynchronous memory copies.

Pinning overly large amounts of memory can hurt system performance, as

it prevents the operating system from reclaiming memory. In addition, we

wish to hide as much of the GPU transfer costs as possible. Therefore, data

to be compressed on the GPU is first decomposed into fixed-size segments,

which are copied into a pinned buffer by the CPU, transmitted to the GPU,

compressed on the GPU, transmitted back to the CPU, and copied out of the

93

pinned buffer in a pipelined manner, as shown in Figure 7.6. By pipelining,

we can maintain 4 pinned buffers: 1 each for the DMA transfers, and 1 each

for the CPU copying data in and out. The compression run on the GPU is

the longest step in the pipeline, leaving the CPU enough time between copies

to choreograph subsequent pipeline stages.

Because GPU threads cannot synchronize across blocks, GPU compression

requires two independent kernels. The first kernel assigns 1 partition to each

block, and generates compressed partitions, while the second kernel copies

each partition into contiguous compressed data, and constructs and appends

the DSD for parallel decompression.

GPU Decompression

 + + + + +

Header Deltas

Base Count

Sch
em

a

Thread 0
Thread 1

Thread 3

Thread 5

Thread 2

Thread 4

Figure 7.7: Visualization of thread-
level cooperation within a GPU block
during decompression

As above, independent parallel de-

compressors are mapped to GPU

block-level parallelism. However,

thread-level cooperative parallelism

allows each decompressor to operate

frame-by-frame, with threads coop-

eratively expanding the deltas within

each frame.

Each block is assigned a single

partition, read from the DSD to al-

low for independent parallelism. All

threads within a block independently

read the frame header, then threads are sequentially assigned deltas until the

entire delta count has been processed. Thread 0 first copies the base verba-

tim, before cooperatively expanding deltas with the other threads in the block.

Figure 7.7 shows thread-cooperative decompression.

Decompression suffers from the same warp usage problem as compression,

in which threads may be idle. However, the DSD contains final target informa-

tion so no post-processing step is required for decompression, allowing decom-

pression to achieve much higher throughput than compression. In addition,

94

it would be typical that the GPU RLBD implementation would decompress

RLBD data compressed on a GPU, allowing the decompression algorithm to

take advantage of the longer RLBD frames generated by GPU compression.

Pipelining is also implemented in the same manner as compression, to hide

the costs associated with memory transfer to and from the GPU.

7.5 Evaluation

RLBD compression is designed to achieve extremely high-speed software com-

pression, to improve throughput on interconnects that operate at throughputs

too large for traditional software compression. Therefore an evaluation of

RLBD must determine if it is indeed faster than traditional schemes. To be

relevant a software compression must be able to provide data at a speed that is

consistent with the interconnection network that is used for data transmission.

Therefore, it is also important to determine if RLBD is fast enough to work

with the high-speed interconnects typically available in modern supercomput-

ers. Finally, the evaluation must determine if RLBD compression is effective

on real-world data, and what level of increased throughput can be expected

from its adoption.

To integrate RLBD with modern high-speed interconnects, a Compression-

Transmission-Decompression

pipeline (CTDP) must be constructed to improve overall throughput. Trans-

mitted data should be discretized into segments, and segments should be sent

through the pipeline so that Compression and Decompression can be over-

lapped with transmission. For large data sets, such a pipeline will improve the

data transmission throughput a the cost of increased overall latency. For short

data transfer, the increased latency may be unacceptable, and in that case a

threshold can be used to determine when the CTDP should be enabled.

95

Name CPU RAM GPU

sandybridge Intel Xeon E5-2530 v2 CPU @ 2.60GHz 64GB @ DDR3 1333 Nvidia Tesla K20m
power8 IBM Power8 8286-42A 24-Core CPU @ 3.52GHz 512GB @ DDR4 1600 Nvidia Tesla P100

Table 7.2: Machines Used for performance testing

7.5.1 Is RLBD faster than traditional software com-
pression schemes?

This evaluation compares RLBD against LZ4 [12] in “fast 8” and “fast 32”

modes, as well as agaist Brotli [1], Gipfeli [40], and Snappy [24]. For all exper-

iments, data is first loaded in-memory, then compression and decompression

are independently timed. Compression and decompression are each performed

five times per input, and the mean throughput is reported. This prototype of

RLBD also has a GPU implementation. For the GPU algorithm data transfers

to and from the device are not included because those times would be hidden

by the pipelining.

The experiment is run on two machines with the configurations shown in

Table 7.2. For performance tests, Intel CPU implementations were compiled

with gcc 4.9.1 with -O3 -march=native, while Power8 CPU implementations

were compiled with gcc 5.4.0 with -O3 -march=native. GPU implementa-

tions were compiled with CUDA 8, with -O3 -arch=sm 35 or -arch=sm 60,

as appropriate.

