Efficient Auto-Vectorization for Control-flow Dependent Loops through Data Permutation

by

Rouzbeh Paktinatkeleshteri

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Rouzbeh Paktinatkeleshteri, 2023
Abstract

The presence of control-flow divergence in loops can either hinder or impede auto-vectorization as a compiler transformation to exploit parallelism enabled by Single-Instruction Multiple-Data (SIMD) instructions. A solution is to linearize control flow through the use of predicated execution. However, computation resources are wasted when predicated instructions are executed but not committed because of a false predicate. Alternative approaches optimistically avoid predicated instructions when all conditions in a vectorized loop iteration evaluate to the same value. However, dynamic uniformity is less frequent in long vectors. Active-Lane-Consolidation (ALC) was proposed to form uniform vectors dynamically by merging active elements from different iterations. In its seminal presentation, ALC was only evaluated in a simulated environment through hand-modified programs. This thesis presents the first performance evaluation of ALC on real hardware which reveals that the original design of ALC indeed reduces the number of executed instructions, but it fails to provide speedup over auto-vectorized code. It then presents a change to the design of ALC that results in it outperforming auto-vectorized code and describes the first compiler-enabled transformation that applies ALC as a compiler optimization pass. The experimental results show that compiler-generated ALC code outperforms auto-vectorized code, produced by state-of-the-art compilers, by up to 79%.
Preface

An early version of the content in Chapter 2-5 of this thesis was submitted as R. Paktinatkeleshteri, J. P. L. De Carvalho, E. Amiri and J. N. Amaral “Efficient Auto-Vectorization for Control-flow Dependent Loops through Data Permutation” to CASCON 2023. The original idea of ALC was proposed by Praharenka et al. My role was to develop ALC as a compiler pass to apply it automatically to programs, to evaluate its performance on real hardware, and to propose transformations that were necessary in order for ALC to deliver performance in actual hardware. J. P. L. Carvalho made valuable contributions by offering recommendations in technical discussions and guiding the direction of the project. E. Amiri contributed by providing essential infrastructure support and engaging in technical discussions. J.N. Amaral supervised all aspects of the project, guiding the experimental methodology and enhancing the resulting manuscript.

This thesis extends the submitted paper with an in-depth discussion of ALC and the improvements proposed in this work (Section 3.3 and Section 3.4). Moreover, the evaluation in this thesis provides evidence of the broad applicability of ALC, which was not part of the paper submitted to CASCON 2023.
To my father,
Thank you for your belief in me and your constant presence whenever I needed your support.

To my mother,
Thank you for your unwavering love and endless sacrifices that molded me into the person I am now.

To my fiancée, Sormeh,
I have always sensed your presence despite the physical distance that separates us.
Acknowledgements

I would like to thank my supervisor, Dr J. Nelson Amaral, for all his indispensable guidance and exceptional teaching. His support and dedication has been invaluable in shaping my growth as a student. I would like to express my gratitude to my Co-Supervisor, João Paulo Labegalini de Carvalho, for all the great trainings he provided for me and insightful discussions. I want to thank my friends in the compiler lab at University of Alberta for all the discussions and great time we had. This includes Nathan, Ciao, Reza, Dhanraj and Patrick. I want to thank my supervisor at Huawei, Ehsan Amiri, for the support he provided and enlightening insights he shared through our conversations. I also want to thank Huawei Compiler team for giving the opportunity to work with. This research has been funded by the University of Alberta Huawei Joint Innovation Collaboration (UAHJIC). I would like to thank Stony Brook Research Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the innovative high-performance Ookami computing system, which was made possible by a $5M National Science Foundation grant (#1927880).
Contents

1 Introduction 1

2 Background 4
 2.1 Predication .. 4
 2.2 If-Conversion ... 5
 2.3 Branch-On-Superword-Condition-Codes 8
 2.4 Active-Lane-Consolidation 8

3 Efficient Active-Lane Consolidation 10
 3.1 Original ALC Design ... 10
 3.2 How Gather/Scatter Instructions Hurt ALC 14
 3.3 Efficient ALC via Data Permutation 17
 3.4 Single Control-Flow-Dependent Path Case 20

4 ALC as a Compiler Transformation 24
 4.1 ALC Analysis .. 24
 4.2 ALC Transformation .. 26
 4.3 Implementation in LLVM 27

5 Evaluation 28
 5.1 Setup ... 28
 5.2 Experimental Methodology 29
 5.3 Data Permutation: More Instructions But Better Performance 31
 5.4 Scatter Instructions Significantly Impact Performance 32
 5.5 Data Permutation Improves ALC 34
 5.6 Potential of ALC .. 38
 5.7 Conditionally Incremented Array Indexes 45

6 Related Work 47

7 Conclusion 51

References 52
List of Tables

3.1 Performance metrics when executing different versions of the loop in Listing 3.2: number of cycles to execute the loop (Total Cycles), number of executed instructions (Num. Exec. Instructions), cycles with no instruction completed (Stalled Cycles), and cycles stalled due to memory operations (Memory Ops. Stalled Cycles). Versions of the code: non-vectorized (Scalar), if-converted & vectorized (if-conv), Iterative-ALC with gather/scatter instructions (ALC), and Iterative-ALC with data permutation and without gather instructions (ALC+DP) 15

5.1 Comparison between ALC and state-of-the-art compilers on their ability to vectorize functions of TSVC benchmark 41
List of Figures

2.1 (a) Original CFG of Listing 2.1; (b) CFG after control-flow linearization (CFL); (c) CFG in (b) after inserting of all_true BOSCC. ... 6
2.2 All Possible Condition Distributions for Listing 2.1. Green elements represent vector lanes executing instructions of the then block, blue ones represent vector lanes executing instructions of the else block, and the gray elements show inactive lanes. . . . 7
3.1 Index Permutation: inactive elements are shown by gray color, while active elements are white. Given two vectors containing loop indices and their corresponding predicates, Permutation algorithm merges active elements into merge vector and puts all remaining ones into Rem vector. 11
3.2 Order of Gather Load micro-operations: The effective address for all target elements is calculated in the floating point unit. Memory is divided into equally sized chunks, and they are moved to the cache. Corresponding element(s) are then extracted from the cache line and moved to the result vector. 16
3.3 Data Permutation ... 17
3.4 Main loop blocks generated when compiling Listing 2.1 vectorization approach. In all three versions, r1, r2, and r3 are pointer registers, advanced on each iteration in the loop’s LATCH block (not shown), to array a, b, and c respectively. In both (b) and (c), vI is the index vector, vM is the merge vector, and vR is the remainder vector. Registers vxM and vxR are the merge and remainder vectors after permutation of vector register X. Instructions that are the same on different versions of the code are omitted — indicated with “//”. 19
3.5 Combining If-Conversion and ALC for the Single Control-Flow-Dependent Path Case: v1 and v2 are index vectors, and popcount is an instruction that counts the number of true predicates for a given vector. The If-Converted path is executed whenever the total number of active lanes is more than the VF(vector factor) otherwise, ALC path is taken at runtime. 21
3.6 Permutation algorithm for Single Control-Flow-Dependent Path case using SVE vector instructions. 23
5.1 Compilation process .. 30
5.2 ALC and Data Permutation speedups over If-Conversion for if-then-else micro-benchmark that has two CFDPs. 31
5.3 Ratio of dynamically executed instructions 32
5.4 Evaluation of the *if-then-else* micro-benchmark that has two CFDPs. All metrics are normalized with respect to *if*-converted code (*if-conv*). ... 33
5.5 Data Permutation and ALC Speedups in the presence of fewer Scatter instructions .. 34
5.6 Ratio of dynamically executed instructions .. 35
5.7 Evaluation of the *if-then-else* micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to *if*-converted code (*if-conv*). 36
5.8 ALC and Data Permutation speedups over If-Conversion for *if-then* micro-benchmark that has only one CFDPs. 36
5.9 Ratio of dynamically executed instructions 37
5.10 Evaluation of the *if-then-else* micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to *if*-converted code (*if-conv*). 37
5.11 Data Permutation and ALC Speedups in the presence of fewer Scatter instructions for *if-then* 38
5.12 Ratio of dynamically executed instructions 38
5.13 Evaluation of the *if-then-else* micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to *if*-converted code (*if-conv*). 39
Acronyms

ALC Active Lane Consolidation
ArmIE Arm’s Instruction Emulator
BOSCC Branch On Superword Condition Codes
CFDP Control Flow Divergent Path
CFG Control Flow Graph
CFL Control Flow Linearization
GCC GNU Compiler Collection
IR Intermediate Representation
ISA Instruction-Set Architecture
LLVM Low Level Virtual Machine
PAPI Performance Application Programming Interface
SIMD Single Instruction Multiple Data
SLP Superword Level Parallelism
SVE Scalable Vector Extension
TSVC Test Suite for Vectorizing Compilers
VF Vector Factor
VL Vector Length
Chapter 1

Introduction

Compilers have been successful in performing auto-vectorization for exploiting data-parallelism using Single-Instruction Multiple-Data (SIMD) instructions for decades [11], [13], [18], [22]. However, control-flow divergence in loops, found in scientific and high-performance applications, can hinder or stop compilers from generating SIMD instructions [1], [15].

