
Applications and Limitations of Vulkan-Layer-based
Instrumentation

by

Deric Cheung

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Deric Cheung, 2024

Abstract

Computer graphics is constantly evolving to meet the demands of modern

applications. One such evolution is the introduction of low-level Application

Programming Interfaces (APIs) such as Vulkan to give applications a greater

amount of control over the hardware to facilitate efficient CPU-GPU inter-

operability and fine-grained scheduling and synchronization of work for the

GPU. Despite the low-level nature of Vulkan, there is still a great deal of exe-

cution behaviors that are not well understood or are difficult to observe due to

black-box hardware and driver implementations. To better understand these

behaviors, the Vulkan layer system has been leveraged to profile and debug

Vulkan applications by intercepting and modifying the behavior of Vulkan API

function calls. The Vulkan layer system has been used to develop frameworks

like Vulkan Vision, which employs shader instrumentation to capture shader

execution traces and analyzes them to reveal shader execution behaviors such

as control-flow divergence, Independent Thread Scheduling on NVIDIA GPUs,

and execution hotspots. This thesis further explores the applications and limi-

tations of the Vulkan layer system for analyzing execution behaviors of Vulkan

applications to better understand and optimize their performance.

One of the contributions of this thesis is ReRay — an extensible toolchain

and workflow for capturing, parsing, analyzing, and manipulating ray-tracing

pipeline execution traces to better understand ray-tracing pipeline execution

behaviors down to the hardware and driver level. Building on top of prior work

with Vulkan Vision, ReRay provides insights into how ray-tracing pipelines in-

ii

teract with the hardware and driver to facilitate the development of more effi-

cient ray-tracing algorithms and applications. Black-box hardware and driver

execution behaviors impacting ray-tracing performance such as warp execu-

tion order, shader execution divergence, and unnecessary intersection tests,

are revealed with the use of ReRay.

This thesis also explores the use of Vulkan layers to examine the man-

agement and usage of shader resources. Utilizing Vulkan’s resource binding

model efficiently can be challenging due to the complexity of managing many

pipeline variants expecting varying types and numbers of resources for use by

its shaders. A Vulkan layer is proposed to observe and evaluate the usage of

resources in Vulkan applications, with an additional focus on uniform data —

data that remains constant for all shader invocations of an executing pipeline.

Uniform data is used for a variety of purposes, such as passing transformation

matrices, lighting parameters, and material properties to shaders. Depend-

ing on the size, update frequency, and usage of uniform data, Vulkan features

such as push constants, inline uniform blocks, and specialization constants can

be used to optimize the management of uniform data to reduce the memory

access and GPU state-change overheads associated with managing and using

uniform data.

The Vulkan API and the Vulkan Vision framework have limitations that

prevent ReRay from being used to examine cutting-edge hardware features

such as Shader Execution Reordering on Ada Lovelace NVIDIA GPUs. Ineffi-

ciencies arise when building a Vulkan layer to examine shader resource contents

without application context or knowledge. The Vulkan API has limitations

that prevents the automatic optimization of shader-resource usage on behalf

of an application. A discussion of advancements in the Vulkan API, hard-

ware features, and the design of graphics renderers in game engines highlights

the changing landscape of shader resource management in Vulkan applications.

iii

These changes make some aspects of shader resource management and uniform

data optimizations less relevant to modern Vulkan applications.

iv

Preface

Chapter 3 of this thesis was once submitted, but not accepted, for publica-

tion as D. Cheung, T. Nowicki, J. N. Amaral, “ReRay: Deep Ray Tracing

Performance Insights in Vulkan”. The conceptualization of the tool was a

collaborative brainstorming effort from all authors as well as D. Pankratz. I

performed the prototyping, implementation, and evaluation of the tool. I also

wrote the majority of the content of the chapter, with minor edits and revisions

from T. Nowicki and J. N. Amaral. D. Pankratz did not wish to be included

as an author in the submission, but nonetheless provided valuable feedback on

the tool during the initial stages of development.

Chapter 4 of this thesis is an original work by myself, D. Cheung. No

part of this chapter has been submitted for publication. I conceptualized and

wrote the entirety of chapter, with J. N. Amaral reviewing the writing and

making minor revisions along the way. J. N. Amaral also provided feedback

on the content and structure of the chapter.

v

Acknowledgements

I would like to thank Tyler Nowicki for his wealth of knowledge regarding

Vulkan, GPU architectures, and computer graphics. Tyler’s advice has been

invaluable to me throughout my research. I am grateful for the time he has

spent listening to my ideas, monitoring my progress, and providing feedback.

I would also like to thank my supervisor at the University of Alberta, Dr.

J. Nelson Amaral for his mentorship and guidance in my research. Nelson’s

experience and expertise in compilers and computer architecture have been

instrumental in shaping my research, as well as his advice on how to present

my work. I greatly appreciate the opportunities he has provided me with as

his graduate student and the connections he has helped me make along the

way.

Finally, I want to thank David Pankratz for his help in understanding the

design and operations of Vulkan Vision and RayScope. David’s work has been

a great inspiration to me, and his help with brainstorming ideas for extending

Vulkan Vision and RayScope has greatly influenced the development of my

research.

This research has been funded in part by the University of Alberta Huawei

Joint Innovation Collaboration (UAHJIC) and Graduate Research Assistantship

Fellowship (GRAF).

vi

Contents

1 Introduction 1

2 Background 6
2.1 GPU Execution Model . 6
2.2 Vulkan . 7
2.3 Graphics Pipeline . 8
2.4 Ray-tracing Pipeline . 9
2.5 Ray-Tracing Performance . 12
2.6 Vulkan Vision . 12
2.7 RayScope . 12

3 ReRay 14
3.1 Data-Capture Mechanism . 16

3.1.1 Ray Data Collection 16
3.1.2 SIMT Shader Efficiency and Warp Data Collection . . 18

3.2 ReRay Toolchain . 20
3.2.1 Estimating the Effects of Warp Repacking on SIMT Ef-

ficiency . 20
3.2.2 Visualizing Warp Execution Order 22

3.3 Warp Repacking Methods . 28
3.4 Evaluation of Warp Repacking Methods 31

3.4.1 Experimental Setup . 32
3.4.2 Analysis of SIMT Efficiency 34
3.4.3 Analysis of GPU Frame Times 38

3.5 Efficiency and Performance Insights via Heat Maps 42
3.6 Related Work . 45
3.7 Limitations and Future Work 48

3.7.1 Benchmark Selection and Availability 48
3.7.2 Unnecessary Intersection Test Classification 49
3.7.3 Hardware Warp Repacking Support 51
3.7.4 Shader Execution Reordering 52
3.7.5 Shader Execution Reordering Preliminary Performance

Study . 57
3.8 Conclusion . 65

4 Shader Resource Analysis and Optimization 67
4.1 Device Memory Types and Resources in Vulkan 68
4.2 Shader Resource Binding . 69
4.3 Related Work . 72
4.4 Shader Resource Usage Profiling Layer 75

4.4.1 Descriptor Set Usage Tracking 76
4.4.2 Uniform Buffer Value Profiling 78

4.5 Benefits and Evaluation . 83

vii

4.5.1 Descriptor Set Usage Analysis 83
4.5.2 Uniform Buffer Value Analysis 92

4.6 Technological Advancements and Considerations 99
4.6.1 Vulkan Extensions to Resource Descriptors 99
4.6.2 Automatic Uniform Value Specialization 102
4.6.3 Other Pipeline Types 105
4.6.4 GPU-Driven Rendering 108

4.7 Conclusion . 109

5 Conclusion 111

References 114

viii

List of Tables

3.1 A table of some launch sizes and the corresponding tile size
in pixels for NVIDIA’s Z-ordering. For most applications, the
launch size is equal to the resolution of the image being rendered. 25

3.2 Percent changes in mean and median GPU frame times for each
thread swizzle. 38

ix

List of Figures

2.1 The ray-tracing pipeline . 10

3.1 ReRay’s architecture . 20
3.2 ReRay’s visualization of warp execution order over a 2048x2048

pixel image. As warp ID increases, the color of pixels go from
black to green. Red lines have been added to the image to help
illustrate the Z-ordering. 23

3.3 ReRay’s visualization of warp execution order for a launch size
of 256x256. A lighter shade of color indicates a higher warp
ID (i.e., the warp executes later than darker colored warps). A
32x32 tile of pixels has been enlarged to show the warp shape. 24

3.4 ReRay’s visualization of warp execution order for a launch size
of 1280x720. As warp ID increases, the color of pixels go from
black to green. Yellow lines mark the borders of the tiles. Red
lines have been added to the first tile to help illustrate the Z-
ordering in each tile. 25

3.5 ReRay’s visualization of warp execution order for a launch size
of 1024x500. 26

3.6 ReRay’s thread sorting process illustrated with a warp size of 2. 28
3.7 Our test application render (RayTracingInVulkan) 32
3.8 Actual and synthetic SIMT Efficiency of the application when

using each thread swizzle. The ”Unmodified” column represents
the application before any modifications. 33

3.9 Violin plots with overlaid box plots of GPU frame times over
985 frames using each thread swizzle. Data points beyond 1.5
times the interquartile range are considered outliers and are
displayed as diamonds for the inner box plots. A white dot in
each plot indicates the average GPU frame time. 36

3.10 GPU frame times over application run time when rendering
RayTracingInVulkan with the Identity swizzle. The interval
displayed in the vertical axis does not start at 0. 37

3.11 GPU frame times over application run time when rendering
RayTracingInVulkan with the Tiled Numrays swizzle. The in-
terval displayed in the vertical axis does not start at 0. 38