The goal of this performance evaluation is to provide insights into the per-

formance that could be expected in an MPI-like [29] supercomputing context,

using RLBD to compress transfers between nodes. Finding datasets that repli-

cate this use case is surprisingly difficult because supercomputing benchmarks

tend to transmit either zeroes or random data. Neither the very high com-

pression rate for zeros nor the very low compression rate for random numbers

would reflect the typical use case for RLBD. Thus, this evaluation uses five

machine-learning datasets obtained from the UCI Machine Learning Reposi-

tory [41], shown in Table 7.3. These datasets are available in CSV form, which

is not representative of the sort of structured data that would be transmitted

96

Dataset Entries Attributes

commviol [9] 2215 2 strs, 4 i8s, 43 i32s, 98 f32s
gisette [27] 6000 46 i8s, 4955 i32s
secom [41] 1567 590 floats
weightlift [69] 4024 2 strs, 22 i8s, 26 i32s, 109 f32s

Table 7.3: Datasets used for real-world testing

between the memories of supercomputing nodes.

To more accurately represent the structured data transfers that would oc-

cur in a supercomputing application, we wrote a packing program that scans

the attributes, and determines if they should be represented as a byte, 32-

bit int, 64-bit int, float, or string. Then, this program output the file in two

different formats:

1. Array of Structs: The data is packed row-by-row. This is most similar

to the original CSV, but has poor memory locality for computation. This

format also has poor value locality because each subsequent attribute

represents different data.

2. Struct of Arrays: The data is packed in an array-of-attributes format.

This method of data packing allows SIMD-style parallelism to perform

with superior memory characteristics because attributes of sequential en-

tries are side-by-side. This method of storage also exhibits excellent value

locality because all instantiations of an attribute are placed together in

memory. This data layout is quite desirable for enabling efficient paral-

lelism, to the point that modern compilers attempt to restructure data

to fit this model [15].

Figure 7.8 shows the compression throughput for RLBD on the Sandy-

bridge. This evaluation uses two versions for each of the datasets listed in Ta-

ble 7.3: an array-of-structures (aos) and an struct-of-arrays (soa). RLBD CPU

outperforms all other CPU compression algorithms on seven of the dataset

versions evaluated. For the secom(soa) version the lz4-fast 32 results in a

97

w
ei

gh
tl

if
t(

ao
s)

w
ei

gh
tl

if
t(

so
a)

se
co

m
(a

os
)

se
co

m
(s

oa
)

co
m

m
vi

ol
(a

os
)

co
m

m
vi

ol
(s

oa
)

gi
se

tt
e(

ao
s)

gi
se

tt
e(

so
a)

0

2

4

Input Data

C
om

p
re

ss
io

n
T

h
ro

u
gh

p
u
t

(G
B

/s
)

RLBD CPU RLBD GPU lz4 -fast 8 lz4 -fast 8
lz4 -fast 32 Snappy Brotli Gipfeli

Figure 7.8: Compression Throughput by Algorithm on the Sandybridge ma-
chine

throughput that is 28% higher than the RLBD CPU version. While the per-

formance of lz4-fast 32 on this dataset is interesting, its variable throughput

performance on the other datasets prevents it from being applied to improve

network throughput. In many cases lz4-fast 32 would be the limiting factor,

actually harming overall throughput. For all dataset versions RLBD CPU is

able to maintain a throughput of more than 1.81 GB/s. RLBD on GPU is

much faster than the CPU algorithm on most inputs, with the exception of

gisette. Gisette represents pixel data, which exhibits many relatively short

(8 delta) compressible segments, which reduces the cooperative parallelism

usable by the GPU during compression.

RLBD, in both the CPU and GPU implementations, maintains a substan-

tially higher minimum throughput than competitors on the inputs presented.

98

Is RLBD throughput schema- or data- dependent?

4-
1

4-
2

8-
0

8-
1

8-
2

8-
4

8-
8

0

10

20

RLBD Schema (Base-Delta)C
om

p
re

ss
io

n
T

h
ro

u
gh

p
u
t

(G
B

/s
)

Ivybridge Power8
Nvidia Tesla K20m Nvidia P100

Figure 7.9: Throughput of synthetic data
compression by schema

4-
1

4-
2

8-
0

8-
1

8-
2

8-
4

8-
8

0

100

200

300

RLBD Schema (Base-Delta)D
ec

om
p
re

ss
io

n
T

h
ro

u
gh

p
u
t

(G
B

/s
)

Ivybridge Power8
Nvidia Tesla K20m Nvidia P100

Figure 7.10: Throughput of synthetic data
decompression by schema

RLBD throughput varies heav-

ily on the inputs presented, and

RLBD GPU suffers when there

are short runs, but RLBD in-

ternally relies on schemas to

store deltas in a compressed

form. To establish whether

different schemas have differ-

ent performance, we created a

synthetic data generator. We

generate a 16MB file consisting

of 256B sequences that can be

compressed using a particular

RLBD schema, by selecting a

random 8-byte base, then generating 32 random deltas and adding them to the

base. The range of the deltas is determined by the scheme being generated.