Compilers address this issue by using predicated instructions that have an extra operand, a predicate register or predicate, that holds the value of the condition that needs to be true for the instruction to commit [1], [9], [15], [19], [20]. When a predicate is false, the corresponding data element is inactive with respect to predicate instructions. Vector predicates are bit vectors, where each lane of the predicate vectors indicates if the corresponding lane in the associated data vector registers is active. An entire basic block may be guarded by the same predicate register. Although control-flow linearization (CFL) enables vectorization, the linearized code executes computations on vector registers with inactive lanes, wasting computational resources.

Some techniques that address CFL limitations in vectorized code require the predicate vector to be dynamically uniform: all lanes for a given vector operation must be either active or inactive [12], [14]. With the emergence of modern vector extensions that provide longer vector registers such as Intel’s AVX512 and ARM SVE, the great interest in utilizing SIMD instructions and leveraging its full capabilities has returned to both industry and academia. These architectures expand the processor’s vector units to perform parallel operations on a much
larger set of data, resulting in higher degrees of parallelism. Although it will allow the processor to process more data simultaneously, dynamic uniformity becomes less likely to occur. Thus, a naive use of control-flow linearization and other proposed techniques that rely on the uniformity of the vectors will face considerable performance degradation.

Praharenka et al. proposed Active-lane Consolidation (ALC) to address these issues [17]. The idea of ALC is to form uniform vectors dynamically by merging active lanes from different iterations. ARM SVE offers a set of specific predicated vector instructions that efficiently move data between vector and predicate registers. Wyatt et al. utilized these instructions in their proposed approach to effectively form uniform vectors by moving data between vector lanes. However, the seminal presentation of ALC only evaluated it in a simulation environment using hand-modified programs, as no commercial hardware supporting SVE was available at the time.

This work presents the first evaluation of ALC on hardware — this evaluation is performed in the Fujitsu A64FX processor, the first processor to implement ARMv8.2-A SVE instruction — and the first automated code generation for ALC in the LLVM open-source compiler.

Our evaluations reveal that the assumptions made in the original ALC design about the latency of gather and scatter instructions are far from the actual latency that happens in real hardware. In practice, these instructions introduce a significant overhead that outweighs the benefits that come from executing non-predicated uniform code. Thus, the work also presents a redesign of ALC that leads to performance improvements over LLVM’s existing vectorization technique for some cases.

Moreover, we show that when ALC is applied to the loops that contain only a single control-flow-divergent path (e.g. single if statement) there are fewer opportunities for improvements and the original design of ALC would fail to generate efficient code. As a result, we propose a specialized version of ALC to benefit from both ALC and if-conversion techniques.

As such, the main contributions of this thesis are:
• The first in-depth performance analysis of different implementations of ALC executing in a processor that implements SVE that reveals limitations in the original ALC design (Chapter 3);

• A design improvement to ALC that uses data-permutation instructions instead of gather instructions and leads to the generation of code that is up to $4\times$ faster than the original design (Section 3.3);

• The first automated generation of ALC code via a compiler transformation that generates code that is up to 79% faster than if-converted code produced by ARMClang, a production-ready compiler (Chapter 4);

• An ALC code-generation algorithm, specialized for the case where there is only a single control-flow-divergent path in the target loop, that combines the best of ALC and if-conversion (Section 3.4); and

• A discussion of remaining challenges in the path toward applying ALC to broader loop patterns (Section 5.7).

The rest of the thesis is organized as follows: Chapter 2 provides backgrounds on vectorization and predication mechanism, Chapter 3 explains Active-Lane-Consolidation as proposed by Praharenka et al., demonstrates the overhead of gather/scatter operations and presents Data Permutation as a technique to eliminate gather instructions. The chapter also presents a novel approach to combine ALC and if-conversion for a specific case. Chapter 4 explains in detail how ALC and Data Permutation are implemented and finally Chapter 5 assesses Data Permutation performance and applicability on a set of micro-benchmarks and TSVC benchmark suite.
Chapter 2

Background

Single-Instruction Multiple-Data (SIMD) parallelism is available on modern processors through vector units. The vector instructions executed in these units encode operations to be performed on vector registers. Each data item in a vector register occupies a vector lane, or lane. The length of vector (VL) is the number of bits in a vector register, while the number of data items in a vector register is the vector factor (VF). Traditionally, VL was a constant known at compilation time, however novel Instruction-Set Architecture (ISAs) have vector-length agnostic vector instructions where the VL is not known at compilation time — and can even be changed at runtime by the hypervisor. An example of such a design is the ARM Scalable Vector Extensions (SVE) available on ARM v8.3 & v9 processors and Fujitsu’s A64FX\(^1\).

2.1 Predication

Modern processors use predication as a means to convert control-flow dependence into data dependence. A predicated instruction is an instruction guarded by a one-bit predicate which determines whether it should be committed or not.

Vector units may also have predicate vectors, which are bit-vector registers where each bit indicates if a corresponding lane of the vector register is active. Instructions that accept predicate registers are known as predicated instructions, and they only operate on active lanes — inactive lanes are left unchanged.

\(^1\)At the time of writing, A64FX is the only available processor that supports SVE.
Predicated instructions can be used to enable the vectorization of loops that contain control-flow instructions.

```c
1 for (i = 0; i < n; i++) {
2   if (a[i] < b[i]) {
3       a[i] = b[i] * c[i];
4   } else{
5       b[i] = a[i] + c[i];
6   }
7 }
```

Listing 2.1: A control-flow divergent loop.

2.2 If-Conversion

In a loop with *divergent* control flow, different iterations of the loop may execute instructions from different paths in the loop’s **Control-Flow Graph** (CFG). Divergent control flow may be an obstacle to the vectorization of a loop. Common programming-language constructs, such as *if-then-else* and *switch-case* statements may introduce divergence. Modern compilers are able to vectorize some control-flow divergent loops after applying a **Control-Flow Linearization** (CFL) technique known as If-Conversion. If-Conversion transforms control-flow dependencies into data dependencies [1], [15]. For instance, consider the *for*-loop in Listing 2.1 and its CFG in Figure 2.1a. The statements on Line 3 and Line 5 are control-flow dependent on the condition in Line 2. CFL eliminates control flow by first computing a predicate register for each possible path. Then the instructions on each basic block are guarded with the predicate registers that correspond to the condition that needs to be true for that block to be executed. For example, instructions in block B_1 are predicated with a predicate register p_t, where $p_t = (a[i] < b[i])$. B_2 are predicated with
Figure 2.1: (a) Original CFG of Listing 2.1; (b) CFG after control-flow linearization (CFL); (c) CFG in (b) after inserting of all_true BOSCC.
a predicate register p_f, where $p_f = (a[i] \geq b[i]) = \neg p_t$. Figure 2.1b shows the CFG in Figure 2.1a after CFL, where predicated blocks are denoted by prefixing the original block name with their corresponding predicate register.

Once the body of a loop is linearized via CFL, vectorization proceeds with the conventional recipe followed by most modern compilers, which consists of widening scalar operands into vector operands and replacing scalar operations with their equivalent vector versions. Scalar predicate registers are replaced with vector predicate registers. Predicated execution, or simply *predication*, of scalar instructions is supported on modern processors via predicated instructions. For vector instructions, predication is supported via predicated vector instructions or bit-wise vector instructions, in a process known as *masking*.

Although CFL enables the use of SIMD instructions, it clearly wastes resources and computational cycles because all instructions from each mutually exclusive path will be executed but only one path will have their computations committed.