3.12 SIMT efficiency heatmap of RayTracingInVulkan. A lighter
shade of color indicates higher thread divergence and therefore
lower SIMT efficiency. 42

3.13 Heatmap of per-thread intersection shader call counts for Ray-
TracingInVulkan. A lighter shade of color indicates a higher
intersection shader call count. 43

3.14 Heatmap of unnecessary intersection test counts for RayTracing-
InVulkan’s Lucy In One Weekend scene. A lighter shade of color
indicates a higher counts of unnecessary intersection tests. In
the bottom left is the original image of the scene. 44

x

3.15 Shader-timing heat map for the RayTracingInVulkan applica-
tion on the Ray Tracing In One Weekend scene. 58

3.16 Shader-timing heatmap for the RayTracingInVulkan application
on the Ray Tracing In One Weekend scene with Shader Execu-
tion Reordering enabled. 59

3.17 Shader-timing heat map for the RayTracingInVulkan applica-
tion on the Ray Tracing In One Weekend scene with Shader
Execution Reordering but with the OpReorderThreadWithHi-
tObjectNV instruction omitted to disable warp repacking. . . . 59

3.18 Visualization of SM ID assignment for each pixel in the Ray-
TracingInVulkan application. Each pixel color is one of 24
shades of green corresponding to an SM ID, from black (SM
ID 0) to bright green (SM ID 23). 62

3.19 Visualization of SM ID assignment for each pixel in the Ray-
TracingInVulkan application with SER enabled. Each pixel
color is one of 24 shades of green corresponding to an SM ID,
from black (SM ID 0) to bright green (SM ID 23). 63

3.20 Visualization of the workload for SM ID 23 in the RayTracing-
InVulkan application with SER enabled. 64

4.1 An illustration of the relationships between a Pipeline, Pipeline
Layout, Descriptor Set, and Descriptor-Set Layout. Relation-
ships between entities are shown with UML-style connections. 70

4.2 Simplified illustration of the process by which application code
records a command buffer for submission to a queue for execution. 70

4.3 A block diagram of various steps Vulkan applications take to
prepare pipelines for execution on the GPU. Arrows between
blocks indicate dependencies between steps, with the name of
the Vulkan object passed between them. 76

4.4 An example of a command buffer that performs four consecutive
draw calls (pipeline invocations) using a pipeline with a mono-
lithic descriptor set pipeline layout. Beneath the illustration of
the command buffer is a timeline showing the descriptor sets
bound to set number 0 (Set 0) before every pipeline invocation.
Each descriptor set is illustrated by a list of its descriptor bind-
ings in descriptor-binding slots numbered from 0 to 4. Each
descriptor binding contains an array of descriptors denoted by
an ordered comma-separated list of positive integers enclosed
in square brackets. Arrows between descriptor-binding slots on
the timeline indicate redundancy at the descriptor-binding slot
due to the descriptor bindings being equivalent across descrip-
tor sets. Beneath the timeline is the redundancy measurement
result for all descriptor-binding slots. 85

xi

4.5 Illustration of a command buffer that performs four consecutive
draw calls (pipeline invocations). Beneath the illustration of the
command buffer is a timeline showing the descriptor sets bound
at each set number before every pipeline invocation. Each de-
scriptor set is illustrated by a list of its descriptor bindings
in numbered descriptor-binding slots. Each descriptor binding
contains an array of descriptors denoted by an ordered comma-
separated list of positive integers enclosed in square brackets.
Arrows between descriptor-binding slots on the timeline indi-
cate redundancy at the descriptor-binding slot due to the de-
scriptor bindings being equivalent across descriptor sets. Be-
neath the timeline is the redundancy measurement result for all
descriptor-binding slots. 89

4.6 A depiction of all descriptor sets bound just before each draw
call (pipeline invocation) for two different pipelines α and α′.
Pipeline α uses a monolithic descriptor set pipeline layout. Pipeline
α′ a pipeline layout where descriptor sets are created to group
descriptor-binding slots with similar redundancy. The redun-
dancy in each descriptor-binding slot is listed on the right-most
column. Descriptor-binding slots are also colored based on their
redundancy: A red color indicates low redundancy (33.33%); a
yellow color indicates medium redundancy (66.66%); a green
color indicates high redundancy (100%). 91

xii

Acronyms

AABB Axis-Aligned Bounding Box

API Application Programming Interface

AS Acceleration Structure

CPU Central Processing Unit

FPS Frames Per Second

GPU Graphics Processing Unit

PC Personal Computer

RRA Radeon Raytracing Analyzer

SER Shader Execution Reordering

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Thread

SM Streaming Multiprocessor

SPIR-V Standard Portable Intermediate Representation

VRAM Video Random Access Memory

xiii

Chapter 1

Introduction

The advent of low-level Application Programming Interfaces (APIs) for com-

puter graphics, such as the Vulkan API [47], has revolutionized the way de-

velopers design graphics applications for real-time rendering. With a lower

level of abstraction than previous APIs, such as OpenGL [24] and DirectX

11 [67], Vulkan provides developers with more control over the hardware, en-

abling fine-grained GPU work scheduling and efficient CPU-GPU interoper-

ability. Performance is more predictable due to the thin layer of abstraction

over Vulkan API functions, which allows developers to optimize their appli-

cations for specific hardware configurations as opposed to the one-size-fits-all

approach of older APIs with higher levels of abstraction.

Despite the lower level of abstraction in Vulkan, there are still many exe-

cution behaviors that remain elusive — hidden behind the opaque nature of

hardware and driver implementations. The Vulkan API abstracts underlying

hardware- and driver-specific details to provide a consistent API across dif-

ferent platforms. This abstraction is especially evident in the execution of

ray-tracing pipelines, which are a significant leap in complexity compared to

the linear graphics pipelines used for rasterization in the vast majority of real-

time rendering applications. Although the programming model of ray-tracing

pipelines for a single thread is well-defined by the Vulkan specification [62], the

details as to how the hardware maps the execution of the ray-tracing pipeline

to multiple threads is intentionally left vague to allow hardware vendors to

implement ray-tracing pipelines in a way that best suits their hardware mi-

1

croarchitecture. Even in the case of a single thread, the exact form of data

structure used for acceleration structures to hold geometry data, and the al-

gorithms for traversing the acceleration structure are left to the discretion of

the hardware and driver implementations.

The need to peer into the behaviors of Vulkan pipeline execution has led

to the development of tools such as Vulkan Vision [42], [43]. Vulkan Vision is

a shader instrumentation framework that captures detailed shader execution

traces from rendering pipelines to reveal execution behaviors such as control-

flow divergence and execution hotspots, as well as hardware-specific behaviors

like Independent Thread Scheduling on NVIDIA GPUs. The key enabler of

Vulkan Vision is the Vulkan layer system it is built on top of. The Vulkan

layer system allows software libraries, called Vulkan layers, to intercept and

modify Vulkan API function calls in real time to alter the behavior of Vulkan

applications. Vulkan layers, such as the Vulkan Validation Layers [63], are

commonly used for profiling, debugging, and validation of Vulkan applications.

Vulkan layers do not require modifications to the Vulkan application’s source

code, making them a powerful tool for analyzing Vulkan applications without

requiring the developer to make changes to their application.

RayScope [42] is a tool built on top of the Vulkan-Vision framework for

capturing, parsing, and analyzing ray-tracing pipeline execution traces to ex-

plore common pitfalls in the use of ray-tracing pipelines. RayScope focuses on

examining application-level impacts on ray-tracing pipeline execution traces

and performance, such as issues with ray parameterization and ray-geometry

interactions that can heavily impact frame time — the time necessary to render

a single image to be displayed on a display device — or cause visual artifacts.

RayScope does not explore the hardware- and driver-level execution behaviors

that are also present in ray-tracing pipeline execution traces. These behaviors

include the acceleration-structure construction and traversal algorithms, and

the mapping of ray-tracing pipeline execution to multiple hardware threads.

Applications have limited control over these types of execution behaviors, and

yet these behaviors can significantly impact ray-tracing performance. These

behaviors should be accounted for when designing ray-tracing algorithms and

2

applications targeting a variety of hardware configurations.

The lower-level nature of Vulkan also introduces challenges for developers

in determining how to best utilize the API to achieve optimal performance

for all types of rendering tasks. One of these challenges is in the management

of shader resources, such as buffers and textures, that are used by shaders

to perform rendering tasks. Poor management of shader resources can lead

to increased overheads due to increased memory usage, increased time spent

preparing and processing GPU commands, and GPU state-change overheads

such as stalls from waiting for pipelines to finish executing with older references

to data. A Vulkan layer can feasibly be developed to observe the usage of

shader resources in Vulkan applications to provide insights into how to optimize

the management of these resources.

Despite the potential benefits to using Vulkan layers for profiling Vulkan

applications and for revealing execution behavior, Vulkan has limitations that

make observing and manipulating certain aspects of application execution be-

haviors inneficient. For instance, the Vulkan API is not at a low-enough level

to allow a Vulkan layer to provide detailed information about certain execution

behaviors such as hardware warp repacking in the ray-tracing pipeline.

Nonetheless, the Vulkan layer system is a powerful tool for profiling and

debugging Vulkan applications, and the development of tools, such as Vulkan

Vision and RayScope, have demonstrated the potential of the Vulkan layer

system for revealing execution behavior in Vulkan applications. This thesis

discusses applications, and limitations, of the Vulkan layer system for ana-

lyzing execution behavior of Vulkan applications to better understand their

performance characteristics.