The throughput for each schema is shown in Figures 7.9 and 7.10.

The compression throughput shown in Figure 7.9 reveals that the Power8

99

CPU yields a throughput that is nearly the double of the throughput for the

Sandybridge core in all cases. This difference is in part due to the different

frequency of operation of the two processors — the Power8 core operates at

2061MHz, compared to 1200MHz in the intel core — but this difference alone

does not explain all the performance differences.

To better understand the lower throughput by Sandybridge in comparison

with the Power8, it is necessary to consider the main loop executed by the

compression algorithm and how the statements are scheduled in thes proces-

sors. Consider Schema 8-8, where the Power8 CPU processes 10B/cycle: The

loop has been simplified to 3 vector operations, an increment, and a branch.

The CPU has 4-wide issue, 2 vector pipelines, and out-of-order execution, en-

abling it to complete a loop iteration every cycle and a half. The Sandybridge

core also has 3 vector operations, but 3 increments and a branch. However,

there is only a single vector pipeline per core, so a loop iteration can be com-

pleted only every 3 cycles. Most interestingly, memory bandwidth and latency

are irrelevant to single-thread performance, as prefetching takes care of cache

effects, and the limiting factor is the CPU’s ability to issue instructions.

The Power8, Tesla K20, and P100 results show that compression through-

put is maximized when compressing runs of the same value (8-0) or incom-

pressible data (8-8), with performance tapering off for other schemas. The

Sandybridge processor is however memory-bound, and the additional writes

required by the incompressible data dramatically hurt performance.

However, the peak performance numbers shown in Figure 7.9 are not re-

flected in any of the real-world inputs. The synthetic results allow for near-

perfect branch prediction and memory prefetching, providing long sequences

of data for each RLBD frame. As a result, the only limiting factor is the

instruction throughput of the CPU. In the previous real-world data, however,

the selected scheme changes frequently in a data-dependent manner, hurting

throughput. Similarly, the main compression loop has an unknown, data-

dependent, bound. These effects slow throughput dramatically, and result

in the performance differences observed between Figures 7.8 and 7.9. The

decompression performance shown in Figure 7.10 is similarly reduced.

100

Interconnect Transmission Throughput Throughput
Throughput Reqd (DS=0.92) Reqd(DS=0.43)

10GbE 1280 MB/s 1391 MB/s 2976 MB/s
40GbE 5120 MB/s 5565 MB/s 11906 MB/s
PCIE 2.0 x16 16384 MB/s 17808 MB/s 38102 MB/s
PCIE 3.0 x16 32768 MB/s 35616 MB/s 76204 MB/s
NVLink 1.0 81920 MB/s 89043 MB/s 190511 MB/s

Table 7.4: Common high-speed interconnects, their throughput, and compres-
sion/decompression throughput requirements by data savings ratio

RLBD performance is affected by both the schema used and the length of

the RLBD frame. However, the effect appears to mainly reduce peak perfor-

mance.

7.5.2 What compression rates are required by modern
supercomputing interconnects?

The throughput requirements for compression and decompression is deter-

mined such that each stage in the compression-transmission-decompression

pipeline can be performed independently. Table 7.4 shows throughput rates

for a variety of interconnects available in recent supercomputers: 10GbE and

40GbE are networking fabrics, and would be representative of inter-node com-

munication, while PCIE and NVLink are used for intra-node communication

with attached compute-accelerator devices. DS stands for data savings, and is

calculated as sizecompressed/sizeoriginal. The values DS=0.92 and DS=0.43 were

selected because they represent boundary cases of compression ratios achiev-

able by RLBD, as determined below in 7.5.3.

In addition to the native throughputs of these interconnects, Table 7.4

includes required compression and decompression throughputs for various lev-

els of compression. As the data savings increases, the greater the effective

throughput of the link.