Figure 2.2 shows all possible combinations of predicates in each vector loop iteration. As illustrated, regardless of how predicates are distributed among the
mask vector, half of the computation power is always lost due to predication (gray elements). This is particularly true when the number of instructions in both the then and the else blocks is approximately the same, which is often the case. Furthermore, the problem is even further intensified when we face unbalanced conditions, where we have to execute one of the two paths more than the other one. In such cases, the effect of predication could become more significant, as we might end up losing more computation power due to a large number of inactive lanes.

2.3 Branch-On-Superword-Condition-Codes

Generating Branch-On-Superword-Condition-Codes (BOSCCs) is a common technique to avoid executing instructions from paths where vector lanes would be inactive [9], [19], [20]. BOSCCs are instructions, or a sequence of instructions, that dynamically checks the uniformity of predicate registers. In a uniform predicate register the condition evaluates to the same value — all true or all false — for all lanes. In such cases, only the instructions corresponding uniform path, true path or false path, need to be executed. For example, after vectorization, in Figure 2.1b if \(p_t \) is a uniform true vector, then only instructions in \(B_1 \) need to be executed and instructions in \(B_2 \) can be skipped. Figure 2.1c shows the CFG in Figure 2.1b after BOSCCs are inserted by the compiler. As Figure 2.1c shows, an all_true guard condition is generated to check if \(p_t \) is a uniform true vector. In such a case, the control flow is directed to a uniform block \(uB_1 \), that only contains instructions from block \(B_1 \). When \(p_t \) is a uniform true vector, the instructions in block \(B_2 \) can be skipped because \(p_f = \neg p_t \), and thus all lanes would be inactive.

2.4 Active-Lane-Consolidation

The insertion of BOSCCs can improve SIMD utilization and reduce the number of wasted cycles by avoiding executing vector instructions with all lanes inactive. However, the benefits of BOSCCs can only be observed if uniform vectors occur frequently. If uniformity is rare, then the use of BOSCCs does not increase
SIMD utilization [17]. Moreover, the likelihood of uniformity decreases with increased VL, thus uniform predicate vectors are less likely to be found for architecture with long vectors — e.g. AVX512 and Fujitsu A64Fx. **Active-Lane Consolidation** (ACL) is an algorithm proposed to increase SIMD utilization even in the presence of infrequent uniform vectors and architectures with long vectors [17]. At the core, ACL is a permutation algorithm that creates uniform vectors by merging active lanes from two, or more, non-uniform vectors into a **merged vector**. Permutation enables ALC to only execute non-predicated blocks with the constructed uniform vector and effectively avoid executing linearized code.

Praharenka et al. propose ALC as an algorithm and manually apply it to each evaluated benchmark. This work presents the first compiler-only optimization pass that automatically applies ALC to a loop that contains divergent control flow. Furthermore, during the seminal work of Praharenka et al. they had no access to a processor that implements SVE. Therefore, all their experimental results are based on simulations conducted with the ARM Instruction Emulator (ArmIE) and Praharenka et al.’s work only shows improvements in terms of the reduction in the number of executed instructions. Our performance study on a hardware implementation of SVE revealed that some of the estimates for the latency of instructions used by Praharenka et al. were significantly off. This work shows that accounting for the actual instruction latencies in a hardware implementation of ALC requires a redesign of aspects of ALC. To the best of our knowledge, this thesis is the first to show ALC’s performance on real hardware. Moreover, it identified limitations on the original algorithm that will be discussed in the following chapter.
Chapter 3

Efficient Active-Lane Consolidation

This chapter presents an ALC design that addresses key limitations in Praharenka et al.’s initial design [17]. After a review of the original ALC design (Section 3.1), Section 3.2 presents evidence that the higher-than-anticipated cost of the gather/scatter instructions renders Praharenka et al.’s ALC ineffective. The approach proposed in this work to eliminate gather/scatter instructions is presented in Section 3.3. Lastly, Section 3.4 describes a novel algorithm that extracts the best of both ALC and control-flow linearization in a common case when loops have only a single control-flow-divergent path (CFDP).

3.1 Original ALC Design

Praharenka et al. propose two variations of ALC: Unroll-ALC and Iterative-ALC. In both versions, ALC is applied after if-conversion. In the Unroll-ALC, the if-converted and vectorized loop is unrolled once and two index vectors are formed, one for each iteration of the loop before unrolling. Each index vector is initialized such that each lane contains the value of the loop’s induction variable of each scalar iteration.

At the heart of ALC is the Permutation algorithm which tries to create a uniform vector with minimal overhead from two vectors and their corresponding predicates. Figure 3.1 shows how active elements of two index vectors are merged together to form a uniform vector.
In Praharenka et al.'s work, the path that is most likely to be taken across all iterations of the loop is chosen for consolidation based on profiling information. Then two predicate vectors are formed by evaluating the condition to execute that path. After doing permutation, all vector operations in the consolidated path operate with uniform vectors without predication. This thesis focuses on cases with small (< 3) paths and thus consolidation is applied to all paths.

Once the predicates are formed, the index vectors are permuted such that all active lanes are consolidated into a *merged vector* v_M. The inactive lanes are kept in a *remainder vector* v_R. Finally, if the v_M is uniform, then the consolidated uniform path is executed. Otherwise, the *if*-converted path is executed. The main difference between Unroll-ALC and Iterative-ALC is that, in Iterative-ALC, the *if*-converted and vectorized loop is not unrolled. Instead, the active lanes from multiple iterations are merged into v_M until v_M is a uniform vector. Only then the consolidated uniform path is executed. Iterative-ALC works well for loops with a conditional that contains vectorizable code in both the then and the else block. In this case, *then* lanes are consolidated into v_M, and *else* lanes are consolidated into v_R. Whenever either v_M or v_R is full, the corresponding code can be executed in a uniform vector.

In both versions, any data that is dependent on the loop indices — e.g. arrays a, b, and c in Listing 2.1 —, are loaded using gather-load instructions because a consolidated vector might contain non-consecutive indices. A
gather-load instruction loads data from (potentially) non-consecutive addresses calculated by adding a base-pointer operand to each index in the index-vector operand.

Similarly, any write-back to memory needs to be performed via scatter-store instructions, which also can write into non-consecutive memory addresses. By design, the use of gather/scatter instructions is unavoidable in Praharenka et al.’s ALC. In Section 3.2, experimental results show that gather/scatter instructions can render ALC ineffective on real hardware with SVE.

Listing 3.1 shows the loop in Listing 2.1 after a version of iterative ALC is applied to it. The two paths inside the loop are consolidated. Once the permutation is done in each iteration of the loop, there will always be either a uniform active vector (vM) or a uniform inactive vector (vR). As a result, one of then or else blocks will be executed in each iteration with no predication. As discussed, every load and store operation inside then and else blocks is done through gather and scatter instructions.
/* Initialization */
idxM = index(0, VL);
a_0 = vld(a[0]);
b_0 = vld(b[0]);
pred_M = a_0 < b_0;

/* VL is Vector Length and N is the total number of loop iterations */
for (int i = VL; i < N; i += VL) {
idxR = index(i, VL);
a_i = vld(a[i]);
b_i = vld(b[i]);
pred_R = a_i < b_i;

vM, vR, cond_M, cond_R = Permute(idx_M, idx_R, pred_M, pred_R);
if(cntp(cond_M) == VL){
	/* execute if block without predication */
	b_v = gather(&b, vM);
c_v = gather(&c, vM);
mul_v = b_v * c_v;
scatter(&a, vM, mul_v);
idxM = vR;
pred_M = cond_R;
}else{
	/* execute else block without predication */
	a_v = gather(&a, remaining_vec);
c_v = gather(&c, remaining_vec);
add_v = a_v + c_v;
scatter(&b, remaining_vec, add_v);
idxM = vM;
pred_M = cond_M;
}
}

Listing 3.1: ALC applied to the loop in Listing 2.1.
3.2 How Gather/Scatter Instructions Hurt ALC

```cpp
for (int i = 0; i < n; i++) {
    if (cond[i]) {
        b[i] = a[i];
    }
}
```

Listing 3.2: Simple conditional copy loop.

In order to understand the prohibitive overhead of gather/scatter instructions in ALC’s performance, consider the simple loop in Listing 3.2. The loop conditionally copies elements from array `a` to array `b`, both are 32-bit integers. An element `a[i]` is copied to `b[i]` if, and only if, the value in `cond[i]` is true. Table 3.1 shows performance metrics for different versions of the loop in Listing 3.2. For the results in Table 3.1, the `cond` array was initialized such that every other element has a true value (50% sparsity). The results were obtained following the methodology in Section 5.2. Both ALC and ALC+DP versions are generated by the compiler pass described in Chapter 4.