The contributions of this thesis are as follows:

1. An extensible toolchain, called ReRay, for capturing, parsing, and ana-

lyzing ray-tracing pipeline execution traces to reveal black-box hardware

execution behaviors that impact ray-tracing performance, and enable

experimentation with different hardware features and ray-tracing algo-

rithms through the manipulation and re-analysis of the execution traces.

3

ReRay extends the work of Vulkan Vision and RayScope to give more in-

sight into ray-tracing performance and extend the capabilities of existing

tools.

2. A hardware-agnostic method for observing warp execution order in ray-

tracing pipelines through the use of the ReRay toolchain, and an ex-

amination of NVIDIA’s ray-tracing pipeline warp execution order for a

variety of launch sizes.

3. A demonstration and evaluation of a tool in the ReRay toolchain, called

the Replayer, for estimating overall SIMT efficiency of a ray-tracing

pipeline execution trace after a simulated warp repacking is performed.

The warp repacking is specified by a user-provided thread-to-warp as-

signment to enable experimentation. Performance results illustrate how

warp repacking alters the shape of the distribution of ray-tracing pipeline

execution times.

4. Out-of-the-box heat-map generation tools in the ReRay toolchain for

examining SIMT efficiency, intersection shader activity, and unnecessary

intersection tests throughout a frame rendered by a ray-tracing pipeline.

5. A characterization of the sources of unnecessary intersection tests in a

ray-tracing pipeline execution. These sources of unnecessary intersection

tests originate from acceleration structure construction and traversal.

6. A preliminary study of NVIDIA’s explicit hardware warp repacking fea-

ture called Shader Execution Reordering (SER), including a discussion

of issues regarding correctness when using the Vulkan Vision framework

for examining ray-tracing pipeline execution traces from applications us-

ing hardware warp repacking. These issues prevent ReRay from being

used to analyze such traces. An alternative method, using a proprietary

Vulkan API extension, is employed instead to perform a preliminary

study of SER performance and behavior on a sample Vulkan ray-tracing

application.

4

7. A proposal discussing the construction of a Vulkan layer to observe the

usage of shader resource descriptors and uniform buffers in Vulkan appli-

cations to leverage prior work on uniform buffer value specialization and

to examine the relevance of prior work on descriptor-set optimization.

General ideas for the design of the layer are presented alongside potential

optimizations that take advantage of Vulkan-specific features not present

in older APIs like OpenGL. Methods for measuring the benefits of these

optimizations are also discussed.

8. An identification of several shortcomings in the Vulkan layer system that

prevent the practical implementation of a Vulkan layer to perform au-

tomatic uniform buffer value specialization. These shortcomings stem

from the design of the Vulkan API and the lack of application-specific

information available to the Vulkan layer to seamlessly compile special-

ized pipelines, maintain correctness during specialization, and maximize

the benefits of uniform buffer value specialization by eliminating writes

to uniform buffers from the CPU.

9. A discussion of advances in the Vulkan API, hardware features, and the

design of graphics renderers in game engines that have changed the way

shader resources are managed in Vulkan applications. These advances

have made prior work in descriptor-set optimization and uniform-buffer

value specialization less relevant. These advances also made the design

of a Vulkan layer to observe shader resource usage more challenging to

implement.

5

Chapter 2

Background

2.1 GPU Execution Model

Rendering graphics is an inherently data-parallel computation: each pixel in a

frame can be computed independently of other pixels by the same sequence of

instructions. Graphics Processing Units (GPUs) are specialized hardware units

designed to exploit this the inherent data-parallelism in graphics rendering

and other workloads that also exhibit data parallelism. To facilitate efficient

computation, modern GPU programming languages employ Single Instruction

Multiple Data (SIMD) architectures that enable the execution of the same

instruction on multiple data elements simultaneously. From the perspective of

a GPU programmer, GPU programming languages have a Single Instruction,

Multiple Thread (SIMT) execution model whereby groups of threads— called

warps —execute the same instructions in lock-step. In the SIMT execution

model inefficiencies can arise when threads in a warp diverge in their execution

paths or memory accesses. Conditional code is executed my making some of

the threads in a warp execute a No-Operation instruction (No-op) while the

other threads executed the instruction in the code. When some of the threads

in a warp execute No-op because of an earlier conditional, the computation is

less efficient because of control-flow divergence. Threads that are executing a

No-op are said to be inactive. In the worst case, the execution of each thread

in a warp is serialized. SIMT efficiency is a measure of the average number of

threads that are active per warp.

A warp of thread may execute an instruction that accesses memory. If all

6

the memory locations accessed by all the threads in the warp are in the same

cache line – or in a small contiguous set of cache lines in some architectures

– then the access is coalesced. If a memory access from the threads in a warp

requires access to many different cache lines, then the computation has data

divergence, which reduces the efficiency of the computation.

These sources of divergence are important to consider when optimizing

GPU programs, as they can lead to significant performance bottlenecks, espe-

cially in graphics rendering, because the longest-running thread dictating the

frame rate of an application.

2.2 Vulkan

Vulkan is a graphics and general-purpose compute Application Programming

Interface (API) developed by the Khronos Group. The API is designed to pro-

vide developers with low-level access to the GPU. In this API the application

is responsible for the handling of memory management, life-time management

of resources, scheduling of tasks for the GPU, and synchronization between

the CPU and the GPU.

The low-level design of Vulkan enables developers to optimize the perfor-

mance of their applications by tailoring them to specific hardware configura-

tions and application use cases. Although this was possible with older graphics

APIs such as OpenGL, it was often difficult to achieve due to the high-level

abstractions and the black-box nature of the graphics driver implementations

that resulted in unpredictable performance.

A configuration of the GPU to perform work is represented in Vulkan by

a pipeline state object, or simply a pipeline for short. A pipeline represents a

logical sequence of stages through which data are processed. There are three

types of pipelines in Vulkan: graphics, compute, and ray tracing. Graphics

pipelines are used for rendering 3D graphics using a technique called rasteriza-

tion. Compute pipelines are used for general-purpose computing on the GPU.

Ray-tracing pipelines are used for rendering 3D graphics using a technique

called ray tracing.

7

This thesis focuses on the instrumentation and optimization of programmable

pipeline stages within each of the three types of pipelines that require the user

to supply programs called shaders. Shaders are typically written in a high-

level shading language such as the OpenGL Shading Language (GLSL) or

High-Level Shader Language (HLSL) and compiled into SPIR-V bytecode for

Vulkan to consume.

The compute pipeline is the simplest of the three pipeline types, consisting

of a single programmable stage called a compute shader. It is used for general-

purpose computing on the GPU, but is still used for graphics rendering in many

applications to perform tasks that do not fit well into the graphics pipeline

or ray-tracing pipeline. Such tasks include certain post-processing effects on

images or physics calculations for physical interactions between objects in a

scene.

The next two sections briefly describe the graphics and ray-tracing pipelines

in Vulkan.

2.3 Graphics Pipeline

The graphics pipeline is a logical pipeline describing the process by which a

GPU turns 3D objects into a 2D representation that is written to a frame

buffer — a region of memory that holds the color values for each pixel in an

image. The pipeline consists of several configurable or programmable stages

that are executed in a fixed order. The inputs to the pipeline include ver-

tex data, a depth buffer, textures, and other application-defined data to be

used for rendering. An in-depth explanation of the graphics pipeline is beyond

the scope of this thesis. Two mandatory programmable stages of the graph-

ics pipeline — the vertex shader and fragment shader — are important to

understand because they are the focus of the optimization work in this thesis.

The graphics pipeline begins with vertex processing, which involves reading

vertex data from buffers and transforming the vertices into screen coordinates.

The transformation of vertices into screen coordinates is handled by the vertex

shader stage of the graphics pipeline. Applications may also use the vertex

8

shader to perform additional computations on the vertices, such as lighting

calculations or texture coordinate transformations. Following vertex process-

ing, the object is rasterized into fragments — pixels that may or may not

be visible in the final frame buffer. The fragment shader stage is responsible

for determining the color of each fragment in the frame buffer using textures,

lighting conditions, and other information from application-defined input data

provided to the pipeline. After fragment shading the fragments are blended

with the existing values in the frame buffer, or discarded if they are occluded

by other objects.

Applications may create multiple different graphics pipelines for different

types of objects and visual effects. The collection of all objects to be rendered

is typically stored in a graph data structure called a scene graph. A typical

application may iterate over all objects in a scene graph and perform a draw

call (i.e., an invocation of a graphics pipeline) to render each object. There

are many optimizations that one could make to scene-graph iteration, such

as view-frustum culling to omit draw calls for objects that are not within the

camera’s field of view, and occlusion culling to omit draw calls for objects that

are completely occluded from the camera’s point of view by other objects in the

scene. Furthermore, the order in which objects are iterated over in the scene

graph should aim to minimize the amount of state change on the GPU. State

change refers to the process of switching between different graphics pipelines

and switching of input data provided to the pipelines. State change can be

costly due to the need for the GPU to reconfigure itself and introduce execution

barriers to wait for the GPU to finish processing the previous pipeline with

older data.

2.4 Ray-tracing Pipeline

Ray tracing is a rendering technique that simulates the paths of light through-

out a scene with the resulting image formed by light rays that hit the camera.

However, simulating all possible light rays emitted by light sources is infeasi-

ble. Instead, ray tracing is performed backwards: rays are traced out of the

9

camera and into the scene. Rays that hit geometry can generate additional

rays, and rays that hit light sources will contribute to a pixel color for the

rendered image.

The Vulkan API enables real-time ray tracing through a ray-tracing pipeline.

While ray tracing is also possible using a feature called ray queries, this thesis

focuses only on the ray-tracing pipeline, which is primarily used for fully ray-

traced applications. Ray queries behave differently and are more often used in

hybrid rendering techniques that combine traditional rasterization with ray-

traced visual effects.