101

0 0.5 1
0

2

4

Space Savings

T
h
ro

u
gh

p
u
t

(G
B

/s
)

(a) Compression -
sandybridge

0 0.5 1
0

5

10

15

Space Savings

(b) Compression -
power8

0 0.5 1
0

10

20

30

Space Savings

(c) Decompression
- sandybridge

50

100

150

200

0 0.5 1
0

2

4

Space Savings

(d) Decompression
- power8

Data Format Compression Algorithms Dataset
Struct of Arrays RLBD GPU RLBD CPU commviol
Array of Structs Brotli Snappy weightlift

lz4 -fast 8 lz4 -fast 16 secom

lz4 -fast 32 Gipfeli gisette

Figure 7.11: Throughput vs Data Savings

102

7.5.3 Is RLBD compression effective on real-world data?

The goal of RLBD is to enable compression on high-speed interconnects such

as 10GbE or 40GbE, therefore increasing network throughput. RLBD achieves

compression by exploiting value locality, in which adjacent locations tend to

hold similar values. The datasets used were packaged in two ways:

When the data is organized as an array of structs (aos), all the attribute

of each struct are packed together, each possibly being of a different type

with very different values. Thus, as would be expected data formatted in this

way typically exhibit low value locality, and as expected, RLBD is unable to

compress 3 of the 4 datasets in this format, instead using up to an additional

2.3% of space. On the remaining dataset, gisette, RLBD reduced the filesize

by 47%. Compression was possible because attributes in gisette represent pixel

data, which exhibit value locality between adjacent pixels.

When the data is stored in the struct of arrays (soa) form, all attributes

of the same type are stored contiguously, thus leading to higher value locality.

This format more closely represents possible gains from transmitting arrays of

values. As expected, RLBD achieves compression on all the data sets trans-

mitted in this form. The RLBD file-size reduction varied within the 8-57%

range. Even on data in this form, RLBD does not achieve dramatic com-

pression ratios in most cases: Brotli compresses data in both formats from

33-91%.

When input data matches the value-locality assumptions of RLBD, data

savings can vary between 8-57%. When it does not, the overhead of using

RLBD is usually negligible, at worst 2.3%.

7.5.4 What throughput improvements can be expected
when implementing RLBD?

At a data savings of 0.43 (57% file size reduction), a compression and de-

compression throughput of 2976 MB/s (see Table 7.4) would be required to

saturate a 10GbE connection. Unfortunately, RLBD on the Sandybridge CPU

can maintain a geomean throughput of only 2.08 GB/s. Therefore, when the

103

data is well-compressed the throughput of data compression becomes a lim-

iting factor. However, RLBD compression and decompression on Power8 are

more than fast enough for a 10GbE link, at geomean 4.98 GB/s and 3.84 GB/s

respectively, though the decompression throughput prevents RLBD from being

useful over 40GbE. Even on Power8, the geomean decompression throughput

means that RLBD would actually degrade network throughput over 40GbE.

However, as shown in Table 7.4, GPUs are connected to CPUs over a

far faster link than even a 40GbE network connection. If the Compression-

Transfer-Decompression pipeline is extended to use a GPU accelerator, form-

ing a 7-stage pipeline including GPU transfers on each side, then we can exploit

RLBD’s dramatic GPU performance. The Nvidia P100 included in the Power8

system is connected by PCIE 2.0, meaning compression throughput would be

the pipeline limiting factor, at geomean 4.98 GB/s. This performance al-

lows compression even over 40GbE connections, achieving up to 7903 MB/s,

a 35% improvement over uncompressed 40GbE, which transmits only up to

5120 MB/s.

When RLBD is used to compress transfers over 10GbE, effective transfer

speeds up to 2976 MB/s can be obtained on Power8, and up to 2.08 GB/s on

Sandybridge processors. Newer supercomputers with 40GbE and P100 GPUs

or newer can use GPU acceleration for compression, achieving effective transfer

speeds up to 7903 MB/s.

7.6 Concluding Remarks

RLBD compression presents a new option for software compression over high-

speed networking connections, and can enable substantial througput improve-

ments. Using a single CPU core, RLBD can be used over 10GbE to improve

throughput put to 57%. With the inclusion of modern GPU accelerators typ-

ical of current and upcoming supercomputers, RLBD can also be used to

improve throughput on 40GbE fabrics.

RLBD fills a niche in the compression ecosystem, providing reasonable

compression ratios at extremely high speed, where better compression has

104

insufficient performance.

105

Chapter 8

Conclusion

This compilation represents a series of methods to improve the performance

and usability of compute accelerator devices, and utilize GPUs to improve

supercomputing network performance.

Chapter 4 argues for combined compilation using OpenCL for FPGA tar-

gets, using traditional compiler analyses and transformations to adapt OpenCL

code originally written for GPUs. By inspecting and modifying host code,

speedups of up to 6.7x were achieved.

Chapter 5 explores the problem of mapping parallel OpenMP code to GPU

architectures, using an in-depth data analysis to improve an industry-standard

heuristic. When our proposed solution is used, benchmarks experience a ge-

omean speedup of 25%.