Unsurprisingly, all vectorized versions of the loop — `if-conv`, ALC, ALC+DP — execute fewer instructions than the Scalar code. Each vector instruction in the loop operates on 16 32-bit integers at a time (`VL = 512` bits). However, ALC is more than 66% slower than Scalar, even while it executes $14 \times$ fewer instructions, because ALC causes $10 \times$ more stalls than the Scalar code. More than half of the stalls are due to waiting for data from memory. The main culprits are the gather/scatter instructions because they require multiple load/store ports instead of a single port as regular vector loads [4]. In addition, in the current ARM vector-unit design, the address calculations for gather/scatter instructions are executed in the floating-point vector units [4], which have higher latency than the integer operations used for regular vector loads/stores.

Figure 3.2 depicts micro-operations done to execute a single gather load
Table 3.1: Performance metrics when executing different versions of the loop in Listing 3.2: number of cycles to execute the loop (*Total Cycles*), number of executed instructions (*Num. Exec. Instructions*), cycles with no instruction completed (*Stalled Cycles*), and cycles stalled due to memory operations (*Memory Ops. Stalled Cycles*). Versions of the code: non-vectorized (*Scalar*), *if*-converted & vectorized (*if-conv*), Iterative-ALC with gather/scatter instructions (*ALC*), and Iterative-ALC with data permutation and without gather instructions (*ALC+DP*).

<table>
<thead>
<tr>
<th>Version/Metric</th>
<th>Loop Cycles</th>
<th>Num. Exec. Instructions</th>
<th>Stalled Cycles</th>
<th>Memory Ops. Stalled Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td>132M</td>
<td>224M</td>
<td>21M</td>
<td>1.6M</td>
</tr>
<tr>
<td>if-conv</td>
<td>14M</td>
<td>14M</td>
<td>9M</td>
<td>1.2M</td>
</tr>
<tr>
<td>ALC</td>
<td>220M</td>
<td>16M</td>
<td>210M</td>
<td>110M</td>
</tr>
<tr>
<td>ALC+DP</td>
<td>58M</td>
<td>63M</td>
<td>38M</td>
<td>1.3M</td>
</tr>
</tbody>
</table>

instruction. The processor first divides the array’s memory space into equally sized chunks that fit into a cache line. Chunks that contain elements that are the target of the gather instruction are then moved to the cache. This requires calculating the memory address of each single element to be accessed. Address calculations are done in floating point operation pipeline [4] which increases the latency. Once a cache line is brought into the cache, desired elements are extracted and moved to the result vector.

All these operations are done for executing a *single* gather load instruction. There are two sources of performance degradation upon executing these operations: 1. latency of accessing different locations in the memory and bringing them into the cache and 2. keeping floating point unit busy for address calculations.

The significant number of stalled cycles shown in Table 3.1 is a direct result of the first issue. Moreover, processors typically try to execute other non-memory-access instructions that do not depend on the result of the load instruction to avoid stalls while waiting for the memory operations to finish. However, for the gather load instruction, keeping floating point unit busy due to address calculations would disable the processor to do so, resulting in
Figure 3.2: Order of Gather Load micro-operations: The effective address for all target elements is calculated in the floating point unit. Memory is divided into equally sized chunks, and they are moved to the cache. Corresponding element(s) are then extracted from the cache line and moved to the result vector.

significant stalled cycles even if the loop contains many arithmetic instructions.

When Praharenka et al. evaluated their design, they had no access to hardware and thus based their evaluation on counting the number of instructions executed in a simulator. Table 3.1 are the first results, obtained in real hardware with SVE, that show that the reduction in the number of instructions enabled by Praharenka et al.’s ALC design does not translate into faster execution. Therefore, for an ALC design to have a chance at being faster than if-converted and vectorized code, gather/scatter instructions need to be avoided or eliminated. Section 3.3 discusses how gather instructions can be eliminated. Section 5.4 shows empirical results which indicate that reducing
the number of scatter stores also improves ALC’s performance.

3.3 Efficient ALC via Data Permutation

Permuting both the indices and data vectors eliminates gather instructions. Figure 3.3 shows how gather load instructions discussed in Figure 3.2 can be broken into multiple regular vector-load instructions, from different loop iterations, and how the final result vector can be formed through permuting loaded data.

Data permutation and index permutation happen *simultaneously*. This means that all indices that need to be loaded are not known initially, but as
we iterate the vector loop, we find the indices we need to load. This can be seen in the figure where in each iteration, Desired Indices is filled gradually.

1 Initially, the first four elements are loaded into L1 cache and 2 then transferred to a vector register, knowing that only the first element is desired. 3 Next iteration loads the next four elements into another vector register, which now contains two desired elements. 5 These two loaded vectors are then permuted. The resulting register has three elements of those we are looking for. 5, 6, 7 The third iteration loads a vector that none of whose elements are desired so after the permutation, 8 we obtain the same resulting vector. Finally, 9, 11 the last four elements are loaded and undergo permutation, 11 resulting in a vector filled with desired elements.

Replacing gather loads with data permutation could improve performance in several ways: (i) All load instructions now load from consecutive memory addresses, thus removing the need to compute an address for each element and allowing the processor to execute other instructions while waiting for the data to be transferred from memory because the floating-point unit is no longer busy with address computations. (ii) The latency of each load is significantly smaller because it is served from a single cache line. (iii) The processor can effectively utilize prefetching and take advantage of spatial locality because it loads from consecutive addresses.

Figure 3.4 contrasts the differences in the code generated by the compiler from the example code in Listing 2.1. In Figure 3.4b the data for both consolidated paths are loaded with gather instructions by using the permuted index vector vM. In contrast, ALC+DP eliminates gather instructions by also permuting the data vectors (v1, v2, and v3), as Lines 6-8 in Figure 3.4c shows. As a result, ALC+DP benefits from the same spatial locality and data prefetching as the if-converted code (Figure 3.4a). When vM is not uniformly true, then it is guaranteed that vR is uniformly false because there are only two CFDPs. This observation allows the compiler to generate an optimized version of Iterative-ALC where loads for the first iteration of the loop are peeled. In Figure 3.4b and Figure 3.4c vM is initialized with the index vector of from the peeled iteration. Similarly, vectors v1M, v2M, and v3M are initialized with
Figure 3.4: Main loop blocks generated when compiling Listing 2.1 vectorization approach. In all three versions, r1, r2, and r3 are pointer registers, advanced on each iteration in the loop’s LATCH block (not shown), to array a, b, and c respectively. In both (b) and (c), vI is the index vector, vM is the merge vector, and vR is the remainder vector. Registers vXM and vXR are the merge and remainder vectors after permutation of vector register X. Instructions that are the same on different versions of the code are omitted — indicated with “//”.

(a) if-conv.
(b) ALC.
(c) ALC+DP.
the data loaded from a, b, and c as in the first iteration of the if-converted & vectorized loop (Figure 3.4a). With the above optimization, most loop iterations operate with fully uniform vectors leading to better utilization of the SIMD units.

Table 3.1 shows that eliminating gather instructions via data permutation (ALC+DP) significantly improves the performance of ALC. In particular, ALC+DP has over $5 \times$ less stalled cycles and executes in $3.8 \times$ fewer cycles than ALC, even though it executes almost $4 \times$ more instructions. This result indicates that reducing the number of executed instructions does not necessarily translate into better performance. Moreover, ALC+DP has over $84 \times$ fewer stalls due to waiting for memory operations, as Table 3.1 shows. Memory stalls are significantly reduced because data vectors are loaded from consecutive memory locations, which benefit from the higher spatial locality and more accurate prefetching. On the other hand, gather instructions suffer from higher latencies in the address calculation and poor spatial locality of data elements. Therefore, the results in Table 3.1 indicate that trading off the execution of more instructions with avoiding gather instructions pays off. Data permutation adds vector-vector instructions, which have significantly lower latency than sophisticated memory instructions, such as gather/scatter instructions [4].