Ray Generation

Any Hit Intersection

Closest Hit

Miss

Ray Traversal

Completed Traversal

Intersection?
Yes

No

Found a hit?

AABB Intersection

Yes

No

TraceRay

Figure 2.1: The ray-tracing pipeline

The Vulkan ray-tracing pipeline is shown in Figure 2.1. It consists of five

types of programmable shaders shown in yellow rounded boxes: ray generation,

intersection, any hit, closest hit, and miss. Each geometric primitive in the

application can have a unique intersection, any hit, and closest-hit shader,

but many primitives will often share the same set of shaders. There exists an

additional callable shader that can be invoked by any shader in the pipeline,

but it is not explored in this work.

The ray-tracing pipeline can be considered a GPU kernel with the number

10

of executing threads dictated by a launch size that is set by the application.

In most cases, the launch size is the same as the dimensions of the window or

canvas on which the application draws. Once the application sends the Vulkan

API command vkCmdTraceRaysKHR, the ray-tracing pipeline is executed with

the ray-generation shader as the entry point. The ray-generation shader calls

the OpTraceRayKHR instruction to trace a ray and start the ray-traversal pro-

cedure.

Ray traversal finds all primitives that the ray hits and is responsible for

invoking the other shaders in the pipeline. Application geometry is stored in

a specialized data structure called an Acceleration Structure (AS) designed

to efficiently find ray intersections with geometric primitives. Each geometric

primitive in an acceleration structure is enclosed by an Axis-Aligned Bound-

ing Box (AABB). When a primitive’s AABB is intersected by a ray, its cor-

responding intersection shader is called to confirm whether or not the ray

has intersected with the primitive contained in the AABB. Triangle primitives

have their own implicit intersection shader that is handled by the hardware,

while procedural (non-triangular) primitives must have an application-defined

intersection shader to confirm whether or not a ray has intersected with the

primitive. The intersection shader calls the OpReportIntersectionKHR func-

tion to report an intersection, where KHR indicates that this is a Khronos

function.

If an intersection with a primitive is reported, the primitive’s any-hit shader

is invoked if available. Its purpose is to determine whether the intersection

should be ignored. For example, the shader may perform an opacity test,

which often involves expensive texture accesses, to check if the intersection is

with a transparent part of the primitive. The any-hit shader calls the function

OpIgnoreIntersectionKHR to cause the intersection to be ignored.

Once ray traversal is complete, the closest-hit shader of the closest prim-

itive is invoked. If the ray did not intersect with anything, then the miss

shader, specified by an argument of OpTraceRayKHR, is invoked instead. The

miss shader and the closest-hit shader can also call OpTraceRayKHR to trace

additional rays.

11

2.5 Ray-Tracing Performance

Unlike the graphics pipeline for rasterization, the ray-tracing pipeline is recur-

sive. From each intersection additional rays may be traced with their origin

at the intersection point. Together these rays are called a ray path. However,

ray paths are unpredictable because small differences in the initial origin or

direction can significantly change the subsequently intersected geometries. As

a result, ray tracing often suffers from high divergence in SIMT/SIMD execu-

tion and memory accesses on GPUs. Clever techniques and simplifications or

assumptions are often required to make ray-tracing performance adequate for

real-time applications [15], [23], [29].

2.6 Vulkan Vision

To analyze the performance of Vulkan applications, Pankratz et al. developed

the Vulkan Vision shader instrumentation framework. That framework is built

on top of the Vulkan validation layer and provides several useful building

blocks for creating new shader instrumentations such as unique identification

of threads and warps, and for managing the reading, writing and transfer

of instrumentation data between the host and the device. Moreover, Vulkan

Vision works with any standards-conforming Vulkan application and does not

require modification of the application source code to operate.

Using Vulkan Vision, Pankratz et al. show several insights into the per-

formance of Vulkan ray-tracing applications, including a measure of SIMT

efficiency, a characterization of causes for SIMT divergence, the behavior

of NVIDIA-hardware-specific Independent Thread Scheduling, and execution

hot-spot detection.

2.7 RayScope

Following the work on Vulkan Vision, RayScope [42] is a tool to collect and

visualize the rays and geometry of a Vulkan ray-tracing application. By col-

lecting data about every ray traced by an application, RayScope can identify

12

issues in ray-tracing applications such as visual defects and improperly set

API parameters that result in poorer performance. RayScope instruments the

ray-tracing shaders of an application using the Vulkan Vision framework to

obtain the ray data necessary for its visualization tool.

13

Chapter 3

ReRay

Ray tracing is a technique widely-used to render photorealistic imagery for

films and 3D visualization software. However, the use of ray tracing in real-

time interactive rendering applications, such as video games, is relatively re-

cent [52]. Despite hardware acceleration [35], [36], the introduction of a ray-

tracing pipeline to graphics Application Programming Interfaces (APIs), and

a strong interest by PC hardware vendors [53], the performance of real-time

ray tracing still lags behind rasterization [45] — the dominant rendering tech-

nique used for most real-time graphics applications. One of the reasons for this

disparity is the lack of tuning and optimizations to the ray-tracing pipeline in

comparison to the more mature rasterization graphics pipeline. While there

are many known performance issues in the ray-tracing pipeline, there are rel-

atively few tools and methods to identify and overcome them.

This chapter addresses the following research question: How can we provide

insights into the performance of ray-tracing applications to aid in the design

and optimization of ray-tracing algorithms and hardware-accelerator designs?

To answer this question, this chapter presents ReRay, a platform-agnostic and

extensible toolchain and workflow for evaluating, debugging, and optimizing

Vulkan ray-tracing applications by capturing and analyzing ray-trace execution

data generated from automatic GPU shader code instrumentation.

The data obtained from GPU shader-code instrumentation can provide

insights into hardware, driver, and application behavior to aid in ray-tracing

algorithm design. These insights come in the form of performance metrics

14

and heat maps that reveal several aspects affecting ray-tracing performance

such as hardware work assignment, and acceleration-structure construction

and traversal.

ReRay can also be used to rapidly evaluate potential changes to the ap-

plication’s renderer before the developer carries out a costly implementation.

To demonstrate this capability, we evaluate how SIMT efficiency and perfor-

mance is influenced by the warp execution order and thread-to-warp assign-

ment. ReRay is used to collect and analyze ray and warp execution data

to visualize NVIDIA’s warp execution order and thread-to-warp assignment

without the use of proprietary NVIDIA extensions. We compare this assign-

ment to other thread-to-warp assignments created by several warp repacking

methods to improve SIMT efficiency and performance.

To aid in the rapid evaluation of changes to the rendering algorithm, ReRay

implements a simulator to estimate the resulting SIMT efficiency of an applica-

tion for any given thread-to-warp assignment. The simulator does not require

re-running the application with the new thread-to-warp assignment to provide

an estimate of SIMT efficiency. To measure real SIMT efficiency, we modify an

application to use a custom thread-to-warp mapping by implementing thread

swizzling, a technique that allows each thread to behave as another thread

according to a specified one-to-one mapping. ReRay can be used to measure

the real SIMT efficiency of the application from warp execution data for each

thread-to-warp assignment. We then compare the performance of the various

thread-to-warp assignments using NVIDIA Nsight Graphics [41] and NVIDIA

Nsight Systems [38].

The rest of this chapter is organized as follows: Section 3.1 provides an

overview of the data collection mechanism used by ReRay. Section 3.2 intro-

duces the ReRay toolchain and its included modules. Section 3.3, discusses

how ReRay’s modules can be used to improve the performance of a single

frame of a Vulkan ray-tracing application through warp repacking. Section 3.4

compares the SIMT efficiencies and performance of ReRay’s repacking meth-

ods to NVIDIA’s default thread-to-warp assignment. Finally, Section 3.5 out-

lines other modules included with ReRay for examining the performance of

15

ray-tracing applications from analysis of execution traces of the ray-tracing

pipeline, such as wasteful shader executions during ray traversal.

3.1 Data-Capture Mechanism

ReRay’s mechanism for data capture is a modification and extension of RayScope’s

ray-data collector which itself is built using the Vulkan Vision shader instru-

mentation framework. This section describes our collection of ray data as well

as an improved method for measuring SIMT efficiency over that provided by

Vulkan Vision.

3.1.1 Ray Data Collection

ReRay uses Vulkan Vision to instrument ray-tracing shaders at the beginning

of shader calls and immediately before key ray-tracing function calls. The

shaders are instrumented at the hardware-agnostic SPIR-V intermediate rep-

resentation before they are sent to the Vulkan drivers.

The collected data is comprised of key ray events in ray-tracing shader

programs. These events mark the execution of ray-tracing shaders and the

values of key variables in those shaders, or calls to ray-tracing functions and

their arguments inside ray-tracing shaders. More precisely, ReRay captures

the following ray events:

1. Begin: A call to the function OpTraceRayKHR. The function arguments

Ray Origin, Ray Direction, Ray Tmin and Ray Tmax are recorded along

with this event. If the ray flag SkipClosestHitShaderKHR is set, then this

is anOcclusion Begin event because this flag is most often used to trace

shadow/occlusion rays that do not care what object is hit.

2. Intersection: Beginning of execution of an intersection shader. The

values of the built-in variables RayTmaxKHR, InstanceID and Prim-

itiveID are written alongside this event. RayTmaxKHR in this event

records the distance to the closest object so far in the ray traversal.

16

3. Report Intersection: A call to the functionOpReportIntersectionKHR.

The value of the Hit argument is recorded with this event, which con-

tains the distance to the intersected object along the ray. This event

may only occur in an intersection shader and therefore can only ever

follow an Intersection event.