Chapter 6 introduced GPUCheck, a static analysis tool for identifying per-

formance problems due to GPU thread divergence. GPUCheck found per-

formance problems in every benchmark in the Rodinia benchmark suite, and

further investigation found that benchmark kernels experienced speedups of

5-30% when these problems were fixed.

Finally, Chapter 7 introduced Run-Length Base-Delta encoding, a high-

speed compression algorithm capable of compression ratios up to 57% on rep-

resentative data, at throughputs of geomean 10.40 GB/s on an Nvidia P100.

While compression throughput was insufficient for the originally intended pur-

pose of compressing CPU-GPU transfers, RLBD is sufficiently performant to

be employed on 40GbE, improving inter-node transfers in modern supercom-

106

puters.

107

References

[1] J. Alakuijala and Z. Szabadka, “Brotli compressed data format,” Tech.
Rep., 2016. 10, 96

[2] Altera. (). Hello world design example, [Online]. Available: https://
www.altera.com/support/support-resources/design-examples/

design-software/opencl/hello-world.html (visited on 04/04/2017). 27

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2014, pp. 259–269. 58

[4] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), 2009, pp. 163–174. 17

[5] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “A compiler framework for optimiza-
tion of affine loop nests for GPGPUs,” in International conference on
Supercomputing (ICSC), 2008, pp. 225–234. 10

[6] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–
32, 2001. 48

[7] O. Burn, Checkstyle, https : / / checkstyle . sourceforge . net, Ac-
cessed: 2017-04-27, 2003. 9

[8] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregu-
lar programs on GPUs,” in IEEE International Symposium on Workload
Characterization (IISWC), 2012, pp. 141–151. 5, 17

[9] U. S. D. o. C. B. o. t. Census, Census of population and housing, 1990
[united states]: Summary tape file 3a, record sequence example file, 2006.
doi: 10.3886/ICPSR09592.v1. [Online]. Available: http://doi.org/
10.3886/ICPSR09592.v1. 97

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous computing,” in
IEEE International Symposium on Workload Characterization (IISWC),
2009, pp. 44–54. 21, 58, 59, 74

108

https://www.altera.com/support/support-resources/design-examples/design-software/opencl/hello-world.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/hello-world.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/hello-world.html
https://checkstyle.sourceforge.net
https://doi.org/10.3886/ICPSR09592.v1
http://doi.org/10.3886/ICPSR09592.v1
http://doi.org/10.3886/ICPSR09592.v1

[11] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and K. Stephens,
“Improving your software using static analysis to find bugs,” in Object-
oriented Programming Systems, Languages, and Applications (OOPSLA),
ACM, 2006, pp. 673–674. 9

[12] Y. Collet, Lz4 lossless compression algorithm, 2013. 10, 12, 96

[13] K. E. Coons, B. Robatmili, M. E. Taylor, B. A. Maher, D. Burger,
and K. S. McKinley, “Feature selection and policy optimization for dis-
tributed instruction placement using reinforcement learning,” ser. PACT
’08, Toronto, Ontario, Canada: ACM, 2008. 17

[14] D. J. Craft, “A fast hardware data compression algorithm and some algo-
rithmic extensions,” IBM Journal of Research and Development, vol. 42,
no. 6, pp. 733–746, 1998. 12

[15] S. Curial, P. Zhao, J. N. Amaral, Y. Gao, S. Cui, R. Silvera, and R. Ar-
chambault, “Mpads: Memory-pooling-assisted data splitting,” in Pro-
ceedings of the 7th international symposium on Memory management,
ACM, 2008, pp. 101–110. 97

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control de-
pendence graph,” Transactions on Programming Languages and Systems
(TOPLAS), vol. 13, no. 4, pp. 451–490, 1991. 73

[17] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, “From OpenCL to
high-performance hardware on FPGAs,” in International Conference on
Field Programmable Logic and Applications (FPL), 2012, pp. 531–534. 14, 19, 20

[18] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Computational Science and Engi-
neering, Jan. 1998. 6

[19] N. Fauzia, L.-N. Pouchet, and P. Sadayappan, “Characterizing and en-
hancing global memory data coalescing on GPUs,” in Code Generation
and Optimization (CGO), IEEE Computer Society, 2015, pp. 12–22. 10

[20] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program depen-
dence graph and its use in optimization,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 9, no. 3, pp. 319–
349, 1987. 63

[21] J. Fifield, R. Keryell, H. Ratigner, H. Styles, and J. Wu, “Optimizing
OpenCL applications on Xilinx FPGA,” in International Workshop on
OpenCL, Vienna, Austria: ACM, 2016, 5:1–5:2. 15, 19

[22] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation and scheduling for efficient GPU control flow,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2007, pp. 407–
420. 5

109

[23] D. Goldberg, “What every computer scientist should know about floating-
point arithmetic,” ACM Computing Surveys (CSUR), vol. 23, no. 1,
pp. 5–48, 1991. 84

[24] Google. (2011). Snappy: A fast compressor/decompressor, [Online]. Avail-
able: https://github.com/google/snappy (visited on 01/19/2018).