Table 3.1 shows that ALC+DP does not perform better than if-conv for the code in Listing 3.2. There is little room for ALC to save cycles by not executing vector instructions with inactive lanes because the simple loop does not perform enough work. ALC can only outperform if-conversion and vectorization on loops that have a sufficient number of instructions to hide the permutation overhead. In addition, a greater number of instructions on CFDPs translates to more saved cycles, and fewer executed instructions, for loops with mutually exclusive paths.

3.4 Single Control-Flow-Dependent Path Case

Loops with a single CFDP, as the example in Listing 3.2, are a special case where the ALC design can be modified to extract the best of both if-conversion
Figure 3.5: Combining If-Conversion and ALC for the Single Control-Flow-Dependent Path Case: $v1$ and $v2$ are index vectors, and \texttt{popcount} is an instruction that counts the number of true predicates for a given vector. The If-Converted path is executed whenever the total number of active lanes is more than the VF (vector factor) otherwise, ALC path is taken at runtime.

and ALC. In such loops, vector lanes are wasted with inactive elements, but the instructions on the single CFDP are the only source of wasted operations. Therefore, if-conversion and vectorization is a good solution when the majority of lanes in the predicate vector are active, but in the complementary case — loops with very sparse predicate vectors — if-converted and vectorized code executes a significant number of instructions that waste vector lanes.

With this in mind, the ALC algorithm needs to be modified such that it benefits from both permutation and if-conversion. Prior to index and data vector permutation, in each iteration, the number of active lanes can be calculated via population-count instructions that are available on most modern ISAs (e.g. ARMv8.2-A & v9). If there are more active elements than the $vector factor$ (VF) on both index vectors, then the if-converted code is executed, resulting in few wasted lanes. Otherwise — when there are fewer active lanes
than VF — an ALC path is executed where vectors are permuted and the consolidated-uniform path is executed when the predicate vector is uniform. Figure 3.5 shows a diagram which illustrates the approach.

Another benefit of combining ALC with if-conversion is a considerable reduction in permutation overhead. In the original algorithm for permutation, we needed to compute two vectors v_M and v_R and their corresponding predicate vectors. However, in this case v_R will be fully inactive because the vector permutation only happens when fewer than VF lanes are active. Therefore, there is no need for the compiler to emit instructions to produce v_R and its predicate vector.

Figure 3.6 presents the new permutation algorithm. The inputs to the algorithm are two vectors with their corresponding predicate vector, where we know that the total number of active elements in both vectors are less than the VF. After Permutation, there will be a Merge vector (v_M) containing the consolidated active elements and its corresponding predicate vector (p_M). The new Permutation algorithm results in reduction in instruction overhead of the permutation logic by 50%.
Figure 3.6: Permutation algorithm for Single Control-Flow-Dependent Path case using SVE vector instructions.
Chapter 4

ALC as a Compiler Transformation

Like most optimizations in modern compilers, the ALC transformation is designed with two components: (i) an analysis that identifies candidate loops to apply ALC based on loop features, such as the number of instructions on each CFDP and the CFG complexity (Section 4.1); and (ii) a transformation that applies active-lane consolidation to candidate loops that have enough instructions in each CFDP and low memory-to-compute instruction ratio to amortize vector-permutation costs (Section 4.2).

4.1 ALC Analysis

The main goals of the analysis are two-fold: 1. to identify candidate loops to apply ALC by checking for the legality of applying ALC; and 2. decide if a given candidate would benefit from the ALC transformation. It is legal to apply ALC to a loop L with control-flow divergence if L does not have loop-carried dependencies and only contains calls to vectorizable functions without side effects (e.g. square-root and sine & cosine). Similar to other forms of vectorization such as loop vectorization and SLP vectorization, ALC cannot be applied to loops with loop-carried dependencies because instructions from different iterations that depend on each other, usually, cannot execute in parallel in a SIMD fashion. The ALC analysis relies on existing data-dependency analysis available on modern compilers to identify loops without
loop-carried dependencies. A data-dependency analysis may return a *may depend* answer because of unresolved alias relationships and, in that case, the compiler must conservatively not apply the transformation [7], [10].

The cost portion of the profitability analysis for ALC uses the estimated cost of executing the new instructions required to perform index and data-vector permutations for ALC minus the instructions that are eliminated by ALC. The estimated execution latency of instructions is generally available in a modern compiler because the same information is used in other transformations, such as the creation of an efficient instruction schedule. The benefit of ALC results from the increased utilization of SIMD units due to the consolidation of loop iterations with the same predicate on the same vector. Thus the benefit depends on the number of instructions and on the latency of the instructions executed in each of the control-flow paths in the loop. The distribution of true and false predicates in the iterations of the loop also affects the benefit of ALC. However, this information can usually only be obtained from profiling, thus it is not used in the profitability analysis for static compilation.

Empirically, and as the results in Chapter 5 support, the following factors are key when making the decision of whether or not to apply ALC: 1. Number of instructions on each CFDP; 2. Number of store operations in the loop (See Section 5.4); 3. Complexity of Loop’s CFG (See Section 5.5). ALC should be applied to loops that have enough instructions in each CFDP so that the overhead of index and data-vector permutation can be amortized. As the results in Section 3.2 indicate, gather/scatter instructions can significantly hurt ALC’s performance. Although gather instructions can be eliminated through data permutation, it is not possible to avoid all scatter instructions. Therefore, a loop that has a high ratio of memory-access instructions to compute instructions is not likely to benefit from ALC. In the current prototype, a conservative approach is used due to the absence of accurate branch probability information: ALC is only applied to loops with two, or fewer, CFDPs. Future development may seek to integrate branch probability information in the profitability analysis of ALC or may explore a more aggressive application of ALC even in the absence of such information. If the compiler does not know which path is more likely
to be taken, then active-lane consolidation needs to be applied for each CFDP. Such unbounded application of ALC is not likely to achieve better performance than if-converted code because of the permutation costs for all paths. Except for the branch probabilities, all other information can be obtained statically by a compiler, avoiding any need for profiling, in contrast to Wyatt et al.’s work [17].

In some loops with more than two CFDPs, it may be legal to apply loop fission to generate multiple loops in such a way that at least some of the resulting loops have two or fewer CFDPs. The condition to apply loop fission to a loop is that no loop-independent dependency may cross the point where the loop is split. Profitability analysis for loop fission has to take into account that after fission some loops may exhibit worse cache locality, for instance when different paths use/load the same data. The study of combining loop fission with ALC is not investigated in this thesis.

4.2 ALC Transformation

The actual loop transformation to perform ALC is quite straightforward. First, scalar instructions that compute the conditions that control each CFDP are replaced with their vector equivalents, forming predicate vectors. After that, if the loop being transformed has only a single CFDP, then the transformation produces the code that chooses between the if-converted path and ALC path, as discussed in Section 3.4. For loops with two CFDPs, the code produced chooses between one of the two consolidated uniform paths (see Section 3.3). Then, for each CFDP, a consolidated uniform path is generated by traversing each scalar instruction in the path and generating its vector equivalent. After that, and only if the loop has a single CFDP, the transformation generates the if-converted path. For loops with a number of iterations that is not a multiple of VF, the transformation generates a remainder scalar loop to process the remaining elements. Loops with fewer than VF elements are left untouched by the ALC transformation.
4.3 Implementation in LLVM

A prototype implementation developed in LLVM is used to evaluate both ALC
analysis and transformation passes in this work. LLVM is a de-facto standard
compiler framework widely used by both industry and academia. The ALC
analysis reuses the memory dependency and alias analysis used by LLVM’s loop
vectorized pass to determine if loops are loop-carried dependency free. Both
analysis & transformation are passes in LLVM’s intermediate representation
(IR) level. For now, the transformation pass only generates code for ARM SVE
architecture, and it accomplishes this by using SVE intrinsics available at IR
level in LLVM. However, all architecture-specific intrinsic calls are generated
through an interface that, with minimum effort, can be extended to generate
code for other architectures that also support SVE.
Chapter 5
Evaluation

This section evaluates ALC as a compiler transformation by applying data permutation to a set of control-divergent loops and comparing its effectiveness to previous implementations of ALC and to code generated by existing production compilers. This evaluation aims to answer the following questions:

1. Can Data Permutation improve ALC performance by reducing memory stalls?
2. Do scatter instructions impact ALC’s performance?
3. Should ALC be applied on loops with a single CFDP?

The results indicate that data permutation leads to a significant speedup of up to 79% over if-converted code and outperforms state-of-the-art compiler-based approaches.