4. Any Hit: Beginning of execution of an any-hit shader. The values of

the built-in variables RayTmaxKHR, InstanceID and PrimitiveID are

written alongside this event. RayTmaxKHR in this event is the distance

to the intersected object along the ray.

5. Ignore Intersection: A call to the function OpIgnoreIntersectionKHR.

This event may only occur in an any-hit shader and therefore can only

ever follow an Any Hit event.

6. Miss: Beginning of execution of a miss shader. No additional variables

are recorded with this event, as no object is hit.

7. Closest Hit: Beginning of execution of a closest-hit shader. The values

of the built-in variables RayTmaxKHR, InstanceID and PrimitiveID are

written alongside this event. RayTmaxKHR in this event is the distance

to the intersected object along the ray.

8. Implicit Hit: If a ray began with an Occlusion Begin event and did

not end with a Miss event, then the ray is assumed to end with an

Implicit Hit event.

In the Any Hit, Intersection, and Closest Hit ray events, ReRay cap-

tures the InstanceID and PrimitiveID to uniquely identify the object being

processed by the shader.

Except for an implicit-hit event, which has no associated shader, the shader

ID of each ray event is recorded to indicate which shader created the ray event.

Applications may use more than one of the same shader type. Thus the shader

ID can distinguish same-type ray events originated from different shaders.

17

To capture hardware behavior, ReRay uses Vulkan Vision’s unique identi-

fication primitive to generate unique thread IDs and warp IDs for each thread

and warp. Each ray event is recorded with the thread ID and warp ID that

generated the event.

3.1.2 SIMT Shader Efficiency and Warp Data Collec-
tion

SIMT efficiency is a measure of the SIMD utilization of GPU hardware during

execution. Pankratz et al. measured SIMT efficiency using Vulkan Vision

by instrumenting shader programs to record the active thread bitmasks of

warps at the entry of every basic block [43]. The SIMT efficiency is measured

as the sum of the number of set bits (active threads) divided by the total

number of bits from all bitmasks. However, this method of computing SIMT

efficiency is not suitable for estimating the effectiveness of the warp repacking

methods introduced later in the chapter. The reasons for this are two-fold:

for one, Vulkan Vision does not track the origins of bitmasks from different

warps and locations in shader source code; all bitmasks are instead aggregated

together for the entire application. Second, the basic-block granularity of

Vulkan Vision’s method, in tandem with the lack of origin tracking, makes

estimating changes to SIMT efficiency after warp repacking a complex task.

As will be discussed in Section 3.2.1, we want a method of estimating SIMT

efficiency that is closely tied to the ray-event data to make it easier to predict

the resulting SIMT efficiency after warp repacking.

To measure SIMT efficiency, ReRay captures warp events from an applica-

tion. Warp events record per-warp shader execution traces of an application’s

ray-tracing pipeline. Each warp event records the warp ID which generated

it, the shader ID identifying the shader from which the event was generated,

and the active thread bitmask of the warp at the time of the event. None

of the shader variables or function arguments are recorded with a warp event

because they are thread-specific.

In comparison to ray events, warp events consist only of Begin, Occlusion

Begin, Intersection, Any Hit, Miss, and Closest Hit. Report Intersec-

18

tion and Ignore Intersection are not recorded for warp events because these

result from relatively inexpensive function calls. Besides, an active thread bit-

mask for aReport Intersection warp event would be equivalent to the active

thread bitmask for the subsequent Any Hit warp event, and an Ignore In-

tersection event does not affect SIMT efficiency because all threads in a warp

will continue with the ray traversal procedure regardless of whether or not an

intersection was ignored.

The active-thread bitmasks recorded by the warp events are used by ReRay

to compute the SIMT efficiency of an application on a per-warp basis. For the

Begin and Occlusion Begin events, the active-thread bitmask is recorded

just before the call toOpTraceRayKHR. For the shader call events (Intersection,

Any Hit, Miss, and Closest Hit), the active-thread bitmask is recorded at

the entry point of the shader program. In effect, ReRay’s SIMT efficiency

metric is more a measure of shader execution divergence as opposed to all

control-flow divergence that may be present during the execution of a ray-

tracing pipeline.

A shortcoming in both ReRay and Vulkan Vision is that all bitmasks con-

tribute equally to the SIMT efficiency computation. A more precise metric

should take into account the amount of time spent executing with each active-

thread bitmask. In Vulkan Vision every basic block contributes equally to

SIMT efficiency; a basic block with few instructions would contribute just as

much to SIMT efficiency as a basic block with many instructions. Likewise

in ReRay’s approach, every shader contributes equally to SIMT efficiency. A

future study could consider weighting the bitmasks by an estimate of the ex-

pected execution time for the basic block or the shader corresponding to each

bitmask. The methodology in ReRay assumes that OpTraceRayKHR calls and

shader calls contribute more significantly to an application’s overall SIMT ef-

ficiency than individual basic blocks within the shaders.

19

Vulkan Application Instrumentation Layer ReRay Front-end

Replayer

Ray events

Warp events

Warp Repacker

Extraneous Any-HitsSIMT Efficiency Intersection Count

Warp Execution
Order

ReRay Modules

Developer

External Tools

Figure 3.1: ReRay’s architecture

3.2 ReRay Toolchain

This section presents ReRay’s toolchain for reading and processing the ray and

warp data described in Sections 3.1.1 and 3.1.2.

Figure 3.1 shows the complete ReRay architecture and pipeline. The

ReRay toolchain architecture consists of a parser front end that is extended

by various back-end modules. The front end contains procedures for reading,

parsing, and writing ray and warp data. Back-end modules are components

that extend the front end to perform additional processing of the data. These

modules may be used to compute performance metrics, generate visualizations

of certain ray behaviors, or evaluate different methods for sorting and packing

threads into warps.

3.2.1 Estimating the Effects of Warp Repacking on SIMT
Efficiency

ReRay was developed to enable the study of SIMT efficiency and other perfor-

mance issues affecting ray tracing. Poor SIMT efficiency comes from divergent

20

1 // Per -thread ray events from threads in a warp of size 4.

2 begin , int1 , miss

3 begin , int1 , int2 , repint , chit

4 begin , int2 , repint , chit

5 begin , int2 , repint , chit

6

7 // Synthetic warp -event trace generated by the Replayer

8 begin 1111, int1 1100, int2 0111, miss 1000, chit 0111

Listing 3.1: Simplified example of ray events per thread from four threads
and a corresponding synthetic warp-event execution trace generated by the
Replayer module. There is one ray generation shader (begin), one closest hit
shader (chit), one miss shader, and two intersection shaders (int1, and int2).
Only the names of ray events are shown. Ray origins, directions, and t-values
are omitted for brevity.

execution within warps. However, many rays often exhibit similar execution

traces. If one were to know the behavior of each ray before it is traced, then

a way to increase SIMT efficiency is to have warps trace rays with similar

behaviors to minimize divergent execution. ReRay attempts to examine a

more granular approach to increasing SIMT efficiency by performing a reas-

signment of threads to warps — a process called warp repacking. Each thread

in an application is responsible for tracing one or more rays in the ray-tracing

pipeline. We hypothesize that applications have similar ray paths which can

be executed together in warps to increase SIMT efficiency. An added ben-

efit to this approach is that it does not require complex modification of an

application’s ray-tracing algorithm to implement.

ReRay’s Replayer module estimates the changes in SIMT efficiency from

warp repacking. When given ray data and a thread-to-warp assignment, the

Replayer generates a synthetic version of warp data. The synthetic warp data

is used to estimate SIMT efficiency after repacking. As shown in Listing 3.1,

synthetic warp events are produced from an examination of Begin and shader

call ray events from all threads in a warp. Threads that perform the same

shader calls execute the shader together, forming the active thread bitmask

for the corresponding synthetic warp event. The synthetic warp data reflects

an idealized execution on hardware and tends to over-approximate SIMT ef-

ficiency as the length of execution traces increases. Nevertheless, synthetic

21

SIMT efficiency can be used as an estimate to improve packing before running

the actual application.

3.2.2 Visualizing Warp Execution Order

The execution order of warps affects data access patterns and thus has a

profound impact on performance when taking into account the memory hi-

erarchy [66]. It is said that NVIDIA uses a Z-ordering to execute warps,

but the exact properties of the ordering are unknown without using a propri-

etary NVIDIA Vulkan extension [48]. This ordering can be uncovered using

Vulkan Vision without the need for a proprietary extension. As mentioned

in Section 3.1.1, ReRay uses Vulkan Vision’s unique identification primitive

to generate unique thread IDs and warp IDs. Warp IDs are generated by

an atomic increment of a value in an instrumentation buffer during runtime,

whereas thread IDs are assigned in row-major order over the shader launch

size. Therefore, warp IDs give the execution order of warps, and thread IDs

are tied to the pixels computed by the threads.

22

Figure 3.2: ReRay’s visualization of warp execution order over a 2048x2048
pixel image. As warp ID increases, the color of pixels go from black to green.
Red lines have been added to the image to help illustrate the Z-ordering.

23

32 px

32
 p

x

4 px

8
px

Figure 3.3: ReRay’s visualization of warp execution order for a launch size of
256x256. A lighter shade of color indicates a higher warp ID (i.e., the warp
executes later than darker colored warps). A 32x32 tile of pixels has been
enlarged to show the warp shape.