10, 96

[25] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cava-
zos, “Auto-tuning a high-level language targeted to gpu codes,” in 2012
Innovative Parallel Computing (InPar), May 2012. 16

[26] K. O. W. Group. (2011). ‘‘the opencl specification: Version 1.0”, october
2011., [Online]. Available: https://www.khronos.org/registry/cl/
specs/opencl-1.0.pdf (visited on 04/07/2017). 8

[27] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the
nips 2003 feature selection challenge,” in Advances in neural information
processing systems, 2005, pp. 545–552. 97

[28] S. Hauck and A. DeHon, Reconfigurable computing: the theory and prac-
tice of FPGA-based computation. Morgan Kaufmann, 2010, vol. 1. 20

[29] R. Hempel, “The mpi standard for message passing,” in International
Conference on High-Performance Computing and Networking, Springer,
1994, pp. 247–252. 96

[30] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence analysis for pointer
variables,” 7, ACM, vol. 24, 1989, pp. 28–40. 74

[31] (). Intel FPGA OpenCL Best Practices Guide, [Online]. Available: http:
//www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-

best-practices-guide.pdf (visited on 04/04/2017). 15, 21, 23, 24, 28

[32] N. D. Jones, “Program flow analysis: Theory and applications,” 1981. 69

[33] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che, M.
Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu, H. Li, M. S.
Müller, W. E. Nagel, M. Perminov, P. Shelepugin, K. Skadron, J. Strat-
ton, A. Titov, K. Wang, M. van Waveren, B. Whitney, S. Wienke, R. Xu,
and K. Kumaran, “Spec accel: A standard application suite for measur-
ing hardware accelerator performance,” in High Performance Computing
Systems. Performance Modeling, Benchmarking, and Simulation: 5th In-
ternational Workshop, PMBS 2014, New Orleans, LA, USA, November
16, 2014. Revised Selected Papers, S. A. Jarvis, S. A. Wright, and S. D.
Hammond, Eds. Springer International Publishing, 2015, pp. 46–67. 36, 40

[34] Khronos. (). Clcreatebuffer, [Online]. Available: https://www.khronos.
org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.

html (visited on 04/04/2017). 30

110

https://github.com/google/snappy
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
http://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
http://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
http://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.html
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/clCreateBuffer.html

[35] S. T. Klein and Y. Wiseman, “Parallel lempel ziv coding,” in Annual
Symposium on Combinatorial Pattern Matching, Springer, 2001, pp. 18–
30. 12

[36] T. Kremenek, “Finding software bugs with the Clang static analyzer,”
California: Apple Inc, 2008. 9

[37] C. A. Lattner, “Llvm: An infrastructure for multi-stage optimization,”
PhD thesis, University of Illinois at Urbana-Champaign, 2002. 58

[38] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to FPGA: A framework for
directive-based high-performance reconfigurable computing,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2016, pp. 544–554. 16

[39] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP program-
ming and tuning for GPUs,” in Proceedings of the 2010 ACM/IEEE In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’10, IEEE Computer Society, 2010. 16

[40] R. Lenhardt and J. Alakuijala, “Gipfeli-high speed compression algo-
rithm,” in Data Compression Conference (DCC), 2012, IEEE, 2012,
pp. 109–118. 10, 96

[41] M. Lichman, UCI machine learning repository, 2013. [Online]. Available:
http://archive.ics.uci.edu/ml. 96, 97

[42] Z. Liu, Y. Saifullah, M. Greis, and S. Sreemanthula, “Http compression
techniques,” in Wireless Communications and Networking Conference,
2005 IEEE, IEEE, vol. 4, 2005, pp. 2495–2500. 12

[43] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann, “Effective compiler support for predicated execution using the
hyperblock,” in ACM SIGMICRO, vol. 23, 1992, pp. 45–54. 64

[44] N. A. Naeem, O. Lhoták, and J. Rodriguez, “Practical extensions to the
IFDS algorithm,” in International Conference on Compiler Construction
(CC), 2010, pp. 124–144. 62

[45] B. Nicolae, “High throughput data-compression for cloud storage,” in In-
ternational Conference on Data Management in Grid and P2P Systems,
Springer, 2010, pp. 1–12. 12