5.1 Setup

The experiments run on a machine equipped with a Fujitsu A64FX locked at the frequency of 1.8GHz that has access to 32GiB of RAM and runs Rocky Linux (release 8.4). A64FX is the first processor that implements ARMv8.2-A SVE instruction and it operates with 512-bit vector registers. The evaluation micro-benchmarks were developed in-house and are written in the C language. Each micro-benchmark is designed to be representative of application code and to ease the identification and measurement of factors that impact the performance of both if-converted code and ALC-transformed code. The seminal work of Wyatt et al. predicted the performance of ALC using hand-
modified versions of applications in the SPEC CPU2017 benchmark suite running on a functional simulator [21]. Those modifications included removing control-flow dependent paths that execute I/O operations — a transformation that cannot be safely implemented in a compiler because it alters the behavior of the program. This thesis aims to evaluate the automated generation of ALC code by a compiler transformation pass and thus can only be applied to programs to which the compiler can safely apply ALC without user intervention. The micro-benchmarks used in this evaluation are comprehensive and share characteristics with loops found in the SPEC CPU2017 benchmark Suite. The limitations and challenges of the current ALC implementation are discussed in Section 5.7.

The evaluation micro-benchmarks consist of loops that contain either an \texttt{if-then-else} or a single \texttt{if} statement. Two micro-benchmarks help understand the impact of the factors discussed in Section 4.1: 1. \texttt{if-then-else} contains a loop that executes N times with two CFDPs in its body. Each CFDP has: 20 arithmetic, 2 load, and 3 store instructions; 2. \texttt{if-then} also contains a loop that executes N times but with a single CFDP, which has: 20 arithmetic, 2 load, and 3 store instructions. N is set to five million for all experiments. Complete source code of ALC’s LLVM IR pass and evaluation micro-benchmarks is available as part of this thesis ARTIFACT1. All source code is compiled with Clang/LLVM version 15.0.02 and highest optimization level enabled (\texttt{-O3}).

5.2 Experimental Methodology

Results presented in the following sections are the average of one hundred executions of each program. Very little variation was observed between measurements. In most cases, the confidence interval was below 2%. For the memory stalls and idle cycles, the variations were up to 8% in some cases, but the difference between bars in the figures are still meaningful. Performance metrics

1e8700cb320f3942eb3dfe9a5855587167243a086d
261ba2f2faff7071944c00a0642fd9ff77d9eff0da
were collected using PAPI library version 7.0.03 [8]. The performance for each micro-benchmark is measured with varied \textbf{input sparsity}, the percentage of loop iterations in which the control-flow condition evaluates to true. Results are reported for input sparsity of 2\%, 20\%, 40\%, and 80\%, with true predicates randomly distributed throughout the loop iterations using a Bernoulli distribution. These percentages represent use cases varying from very few active lanes (2\%) to mostly active lanes (80\%). A random distribution of true predicates means that none of the evaluated approaches can make assumptions about the order or the pattern of taken/not-taken paths. To apply ALC, input source code is first compiled to LLVM IR using Clang. The produced IR is fed to the transformation pass and all analyses and transformations are done at this level. Then clean up and further optimization passes in the \texttt{O3} pipeline are executed to ensure that the transformed IR is fully optimized. Finally, the generated binary file is produced. The process is shown in Figure 5.1.

The results presented next contrast the performance of: (i) \textbf{ALC}, a compiler-generated version of Wyatt \textit{et al.}'s ALC; (ii) \textbf{ALC+DP}, the improved version of ALC proposed in this thesis which employs data permutation to eliminate gather instructions; (iii) \textbf{if-conv}, if-conversion performed by ARMClang compiler. A comparison of the if-conversion code generated by three production-ready compilers — ARMClang, GCC, and Clang — revealed that ARMClang generates slightly faster code for the evaluated micro-benchmarks.

3c415d2f1190027c961c904a4305b3eeaacce3df2
5.3 Data Permutation: More Instructions But Better Performance

This experiment aims to answer (1) by comparing the performance of each version of the *if-then-else* micro-benchmark generated by Clang.

Figure 5.2 shows the speedup over *if-conv*. As discussed in Section 3.2, gather instructions have higher latency than regular vector loads, thus hurting ALC’s performance in comparison to *if-conv*, which only uses regular vector load instructions. Such overhead is quantified in Figure 5.4b, which indicates that the ratio of stalls due to pending memory operations (w.r.t *if-conv*) is significantly higher in ALC than in ALC+DP, which explains ALC+DP better performance. Also, the address calculations of gather/scatter instructions are executed in the vector units and thus compete for resources and stall other arithmetic operations in *if-then-else*. As Figure 5.4a indicates, ALC has more stalls waiting for resources than the baseline *if-conv* while ALC+DP has fewer resource stalls than ALC because gather instructions are eliminated via data permutation. In addition, ALC+DP outperforms *if-conv* for all input
sparsity cases and, in particular, by more than 7% in the 80% sparsity case — a positive answer to question 1. ALC+DP performs better than if-conv even though it executes more instructions to perform data permutation, as Figure 5.3 indicates. These data-permutation instructions are vector-to-vector instructions that incur much lower latency than gather instructions do. ALC+DP still suffers more memory stalls than the baseline if-conv because of the high latency of scatter stores that, usually, cannot be avoided. In contrast, ALC always performs worse than if-conv and shows performance degradation of up to 6% in the 40% sparsity case.

5.4 Scatter Instructions Significantly Impact Performance

In this experiment, the code of the if-then-else micro-benchmark is modified to have fewer stores — only one per CFDP—, but it has the same number of arithmetic and load operations. Fewer store operations translate to fewer scatter instructions in the compiler-generated ALC code. Therefore, an increase in ALC’s performance with fewer scatter operations indicates a positive answer
Figure 5.4: Evaluation of the if-then-else micro-benchmark that has two CFDPs. All metrics are normalized with respect to if-converted code (if-conv).

As Figure 5.5 indicates, with fewer scatter stores both ALC and ALC+DP outperform the baseline if-conv. Moreover, ALC+DP is up to four times faster than ALC (see Figure 5.8), outperforming if-conv by up to 79% in the 2% sparsity case, a strong indicator of the effectiveness of eliminating both predicated instructions and gather loads.

Figure 5.6 shows the ratio of instructions executed, normalized to if-conv. Similar to the previous case, ALC+DP executes considerably more instructions compared to ALC which is due to the many instructions used for permuting data. An interesting observation is that, unlike Figure 5.3 where ALC was executing almost the same amount of instructions as if-conv, in this case, and especially in more sparse inputs, ALC has executed fewer instructions compared to if-conv. As the number of instructions of ALC gets closer to that of if-conv, their performance gets closer to each other. The correlation between these two charts and the fact that ALC+DP outperforms both ALC and if-conv suggests that, in the absence of expensive memory instruction such as scatter store, a key factor for better performance is the number of dynamically
executed instructions.

Figure 5.7a shows a significant reduction in the number of resource stalls for ALC+DP as a direct result of having fewer scatter store instructions and thus explains the speedup over if-conv. Stalls due to memory operations follow the same trend as in the if-then-else micro-benchmark, as indicated in Figure 5.7b, evidence that arithmetic operations can amortize the effects of memory stalls. Still, address calculations for gather/scatter instructions compete for resources resulting in a significant number of resource-busy stalls.

5.5 Data Permutation Improves ALC

This experiment evaluates the ALC algorithm modification discussed in Section 3.4 on the if-then micro-benchmark. Figure 5.8 presents speedups of ALC and ALC+DP over if-conv. In this case, both ALC versions are unable to provide improvements over if-conv and result in performance degradation. The single control-flow data path case is challenging for any variant of ALC because, unlike the if-then-else case that has two CFDPs, considerably fewer instructions are executed with inactive lanes. The results indicate a
negative answer to 3, i.e., in general, it is not beneficial to apply ALC on loops with a single CFDP. Nevertheless, ALC+DP provides significant speedup over ALC by eliminating gather load instructions.

Figure 5.9 shows that like cases with two CFDP, ALC+DP executes more instructions compared to ALC. The only exception is 80% sparsity where ALC is executing significantly more instructions than both ALC+DP and if-conv. The reason is that, for this sparsity, ALC+DP executes if-converted code for most of the iterations based on the algorithm proposed in Figure 3.5. When most predicates are true, in each iteration of the loop ALC processes vectors that are almost uniform. As a result, it always needs to both do the permutation and execute the then block which results in poor performance and in a significant number of instructions being executed.