Using ReRay’sWarp Execution Order module, an image of the distribution

of warp IDs over threads can be created from ray data to visualize the warp

execution order. Figure 3.2 shows an image depicting a warp execution order

for a launch size of 2048x2048, which was taken from a Vulkan application

running on an RTX 3080 using driver version 512.15. Every Vulkan application

we tested followed a similar warp execution order when using the same launch

size for the ray-tracing pipeline. It is most often the case that the launch size is

equal to the resolution at which the application is rendering. Warp IDs appear

to follow a Z-ordering, recursively following a 2-3-1-4 pattern — second, third,

first, then fourth quadrants over a square grid. However, at smaller scales

and launch sizes the Z-ordering is not strict. As shown in Figure 3.3, the

execution order of warps for a launch size of 256x256 appears to be chaotic.

We suspect that the randomness is due to the state of the hardware warp

scheduler at the time of execution and how the hardware resolves data races

between concurrent atomic writes. Examining execution at this scale reveals

that warps in the image consist of 8x4 rectangles of pixels, with each pixel

24

Launch Size Tile Size
256x256 256x256
2048x2048 2048x2048
1024x500 256x512
1024x512 512x512
1024x520 32x32
1280x720 256x256
1600x900 32x32
1920x1080 256x256
2560x1440 512x512
3840x2160 512x512

Table 3.1: A table of some launch sizes and the corresponding tile size in pixels
for NVIDIA’s Z-ordering. For most applications, the launch size is equal to
the resolution of the image being rendered.

corresponding to a thread within the warp.

Figure 3.4: ReRay’s visualization of warp execution order for a launch size of
1280x720. As warp ID increases, the color of pixels go from black to green.
Yellow lines mark the borders of the tiles. Red lines have been added to the
first tile to help illustrate the Z-ordering in each tile.

For non-power-of-two launch sizes, the warp execution follows a tiling ap-

proach to Z-ordering. Figure 3.4 shows an image depicting a warp execution

order for a launch size of 1280x720. In this case, the image is divided into

25

square tiles of 256x256 pixels. The tiles are executed in row-major order, but

within each tile, the warps execute loosely according to a Z-ordering. For

launch sizes that have power-of-two dimensions, the tile size is the smaller

of the width or height of the launch size. Table 3.1 shows a table of various

launch sizes and the corresponding tile sizes. We have yet to discover a pattern

that determines the tile size used for any non-power-of-two launch size, and

we suspect that the tile sizes are manually set by the driver implementation

for common launch sizes.

Figure 3.5: ReRay’s visualization of warp execution order for a launch size of
1024x500.

Some odd behaviors occur at non-conventional launch sizes. For example,

the shape of the warps has typically been 8x4 rectangles of pixels. However,

this is not always the case. As can be seen in Figure 3.5 and Table 3.1, some

non-conventional launch sizes (e.g., 1024x500) cause the warps to be arranged

as 4x8 rectangles of threads with rectangular tiles. The Z-ordering has also

changed to follow a Z pattern (2-1-3-4) instead of the 2-3-1-4 pattern seen

previously.

The warp execution order, including the tile size and warp shape, depend

only on the launch size of the ray-tracing pipeline. For common launch sizes,

the tile size may be recorded and used to apply optimizations to algorithms.

26

For example, tile size could be an important factor in optimizing some algo-

rithms such as creating spatial splits for geometry during acceleration structure

construction [32]. Objects could be spatially split until all splits are expected

to fall within a single tile. Another optimization could reverse the Z-ordering

and tiling to obtain a linear execution order for warps, which can be used to

follow a new execution order based on different tile sizes or space-filling curves.

Voorhies formally defined a numerical measure of coherence for space-filling

curves [66] which could be useful for choosing a curve with the appropriate

level of coherence for a given algorithm because some algorithms may benefit

from having lower coherence space-filling curves or larger tile sizes.

27

3 114 2 14 08 5 15 61 13 9 1210 7

Thread Sorting

2 30 1

6 74 5

10 118 9

14 1512 13

1 50 4 9 138 12 3 72 6 11 1510 14

8 144 3

6 02 11

10 91 15

7 1213 6

3 41 2 7 85 6Warp Execution
Order

Original Thread-
Warp Map

New Thread-
Warp Map

Figure 3.6: ReRay’s thread sorting process illustrated with a warp size of 2.

3.3 Warp Repacking Methods

This Section presents a workflow that uses ReRay to improve the performance

of a single frame of a Vulkan ray tracing application through warp repacking.

Given that the assignment of threads to warps is determined by the drivers

and by the hardware, and therefore it cannot be directly modified, this work-

flow uses a process called thread swizzling to repack warps. Thread swizzling

28

remaps thread IDs such that each thread behaves as if it were another thread.

This technique is similar to thread-group ID swizzling [6], but it is applied to

individual threads instead of warps. Thread swizzling replaces each shader’s

use of thread ID with an index into an 1D array, called the thread swizzle, con-

taining a one-to-one mapping between thread IDs. For simplicity, this section

describes the thread swizzling of a single unchanging frame of an application.

This simplification enables all variables, except for the warp packing, to remain

constant throughout the measurements.

The workflow begins with collecting ray and warp data from an application

using the instrumentation layer from Section 3.1. The instrumentation layer

produces two files: one, .rays, for the ray data and another, .warps, for warp

data. These files are read by ReRay’s toolchain front-end and organized into

an internal format for use by back-end modules as described in Section 3.2.

Once the ray and warp data are loaded into ReRay’s toolchain, the first step

in performing warp repacking is to sort threads using an approximate measure

of coherence. The sorting process is illustrated in Figure 3.6. The threads of a

set of warps are unpacked into a 1D array A that is sorted to produce an array

B. A thread swizzle is a one-to-one map from element Ai to Bi. The order

in which warps are unpacked determines the resulting assignment of sorted

threads to warps. The sorting may be performed globally over all warps, or

in subsets or tiles of warps according to fixed tile sizes. For example, sorting

may be performed within tiles of warps equivalent to the tiles in NVIDIA’s

Z-ordering. This chapter examines six sorting methods:

• Identity: This baseline represents NVIDIA’s default thread-to-warp as-

signment. A thread swizzle that consists in an identity map is still ap-

plied in the sorting step to make the measurement procedure uniform

for all cases.

• Random: Used as a benchmark, in this sorting each thread is randomly

mapped to another thread.

• Number of Rays (Numrays): Sort all threads by the number of rays

they trace throughout their lifetime. In the case of a tie, the threads are

29

sorted by their associated warp IDs to try to keep threads in the same

warp if they were originally in the same warp. This simple heuristic

attempts to maximize the amount of work that each warp processes

concurrently. Warps are unpacked according to row-major order before

sorting.

• Tiled Numrays: A tiled sorting method which uses the same heuristic

as the Numrays sort. A tiled sorting method partitions the launch size of

the ray-tracing pipeline into tiles. The sorting is then performed locally

in each tile instead of globally across all threads. The tile size is chosen to

be the tile size used in NVIDIA’s Z-ordering for the current launch size.

Warps in each tile are unpacked according to row-major order before

sorting.

• Objects: Sorts all threads by the ordered list of objects that their ray

paths intersect. An object encountered by a ray is uniquely determined

by an instance-primitive ID, which is the concatenation of the instance

ID and the primitive ID from the ray hit event (intersection, any-hit,

or closest-hit). The instance-primitive ID of the first object that differs

between two threads is used to compare using a less-than operator. This

heuristic attempts to maximize the similarity of ray paths by grouping

together threads that trace rays encountering the same sequences of ob-

jects. In the case that two threads have equivalent object encounters,

the tie is broken by warp ID to try to keep threads in the same warp if

they were originally in the same warp. If a thread Ti encounters more

objects than another thread Tj, and the sequence of objects encountered

by both threads is equivalent up to and including the point that Tj en-

counters its last object, then Ti is ordered before Tj in the sort. Warps

are unpacked according to row-major order before sorting.

• Tiled Objects: A tiled sorting method that uses the same heuristic

as the Objects sort. The tile size is chosen to be the tile size used in

NVIDIA’s Z-ordering for the current launch size. Warps in each tile are

30

unpacked according to row-major order before sorting.

To measure the benefits of a given warp repacking, one can manually im-

plement thread swizzling into their application and apply the thread swizzles

generated by the above sorting methods. Performance and SIMT efficiency

can be measured by profiling an application running with thread swizzling.

Alternatively, ReRay’s Replayer module (described in Section 3.2.1) can be

used to estimate the benefits of warp repacking without modifying or rerun-

ning the application. The Replayer generates synthetic warp data from the

application’s ray data and the thread-to-warp assignments from each thread

swizzle created by the sorting methods. The SIMT efficiency of the synthetic

warp data, which we call synthetic SIMT efficiency, can be computed offline

without the original application. Synthetic SIMT efficiency provides an esti-

mate for the actual SIMT efficiency of an application after warp repacking.

While the main benefit of measuring synthetic SIMT efficiency is to avoid

having to modify and rerun the application to support thread swizzling, there

is a potential opportunity to automatically apply thread swizzling for an appli-

cation through a Vulkan layer. However, automating thread swizzling comes

with its own set of challenges with regards to determining how and where it

should be applied in an application, the management of host and GPU memory

for buffers to store the thread swizzles, and the modification of an application’s

shader resource binding procedures to appropriately update and bind resource

descriptors for thread swizzling data. Solving these challenges is beyond the

scope of this chapter.

3.4 Evaluation of Warp Repacking Methods

In this section, we compare the SIMT efficiency and performance of the warp

repacking methods described in the previous section to NVIDIA’s default

thread-to-warp assignment.

31

Figure 3.7: Our test application render (RayTracingInVulkan)

3.4.1 Experimental Setup

All the experiments were performed on a Windows 10 (21H2, build 19044)

test machine using an NVIDIA RTX 3080 GPU with driver version 512.29.