[46] J. Nielsen, Usability Engineering. Elsevier, 1994. 82

[47] NVidia, Profiler user’s guide, https : / / docs . nvidia . com / cuda /

profiler-users-guide/, Accessed: 2016-11-29. 60, 75

[48] Nvidia, NVIDIA Tesla P100 – The Most Advanced Data Center Acceler-
ator Ever Built. http://www.nvidia.ca/object/pascal-architecture-
whitepaper.html, Accessed: 2017-10-30. 38

111

http://archive.ics.uci.edu/ml
https://docs.nvidia.com/cuda/profiler-users-guide/
https://docs.nvidia.com/cuda/profiler-users-guide/
http://www.nvidia.ca/object/pascal-architecture-whitepaper.html
http://www.nvidia.ca/object/pascal-architecture-whitepaper.html

[49] ——, NVIDIA TESLA V100 GPU ARCHITECTURE – The World’s
Most Advanced Data Center GPU. http : / / images . nvidia . com /

content/volta-architecture/pdf/volta-architecture-whitepaper.

pdf, Accessed: 2018-01-01. 54

[50] (). Oak ridge readies summit supercomputer for 2018 debut, [Online].
Available: https://www.top500.org/news/oak- ridge- readies-

summit-supercomputer-for-2018-debut/ (visited on 01/01/2018). 1

[51] M. F. P. O’Boyle, Z. Wang, and D. Grewe, “Portable mapping of data
parallel programs to opencl for heterogeneous systems,” in Code Gener-
ation and Optimization (CGO), IEEE, 2013. 8, 17

[52] A. Ozsoy, M. Swany, and A. Chauhan, “Pipelined parallel lzss for stream-
ing data compression on gpgpus,” in Parallel and Distributed Systems
(ICPADS), 2012 IEEE 18th International Conference on, IEEE, 2012,
pp. 37–44. 18

[53] R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens, Parallel
lossless data compression on the GPU. IEEE, 2012. 18

[54] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques, ACM,
2012, pp. 377–388. 10, 84

[55] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S. Schlansker, “Register al-
location for software pipelined loops,” in Programming Language Design
and Implementation (PLDI), 1992, pp. 283–299. 23

[56] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Principles of programming languages
(PoPL), 1995, pp. 49–61. 62

[57] D. Rolls, C. Joslin, and S.-B. Scholz, “Unibench: A tool for automated
and collaborative benchmarking,” in International Conference on Pro-
gram Comprehension (ICPC), IEEE, 2010, pp. 50–51. 36, 40

[58] D. Sampaio, R. M. d. Souza, S. Collange, and F. M. Q. Pereira, “Diver-
gence analysis,” in ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 35, 2013, p. 13. 9

[59] (). SDAccel Environment User Guide, [Online]. Available: https://

www.xilinx.com/support/documentation/sw_manuals/xilinx2016_

3/ug1023-sdaccel-user-guide.pdf (visited on 04/27/2017). 15

[60] H. Sharangpani and H. Arora, “Itanium processor microarchitecture,”
IEEE Micro, no. 5, pp. 24–43, Sep. 2000. 23

112

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://www.top500.org/news/oak-ridge-readies-summit-supercomputer-for-2018-debut/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_3/ug1023-sdaccel-user-guide.pdf

[61] K. Shastry, A. Pandey, A. Agrawal, and R. Sarveswara, “Compression
acceleration using gpgpu,” in High Performance Computing Workshops
(HiPCW), 2016 IEEE 23rd International Conference on, IEEE, 2016,
pp. 70–78. 12

[62] J. Shun and F. Zhao, “Practical parallel lempel-ziv factorization,” in
Data Compression Conference (DCC), 2013, IEEE, 2013, pp. 123–132. 12

[63] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A. Ross,
“Massively-parallel lossless data decompression,” in Parallel Processing
(ICPP), 2016 45th International Conference on, IEEE, 2016, pp. 242–
247. 12

[64] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in Science
& Engineering (CSE), vol. 12, no. 3, pp. 66–73, 2010. 19

[65] A. Stoutchinin and F. de Ferriere, “Efficient static single assignment
form for predication,” in ACM/IEEE International Symposium on Mi-
croarchitecture (MICRO), 2001, pp. 172–181. 64

[66] Top500 supercomputers, https://www.top500.org/, Accessed: 2018-
01-01, 2017. 1

[67] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a
holistic approach to auto-parallelization: Integrating profile-driven paral-
lelism detection and machine-learning based mapping,” in Programming
Language Design and Implementation (PLDI), Dublin, Ireland: ACM,
2009. 17

[68] M. Ujaldón, “Cuda achievements and gpu challenges ahead,” in In-
ternational Conference on Articulated Motion and Deformable Objects,
Springer, 2016, pp. 207–217. 92

[69] E. Velloso, A. Bulling, H. Gellersen, W. Ugulino, and H. Fuks, “Qualita-
tive activity recognition of weight lifting exercises,” in Proceedings of the
4th Augmented Human International Conference, ACM, 2013, pp. 116–
123. 97