Moreover, and similar to the two CFDP cases, both memory and resource stalls are lower with ALC+DP than with ALC, as Figure 5.10b and Figure 5.10a indicate.

As seen in Figure 5.11, even in a modified version of if-then with fewer store instructions, neither version of ALC can outperform if-conv. The exception is the very sparse case (2%), where ALC+DP provides a speedup of 7%
(a) Ratio of resource-busy-induced stalls. (b) Ratio of memory-induced stalls.

Figure 5.7: Evaluation of the if-then-else micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to if-converted code (if-conv).

Figure 5.8: ALC and Data Permutation speedups over If-Conversion for if-then micro-benchmark that has only one CFDPs.

over if-conv. Thus, the results indicate that ALC+DP can benefit loops with single CFDP and very few true predicates. Figure 5.12 shows that ratio of dynamically executed instructions is very similar to the previous case. if-then,
Figure 5.9: Ratio of dynamically executed instructions

(a) Ratio of resource-busy-induced stalls. (b) Ratio of memory-induced stalls.

Figure 5.10: Evaluation of the if-then-else micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to if-converted code (if-conv).

which has fewer stores, has similar behavior in terms of resource and memory stalls, as Figure 5.13b and Figure 5.13a indicate, as the same benchmark with more store instructions.
5.6 Potential of ALC

To demonstrate the broad applicability of ALC and how different workloads can benefit from it, we apply the transformation to Test Suite for Vectorizing
(a) Ratio of resource-busy-induced stalls.
(b) Ratio of memory-induced stalls.

Figure 5.13: Evaluation of the if-then-else micro-benchmark modified to have fewer store instructions. All metrics are normalized with respect to if-converted code (if-conv).

Compilers (TSVC) benchmark [11]. For any loop to which we can apply ALC, we can also apply Data Permutation. As a result, in this section whenever we refer to the possibility of applying ALC, it covers Data Permutation as well.

TSVC is composed of more than a hundred small independent functions, each containing one or more loops with different kinds of control flow. The original benchmark is written in FORTRAN language, but we use a version of it that is rewritten in C language [24]. The benchmark is developed to assess the compiler’s capability to apply vectorization to individual loops. Loops in this benchmark are constructed to address several challenges that a compiler might face while trying to vectorize a code, which include: different types of loop-carried dependency, complicated control flow structures, and different memory access patterns.

While TSVC carefully examines compiler ability for vectorization, it is NOT a suitable benchmark for measuring performance improvements. Functions in this benchmark do not represent real-world scenarios and are only constructed to introduce challenges for the compiler during vectorization. Loops are small and most of them include a few instructions. Thus, in this experiment, we only
report the success and failure of different transformations.

Among all functions in the benchmark, there are 29 functions that contain loops with 2 control-flow paths. We evaluate the applicability of our approach to them. For each function, we try to apply ALC and compare it with 2 state-of-the-art compilers. We compare against GCC version 13.1.0 and ARMClang version 22.1. For each compiler, we pass all flags that enable vectorization and those that enable the compiler to utilize SVE instructions.

Results are summarized in Table 5.1. ALC can be applied to most cases that commercial compilers can vectorize. For most cases in which all compilers fail to vectorize — and where it is not possible to apply ALC as well, the loops contain loop-carried dependencies. While gcc showed the highest level of efficiency by vectorizing 14 functions out of 29, it failed to vectorize microbenchmarks that we used for analyzing the performance of generated codes in Section 5.1. It was also not able to vectorize some of the masked memory operations and thus, the whole loop was not vectorized.

There are three functions that both gcc and armclang are able to vectorize but ALC fails. The reason why ALC is not applied in s124 is because of the loop induction variable. Although there is a single loop, it contains two different induction variables, which are both incremented in each iteration of the loop. Although it is not a problematic case for ALC algorithm to handle, the current implementation considers that all memory accesses are only dependent on the canonical induction variable of the loop.
<table>
<thead>
<tr>
<th>Function</th>
<th>GCC</th>
<th>ARMClang</th>
<th>ALC+DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>s123</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s124</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>s161</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s1161</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s253</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s258</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s271</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s272</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s273</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s274</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s278</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>s2710</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s2711</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s2712</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>s314</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s315</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s316</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s318</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s3110</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s3111</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s3113</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s331</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s341</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s342</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s343</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>s443</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>vif</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

| Total Vectorized | 14 | 12 | 9 |

Table 5.1: Comparison between ALC and state-of-the-art compilers on their ability to vectorize functions of TSVC benchmark
for (int i = 0; i < n; i++) {
 if (...) {
 b[i] =
 } else {
 c[i] =
 }
 ... = b[i] + c[i] *
}

Listing 5.1: Simplified version of the loop in s278 function

The loop in s278 is a more challenging case for ALC. Listing 5.1 shows the dependency that exists in the loop on arrays b and c: in each iteration, there is a write to either b or c array (lines 3 and 5), but then there is always a read from each one (line 7). Thus, whenever execution reaches line 7, it must have updated the value that is stored in the corresponding index for array a or b. After vectorization by If-Conversion, this pattern is kept and the order of the instructions does not change. However, ALC does not guarantee that all stores to b or c are completed before reaching line 7 because ALC only executes the then or else blocks after it forms a fully uniform vector. Based on the algorithm, in each iteration only one of these two blocks will be executed and one of those two arrays will not be updated by the time that the load instructions of line 7 get executed.
for (int i = 0, j = 0; i < n; i++) {
 if (...) {
 a[i] += b[i] * c[i];
 } else {
 a[i] += b[i] * b[i];
 }
}

Listing 5.2: Simplifed version of the loop in s443 function

Clang uses **sink** optimization to avoid copies of similar instructions on paths with a common post-dominator. In the loop with an if-then-else statement in Listing 5.2 each of those two blocks contains a write instruction to array a. The loop is optimized by calculating values (a[i] + b[i] * c[i]) and (a[i] + b[i] * b[i]) in their corresponding blocks, but the actual store to a happens after the else block, using a PHI node to determine the right value.

A PHI node is a special function in the Static Single Assignment representation [3] and is used to determine the value of a variable that is computed in two or more divergent control flow paths at the point where those paths are converged. ALC cannot be applied in this case because the current implementation relies on PHI nodes to identify divergent values to generate the permutation logic. A future implementation could address the problem by undoing the sink of stores or by having a more robust mechanism to distinguish data from control divergence.
for (int i = 0, j = 0; i < n; i++) {
 if (...) {
 c[i+1] =
 } else {
 = c[i] + ...
 }
}

Listing 5.3: Loop-carried dependency in s161 function

s161 is a very interesting case. Only gcc is able to vectorize the code and both armclang and ALC fail. The reason is loop-carried dependency. Listing 5.3 shows a simplified version of the code. As demonstrated, there is a write-after-read dependency on array c. In the then block, c[i+1] is being written to, and in the else block c[i] it is being read. When vectorizing this kind of dependency, if we can make sure that write operations are done before read operations, vectorization will be legal.

In this case, the write and read operations are placed in two different blocks, and since conditions are mutually exclusive, they can be safely reordered during vectorization and as a result, vectorization is allowed.

gcc detected the legality of vectorizing s161 under this condition however, armclang failed to find the opportunity. ALC cannot be applied in this case because, as discussed before, it cannot guarantee the order in which the then and the else blocks are executed.

s2710 is the case where armclang and ALC outperform gcc. While the function is vectorized by armclang and ALC is also applied, gcc fails to vectorize the code due to the presence of complex control flow inside the loop. The control flow consists of two-level nested if-then-else statements: there is another if-then-else inside both then and else blocks. ARMClang finds that the loop can be broken into two simpler loops each having only one if-then-else (a common
compiler optimization called loop fission) and by doing so, it can vectorize both loops. Having these two simpler loops, ALC is also able to transform both of them but gcc fails to find the opportunity to simplify and vectorize the code.

The loops in s314, s315, s316, s318, s3110, s13110, s311, s3113 functions contain code structures that require employing a Reduction technique for vectorization. Examples of reduction operations include: computing the sum, the product, the maximum value, or the minimum value of all the elements of a loop. In all these cases there is a scalar value that creates a loop-carried dependence in the scalar code. This dependence prevents vectorization. However, using the reduction technique, the compiler is able to vectorize such loops. As shown in Table 5.1 gcc, armclang and ALC fail on most reduction cases. In fact, only gcc is able to vectorize s311 which is a simple summation of elements of an array.