The NVIDIA Nsight Systems [38] software is used to measure the effects of

warp repacking on GPU frame times. GPU clock rates are locked to their base

frequencies using the NVIDIA System Management Interface [39] command

line tool for all experiments.

The experiment uses a modified version of RayTracingInVulkan (Release

7) [13], a Vulkan implementation of Peter Shirley’s Ray Tracing in One Week-

end [49]. The only modification to the application is the implementation of

thread swizzling to test the warp repacking methods. The underlying ray-

tracing algorithms of the application remain untouched. The measurements

use the scene named Ray Tracing In One Weekend that features a large variety

of spherical objects with different material properties. All application settings

are at their default value except for the number of samples per pixel that is

restricted to six to reduce the memory requirements. Reducing the memory

requirements is necessary because Vulkan Vision, in its current implementa-

32

tion, fails to produce instrumentation data when the memory consumption is

too high. Ray accumulation is also turned off in the application to ensure

an unchanging frame, which allows all variables and program behaviors to be

kept constant except for the thread-to-warp assignment. The application’s

present mode is set to Immediate mode to allow it to render frames as quickly

as possible without being stalled by the refresh rate of the display. The res-

olution (and ray-tracing pipeline launch size) of the application is also left at

the default 1280x720. An image of the scene rendered by the application using

these settings is shown in Figure 3.7.

Warp repacking is performed using the process outlined in Section 3.3 to

obtain a thread swizzle for each sorting method used. For the tiled sorting

methods, we use a tile size of 256x256 pixels which matches the tile sizes used

for 1280x720 launch sizes in NVIDIA’s Z-ordering, as shown in Figure 3.4.

Unmodified Identity Random Numrays Tiled Numrays Objects Tiled Objects
Thread Swizzle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SI
M

T
Ef

fic
ie

nc
y

type
actual
synthetic

Figure 3.8: Actual and synthetic SIMT Efficiency of the application when using
each thread swizzle. The ”Unmodified” column represents the application
before any modifications.

33

3.4.2 Analysis of SIMT Efficiency

Synthetic SIMT efficiency is measured for each thread swizzle to get an es-

timate of the improvement in relation to the actual SIMT efficiency of the

application before running it. Afterwards, the application is run with each

thread swizzle to collect ray and warp data for measuring the actual SIMT

efficiencies after warp repacking. Figure 3.8 shows the SIMT efficiencies of the

application with each thread swizzle. An “unmodified” column is included in

the figure to indicate the SIMT efficiency of the original unmodified applica-

tion.

Looking at synthetic SIMT efficiency in Figure 3.8, the Numrays and Tiled

Numrays thread swizzles increased synthetic SIMT efficiency by around 40%

over the Identity. These results are to be expected, as RayTracingInVulkan

uses very few shader programs, which decreases the likelihood of thread di-

vergence due to shader call divergence when sorting by the number of rays

traced by each thread. Surprisingly, the Objects and Tiled Objects thread

swizzles appear to only marginally affect synthetic SIMT efficiency. Both the

Objects and Tiled Objects thread swizzles increase synthetic SIMT efficiency

by 4%. The Objects and Tiled Objects thread swizzles likely have lower in-

creases on SIMT efficiency due to coherence only being maximized towards

the beginning of thread lifetimes; the longer a thread has been running, the

more unique the thread’s sequence of encountered objects becomes, causing

it to differ from other threads that may have started with the same initial

sequence of encountered objects. Objects and Tiled Objects sorting methods

put together threads in the same warp if their sequences of encountered ob-

jects at the beginning is the same, and do not handle well the cases where

some threads diverge from others in the same warp after some execution. The

Object and Tiled Objects sorting methods may be more effective at improving

SIMT efficiencies for ray-tracing applications that have specialized shaders for

each material, or have shorter ray traces from lower numbers of samples per

pixel and/or bounces per pixel.

Looking at the actual SIMT efficiency in Figure 3.8, it appears that the

34

increases in SIMT efficiency by Numrays and Tiled Numrays are not as signifi-

cant as what was estimated from the synthetic SIMT efficiency. The Numrays

and Tiled Numrays thread swizzles increased real SIMT efficiency by 20% and

21% respectively, versus the estimated 40% for synthetic SIMT efficiency. The

Objects and Tiled Objects thread swizzles increased SIMT efficiency by 9%

and 8% respectively, which are higher than the synthetic estimates of 4%. The

differences between synthetic and actual SIMT efficiency may be due to the

GPU’s thread scheduling and warp execution behavior of shaders and how the

Replayer decides warps should execute shaders. For example, NVIDIA’s Inde-

pendent Thread Scheduling tends to cause dips in SIMT efficiency due to some

threads no longer executing in lockstep with other threads in the same warp

[43]. Additionally, the GPU may also be performing hardware warp repack-

ing during ray traversal; The Vulkan specification [62] states that certain ray

tracing instructions may change the set of active threads during execution,

including the assignment of threads to warps. However, such hardware warp

repacking was not yet implemented when modern video game titles, such as

Fortnite, were developing ray-traced visual effects [23]. We have yet to find

documentation of ray sorting or warp repacking algorithms in recent driver

and hardware releases.

35

Unmodified Identity Random Numrays TiledNumrays Objects TiledObjects
Thread Swizzle

0

2

4

6

8

10
GP

U
Fr

am
e

Ti
m

e
(m

s)

Figure 3.9: Violin plots with overlaid box plots of GPU frame times over 985
frames using each thread swizzle. Data points beyond 1.5 times the interquar-
tile range are considered outliers and are displayed as diamonds for the inner
box plots. A white dot in each plot indicates the average GPU frame time.

36

0 1 2 3 4 5 6
Frame Start Time (s)

6.0

6.5

7.0

7.5

8.0

8.5

9.0
GP

U
Fr

am
e

Ti
m

e
(m

s)

Identity

Figure 3.10: GPU frame times over application run time when rendering Ray-
TracingInVulkan with the Identity swizzle. The interval displayed in the ver-
tical axis does not start at 0.

37

Thread Swizzle Change in Mean Change in Median
Identity +0.10% +0.10%
Random +25.26% +28.20%
Numrays -2.13% -0.63%

Tiled Numrays -3.75% -2.61%
Objects -0.17% -0.76%

Tiled Objects -3.65% -2.53%

Table 3.2: Percent changes in mean and median GPU frame times for each
thread swizzle.

0 1 2 3 4 5 6
Frame Start Time (s)

6.0

6.5

7.0

7.5

8.0

8.5

GP
U

Fr
am

e
Ti

m
e

(m
s)

Tiled Numrays

Figure 3.11: GPU frame times over application run time when rendering Ray-
TracingInVulkan with the Tiled Numrays swizzle. The interval displayed in
the vertical axis does not start at 0.

3.4.3 Analysis of GPU Frame Times

While SIMT efficiency is a significant factor in determining the performance

of an application, it is not the only factor. To measure the performance of

the application using each thread swizzle, we use NVIDIA Nsight Systems [38]

38

to measure GPU frame time. We set Nsight Systems to collect GPU metrics

and Vulkan traces for 1000 frames of the application at a sampling rate of 10

kHz. The resulting profiling report measures the duration of 985 GPU frames

from the application, a number which we found to be sufficient for consis-

tently measuring the performance differences between the thread swizzles on

repeated runs. When measuring GPU frame times, we lock the GPU clocks

to the base frequency (1440 MHz) using NVIDIA’s System Management In-

terface command line tool [39]. Figure 3.9 illustrates, using violin plots [20]

overlaid with box plots, the distributions of GPU frame times when running

the application with each thread swizzle. GPU frame times above or below

a factor of 1.5 inter-quartile range are considered outliers and are shown as

diamonds in the box plots. Circular markers in each box plot indicate the

average GPU frame time achieved with the thread swizzle.

Looking at the violin plots in Figure 3.9, it appears that the distributions

of GPU frame times are heavily right-skewed and multimodal. To observe

how these multimodal distributions emerged from profiling data, Figure 3.10

plots GPU frame time over application run time using the Identity thread

swizzle. To offer a better visualization of the differences, the vertical axis in

Figure 3.10 and Figure 3.11 do not start at zero. GPU frame times take on

values at distinct high and low “bands”. While most GPU frame times take

on values around the lower band of 6.16 ms, a significant portion of GPU

frame times take on values around a high band of 7.30 ms. A few GPU frame

times occur in between the two bands and above the high band. To show

the effect of warp repacking on GPU frame times, Figure 3.11 plots GPU

frame time over application run time using the Tiled Numrays thread swizzle.

Again, there is a distinct high band and low band at which GPU frame times

occur. Three observations can be made: 1. the lower band appears to have

shifted down to around 5.98 ms; 2. there are noticeably fewer GPU frame

times occurring around the high band; 3. more GPU frame times are occurring

between the high and low bands. These observations are reflected in the shapes

of the violin plots in Figure 3.9. We suspect that these behaviors are due to

changes in microarchitectural state, but were unable to find any obvious strong

39

correlations between GPU frame times and statistics such as cache hit rates

from NSight Systems profiling data. A more in-depth study may reveal how

and why warp repacking is affecting the distribution of GPU frame times.