[70] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout, “Non-affine
extensions to polyhedral code generation,” in International Symposium
on Code Generation and Optimization (CGO), 2014, p. 185. 10

[71] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenl-
lado, and F. Catthoor, “Polyhedral parallel code generation for CUDA,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 9, no. 4, p. 54, 2013. 10

[72] M. Vollmer, B. J. Svensson, E. Holk, and R. R. Newton, “Meta-programming
and auto-tuning in the search for high performance gpu code,” in Pro-
ceedings of the 4th ACM SIGPLAN Workshop on Functional High-Performance
Computing, ser. FHPC 2015, Vancouver, BC, Canada: ACM, 2015. 16

113

https://www.top500.org/

[73] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A
machine learning based approach,” in Principles and Practice of Parallel
Programming (PPoPP), Raleigh, NC, USA: ACM, 2009. 8, 17

[74] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen, “Complexity analy-
sis and algorithm design for reorganizing data to minimize non-coalesced
memory accesses on GPU,” in Principles and practice of parallel pro-
gramming (PPoPP), vol. 48, 2013, pp. 57–68. 9

[75] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt, “gpucc: An open-source
GPGPU compiler,” in International Symposium on Code Generation and
Optimization (CGO), 2016, pp. 105–116. 73

[76] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in GPUs: Char-
acterization, impact, and mitigation,” in High Performance Computer
Architecture (HPCA), IEEE, 2014, pp. 284–295. 50

[77] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka,
“Evaluating and optimizing OpenCL kernels for high performance com-
puting with FPGAs,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2016, 35:1–35:12. 15, 19, 20, 23, 33

114

	Introduction
	Background
	Accelerator Devices
	Graphics Processing Units (GPUS)
	Field-Programmable Gate Arrays (FPGAs)

	Accelerator Programming Languages
	CUDA
	OpenMP
	OpenCL

	GPU Divergence Analysis
	Software Compression
	Lossless Compression
	Parallel Compression
	Compression in Networking

	Related Work
	FPGA High-Level Synthesis
	Manually Optimized OpenCL
	Combined Host/Device Compilation

	GPU Parallelism Mapping
	GPU Divergence Analysis
	High-Speed GPU Compression

	A Case for Better Integration of Host and Target Compilation When Using OpenCL for FPGAs
	Introduction
	Optimizing OpenCL for FPGAs
	restrict Pointers to Enable Simultaneous Memory Operations
	Prefer Single-Work-Item kernels over NDRange kernels
	Pipelining Reduction Operations with Shifting Arrays

	Compiling OpenCL for FPGAs
	NDRange to Single Work-Item Loop (NDRangeToLoop)
	Reduction-Dependence Elimination
	Restrict Pointer Kernel Parameters

	Prototype Performance Study
	Benchmarks
	Reduction-Dependence Elimination Efficacy

	Concluding Remarks

	Automated GPU Grid Geometry Selection for OpenMP Kernels
	Introduction
	Mapping OpenMP to GPUs
	Nvidia P100 Geometry
	OpenMP 4 in LLVM/Clang

	Data Collection
	Best Discovered Grid Geometry Performance Relative to Compiler Default
	Threads Per Block
	Number of Blocks

	Modeling with Machine Learning
	Finding Additional Features
	Machine Learning Predictor Performance

	Production Heuristic
	Edge-Case: OpenMP SIMD
	Implications of Volta

	Concluding Remarks

	GPUCheck: Detecting CUDA Thread Divergence with Static Analysis
	Introduction
	Static Analysis Engine
	Thread-Dependence Analysis
	Arithmetic Control Form (ACF)
	Inter-procedural Arithmetic Control Form (IACF)

	Detecting Divergent Behaviour
	Divergent-Branch Analysis
	Non-coalescable Memory Access Analysis

	An LLVM Prototype for GPUCheck
	Evaluation
	Does GPUCheck provide similar results to dynamic profiling?
	Do the problems identified by GPUCheck reflect real performance opportunities?
	Is GPUCheck performant enough to be used during active development?

	Concluding Remarks

	Run-Length Base-Delta Encoding for High-Speed Compression
	A New Data Compression Algorithm
	RLBD Compression Format
	RLBD Compression and Decompression
	Serial Compression
	Serial Decompression

	GPU-Accelerated RLBD
	Parallel Compression

	Evaluation
	Is RLBD faster than traditional software compression schemes?
	What compression rates are required by modern supercomputing interconnects?
	Is RLBD compression effective on real-world data?
	What throughput improvements can be expected when implementing RLBD?

	Concluding Remarks

	Conclusion
	References