331 contains a search loop where the goal is to find the index of the last element which is smaller than zero. gcc vectorizes the code using techniques similar to reduction but armclang and ALC are not able to transform the code.

In summary, although gcc vectorizes a few more functions, both compilers perform close to each other. ALC can be applied in the majority of cases where vectorization is allowed and possible, which indicates that there are many use cases where different programs can benefit from it.

5.7 Conditionally Incremented Array Indexes

The ALC analysis pass found many loops in existing benchmarks (e.g. SPEC CPU 2017 [21] and MiBench [5]) that could be legally transformed by ALC transformation. However, the cost/benefit analysis indicated that those loops would not benefit from ALC because they contained not enough instructions to amortize the cost of index and data permutation (see Section 4.1).

Another challenge discovered when trying to apply ALC to existing benchmarks that contain loops with conditional statements, such as the ones in MiBench [5], is related to efficient mappings of conditional computations to vector code.
for (int i = 0, j = 0; i < n; i++) {
 if (cond[i]) {
 b[i] = a[j];
 j++;
 }
}

Listing 5.4: Conditional increment of array indexing variable.

For example, Listing 5.4 shows a simplified example of a loop pattern that is widely found in the jpeg benchmark in MiBench. The loop index into array a with variable j, which is conditionally incremented when (Line 4) cond[i] is true (Line 2). To the best of our knowledge, there is no single instruction in modern vector ISAs that can efficiently compute an index vector with the values of j in this case. Therefore, multiple instructions are required, which might make it unprofitable to vectorize such loops. Neither Clang, GCC, nor ARMClang vectorized the loops in SPEC CPU 2017 with the pattern shown in Listing 5.4. These non-trivially vectorizable patterns led this work to not find opportunities to apply ALC as a compiler-enabled transformation to these benchmark suites. If future versions of vector ISAs include instructions to create conditionally-strided index vectors then more loops could become candidates for if-conversion and ALC. A potential workaround would be to compute the values of j on a separate loop, storing such values in a temporary array, and then using the computed array to index a. However, hoisting the computation might not always be possible because of intra-iteration dependencies.
Chapter 6

Related Work

Vectorization is widely employed by compilers to generate optimized code by leveraging SIMD instructions. Although the idea of utilizing SIMD instructions can be applied to a wide range of applications and workloads, compilers face various challenges when it comes to implementing vectorization. Maleki et al. investigated the ability of compilers to vectorize different code patterns [13]. Their work demonstrates that there are many cases where compilers fail to apply vectorization only due to the lack of appropriate techniques. They manually transform those cases, illustrating that the vectorization technique itself is broadly applicable. However, further developments in compilers are still required to exploit the full capabilities of vectorization.

Pohl et al. investigated these challenges, focusing on ARM NEON vector extension and conducting a comparison with Intel AVX2 [16]. Their findings indicated that a significant barrier for compilers in vectorizing a code is the presence of Control-Flow-Divergence inside the loop. They also indicate that ISAs have significant impacts on the effectiveness of vectorization. Additionally, they suggested several techniques to address the challenges that compilers encounter while vectorizing for an ARM-NEON target. However, ARM SVE, the new vector extension for ARM targets, eliminates the need for such techniques as it offers various new vector instructions that can be effectively used by compilers to tackle with the challenges they encounter while doing vectorization.

The seminal work by Allen et al. introduced the idea of converting control-flow dependencies into data dependencies [1]. Allen et al.’s technique, commonly
known as control-flow linearization or if-conversion [15], was introduced in the context of parallelizing FORTRAN compilers. Such compilers excelled in exploiting data-parallel loops by identifying data dependencies.

if-conversion is used in SLP vectorization as well as loop vectorization. SLP is a vectorization technique that tries to find the same operations in a basic block and replace them with an SIMD instruction. Shin et al. [9] studied the impact of control flow divergence on SLP vectorization and showed that if-conversion can be employed to tackle with the problem. Chen et al. [2] took a step further by introducing their own intermediate representation, Predicated SSA, which converts all control dependencies into data dependency. Chen et al.’s work exposes more opportunities for SLP vectorization, however control-flow divergence problems are not addressed. Although if-conversion can increase the opportunities for vectorization, it can significantly waste computational resources. if-converted code keeps units busy with computations on vectors with inactive lanes, which correspond to non-taken paths in the original program’s CFG. As the results in this work show, ALC outperforms if-converted code because it maximizes SIMD utilization by constructing uniform vectors and avoiding the execution of linearized code.

Due to the significant computation overhead associated with if-conversion, many attempts have been made to minimize the need for predication. To address this, Sun et al. proposed IF-Select transformation [23] to reshape the loop control flow in such a way that minimum if-statements remains in the loop and if-conversion is only applied to those cases. Although they successfully move loop-independent if statements outside the loop body, they still require applying if-conversion to loop-dependent conditional statement. In contrast, ALC can effectively handle loop-dependent control flow divergence by rearranging vector elements and forming uniform vectors, eliminating the need for predication.

Branch-on-superword-condition-codes (BOSCCs) is a common approach that avoids executing vector instructions with inactive lanes [19]. Originally introduced for multimedia extensions, BOSCCs are instructions, or sequences of instructions, that guard the execution of uniform paths. Such paths only
contain instructions that would be executed when all lanes are active (or inactive) with respect to the guard condition. BOSCCs can improve on if-converted code [20], however, BOSCCs degenerate into if-converted code when uniform vectors are infrequent [17]. ALC overcomes this by actively merging non-uniform vectors until a uniform vector is formed, thus effectively avoiding if-converted code. Moreover, BOSCCs can lead to code explosion on loops with many CFDPs. Moll et al.’s work addresses code explosion by selectively using BOSCCs and if-conversion [14]. Nevertheless, Moll et al.’s solution still degenerates into if-converted code when uniformity is infrequent or not contiguous (w.r.t. loop iterations).

Praharenka et al. made a step forward by actively constructing uniform vectors instead of expecting dynamic uniformity [17]. ALC makes use of SVE instructions to merge active lanes and execute uniform paths. However, in Praharenka et al.’s seminal work, there was no in-silicon implementation of SVE, thus all the evaluation was conducted on ARM’s instruction emulator (ARMIE). As a result, only a decrease in the number of dynamic instructions was reported in Praharenka et al.’s paper. In contrast, this work evaluates ALC on real hardware with SVE. Besides identifying a major problem in its original design (Section 3.2), this work re-designs ALC as a compiler-enabled transformation.

ALC as proposed by Praharenka et al. can not avoid using gather and scatter instructions. The challenges associated with these instructions have been studied in recent works. Habich et al. analyzed the performance of gather instructions on AVX512 architecture [6], revealing that employing these instructions requires special considerations, as they can lead to significant performance degradation. ALC uses gather instructions to load from non-consecutive addresses without a known pattern. Such access pattern significantly amplifies the latency of gather load operation. Our experimental results show that avoiding gather instructions via data permutation improves on ALC prior design up to 4× (Section 5.3). Results also indicate that factors used in the proposed cost/benefit analysis (Section 4.1) directly impact ALC’s performance. Finally, the new ALC design outperforms if-converted code produced by state-of-the-
art compilers. Despite these significant advancements, there are still challenges that can limit ALC effectiveness as a compiler pass (Section 5.7).
Chapter 7

Conclusion

This thesis presents ALC+DP, a redesign of ALC as a compiler-enabled transformation. An in-depth experimental evaluation of ALC on SVE hardware reveals a key design issue of the original ALC design: a high number of memory and resource-busy stalls is caused by gather instructions. ALC+DP is a redesign of ALC that eliminates gather instructions through the combination of regular vector loads and data permutation. The thesis contributes an implementation of ALC in the production-ready LLVM compiler framework that includes a cost/benefit analysis to decide when and how to apply ALC. This analysis considers the number of instructions on each control-divergent path, the ratio of compute and memory operations, and the complexity of the loops CFG, which are key factors that have been shown to impact ALC’s effectiveness and efficiency. Experimental results indicate that ALC+DP outperforms ALC’s previous design by up to 4×. ALC+DP also outperforms if-converted code produced by state-of-the-art compilers such as ARMClang by up to 79%. Although ALC is implemented in LLVM, its re-design can be integrated into any modern compiler to automatically increase SIMD utilization of if-converted & vectorized loops.
References