Regarding the overall performance achieved by the warp repacking meth-

ods, Table 3.2 lists the changes to mean and median GPU frame times achieved

by applying the thread swizzles. One observation is that thread swizzling has

negligible overhead because the Identity thread swizzle has increased mean

and median GPU frame times by only 0.10% compared to the unmodified

application. Another observation is that SIMT efficiency is not the primary

factor that determines performance. Figure 3.8 showed that tiling did not sig-

nificantly change the SIMT efficiencies of the resulting thread swizzles for the

Numrays and Objects sorting methods. Yet, the tiled versions of the Numrays

and Objects thread swizzles yield lower mean and median GPU frame times

than their non-tiled counterparts. The violin plots in Figure 3.9 reveal that

the Numrays and Objects swizzles also do not induce as many GPU frame

times to fall between the high and low bands when compared to their tiled

counterparts. The lower GPU frame times achieved when using thread swiz-

zles created by tiled sorting methods may be attributed to better utilization of

the memory hierarchy, as constraining the sorts within tiles ensures that the

spatial locality of memory accesses is preserved. In essence, the tiling puts a

limit on the maximum distance between two pixels a warp can be processing,

as each thread is responsible for coloring one pixel in this application. Tiling

ensures that the threads of each warp initiate ray tracing with similar primary

ray origins and directions. The benefit of tiling is especially noticeable with

the Objects thread swizzle, as it does not affect the mean GPU frame times as

much as the Numrays, Tiled Numrays, and Tiled Objects sorts. The increase

in variability of GPU frame times, illustrated by the inter-quartile ranges in

the box plots, of the Objects thread swizzle compared to the Unmodified appli-

cation and Identity thread swizzle may also be attributed to poorer utilization

of the memory hierarchy.

Although GPU frame time results show that warp repacking can improve

the performance of a ray-tracing application, the overall improvements to mean

40

and median GPU frame times are quite small. The largest reduction in the

mean and median GPU frame times due to thread swizzles were of 3.75%

and 2.61% respectively. This result is obtained with a warp repacking that

overfits to a single frame by using information from an oracle and does not

take into account the time spent creating the thread swizzles through thread

sorting. This underwelming performance of warp repacking suggests that the

default thread-warp mapping implemented by NVIDIA is efficient. However,

Figure 3.9 suggests that there may be more benefits to warp repacking aside

from overall performance: variability. Except for the non-tiled Objects sort,

the thread swizzles significantly lower the variability of GPU frame times, as

seen by comparing the sizes of the interquartile ranges of the box plots. The

difference in GPU frame times between the high and low bands is 1 millisecond

or more. Thus, exploring ways to reduce GPU frame time variability could

significantly help real-time interactive applications with maintaining accept-

able performance. Given that real-time interactive applications are expected

to render at high frame rates, the allotted budget of time to render a frame

is in the order of a few milliseconds. For example, Virtual-Reality devices

are expected to hit target frame rates of at least 90 frames per second, which

allows for a time budget of only 11.1 ms to render each frame. Shaving off

even a fraction of a millisecond could allow for more headroom on the GPU

to include additional visual fidelity and effects. However, further research is

required to fully evaluate the effects of warp repacking on the distribution of

GPU frame times to develop more concrete methods for reducing GPU frame

time variability.

41

3.5 Efficiency and Performance Insights via

Heat Maps

Figure 3.12: SIMT efficiency heatmap of RayTracingInVulkan. A lighter shade
of color indicates higher thread divergence and therefore lower SIMT efficiency.

In addition to warp repacking, ReRay can be used to gain insights into the

performance of ray-tracing applications through detailed heat map generation.

A simple example is creating a heat map using the SIMT efficiency measure

from Section 3.1.2. Such a SIMT efficiency heat map is illustrated in Fig-

ure 3.12 for the render in Figure 3.7. A heat map for SIMT efficiency may be

used to assess the coherence of rays being traced across the screen for the given

scene. If SIMT efficiency is a major concern for an application, the developers

may choose to adopt a Wavefront ray tracer [26] in an attempt to maximize

coherence at the cost of additional memory movement and consumption.

42

Figure 3.13: Heatmap of per-thread intersection shader call counts for Ray-
TracingInVulkan. A lighter shade of color indicates a higher intersection shader
call count.

The number of intersection shaders executed by a thread can be measured

and visualized using ReRay via a heat map such as the one shown in Fig-

ure 3.13. A high number of intersection shader calls may be an indicator of

trapped rays [42], where a thread traces a large number of rays that do not

contribute much to the final result of the pixel’s color While AMD’s Radeon

Raytracing Analyzer (RRA) [1] tool offers similar metrics via traversal coun-

ters, RRA is limited in that their counters are created via emulation of primary

rays from the camera’s viewpoint. ReRay, on the other hand, counts all inter-

section shader calls made by a thread, which includes primary rays, reflection

rays, shadow rays, and all other rays traced by a thread. A shortcoming is

that ReRay requires the application to enable intersection shaders for all its

geometries to obtain accurate results.

43

Figure 3.14: Heatmap of unnecessary intersection test counts for RayTracing-
InVulkan’s Lucy In One Weekend scene. A lighter shade of color indicates
a higher counts of unnecessary intersection tests. In the bottom left is the
original image of the scene.

Another metric ReRay offers is the measure of unnecessary intersection

tests. Unnecessary intersection tests are a consequence of the fact that the

order in which intersections are found along a ray is unspecified [62]. To

measure this metric, ReRay counts the number of any-hit shaders that would

not need to be executed if ray traversal had processed intersections with objects

in order of distance along the ray. While it would make more sense to count

using the Report Intersection ray event mentioned in Section 3.1.1, the Vulkan

API does not allow triangle meshes — geometry composed of only triangles —

to have intersection shaders. Therefore, ReRay uses any-hit shaders as a proxy

for intersection shaders to enable the counting of unnecessary intersection tests

on triangle meshes. Figure 3.14 shows an example of a heat map of unnecessary

intersection tests in the RayTracingInVulkan application after modifying the

Lucy In One Weekend scene to have any-hit shaders on all geometry. This

metric could be an indicator of a large number of overlapping AABBs in the

acceleration structure, an indicator of poor subtree traversal ordering within an

acceleration structure [32], or a consequence of the implementation of hardware

44

ray-traversal units in parallelizing ray-traversal work [27].

The metrics mentioned in this section illustrate the performance metrics

that can be extracted from an application using the ray and warp data col-

lected by ReRay’s instrumentation layer and parsed by the ReRay toolchain

front-end. Each of the metrics is implemented in its own module as shown

in Figure 3.1. The ReRay toolchain is built to be simple and easy to extend

— allowing the creation of new modules that can generate information to be

used by developers or external tools.

3.6 Related Work

The tools most closely related to ReRay are Vulkan Vision [43] and RayScope

[42], whose capabilities have been covered in Section 2.

When presenting Vulkan Vision, Pankratz et al. investigated the perfor-

mance of Vulkan ray-tracing applications. However, they do not thoroughly

explore the intricacies of ray behaviors in the ray-tracing pipeline; Vulkan Vi-

sion’s insights are generalized over all rays traced by an application and does

not concern itself with individual behaviors of threads and rays in the way

that ReRay does.

In contrast to RayScope, ReRay is not a visualization tool but rather an

extensible toolchain and workflow for capturing, parsing, and analysing ap-

plication ray data, which allows for the study of ray-tracing performance at

a deeper level than RayScope. ReRay collects additional ray-tracing pipeline

events and geometry hit information that is not captured by RayScope. With

minimal modification, RayScope can support ReRay’s ray data format to cre-

ate interactive ray visualizations, but going in the other direction is impossible

due to missing information in RayScope’s ray data that is required by some

of ReRay’s tools. This additional information is used by ReRay to provide

insights into aspects affecting ray-tracing performance that do not necessarily

manifest visually in the application or with a ray visualizer such as RayScope.

For example, RayScope does not record intersection-shader call events, while

ReRay does. RayScope’s Intersection event is equivalent to ReRay’s Re-

45

portIntersection event, which records calls to OpReportIntersectionKHR.

However, by making an explicit distinction between an Intersection shader

call and a ReportIntersection function call, one can examine the propor-

tion of rays that hit versus miss an object contained within an AABB. This

distinction can help determine whether an object’s AABB is too large or ex-

amine the effectiveness of employing spatial splits [32] to subdivide the AABB.

ReRay also records the PrimitiveID with Closest Hit, Any Hit, and Intersec-

tion events, while RayScope does not; this detailed recording makes ReRay

more precise when examining objects hit by rays, as the InstanceID alone

does not uniquely identify objects because more than one geometric primitive

can share the same instance ID. Finally, ReRay optimizes the data collection

process by writing binary files instead of storing the information in plain text,

leading to an order of magnitude speedup in the capture of, reading, and

processing of execution trace data.

The thread swizzling technique presented in this chapter is a similar to

thread-group ID swizzling presented in the 2019 Game Developer’s Conference

and published in an NVIDIA blog post [6]. Thread-group ID swizzling is

aimed at optimizing cache locality in compute shaders by remapping warp

IDs. This is necessary because, unlike ray-tracing shaders, warps in compute

shader dispatches are launched in row-major order instead of a Z-order like that

described in Section 3.2.2. Therefore, developers need to implement their own

tiling and space-filling curves to increase memory locality in compute shaders

used for graphics. In contrast to thread-group ID swizzling, ReRay’s thread

swizzling works at thread ID granularity instead of warp ID granularity. This

allows finer-grained control over how thread work is distributed over warps,

which can be used to further optimize not only memory locality but also SIMT

efficiency.

A proprietary tool for analyzing ray-tracing performance was recently an-

nounced by AMD, called the Radeon Raytracing Analyzer (RRA) [1]. RRA is

primarily an acceleration structure visualization tool, but it can also generate

heat maps of ray-traversal counters that are similar to intersection and any-hit

shader count heat maps that can be generated using ReRay. These traversal

46

counters count the number of intersection tests and object hits along rays.

RRA generates traversal counters through emulation by tracing rays from the

camera to the closest hit. However, RRA’s emulation is limited in that it

does not account for the complete behavior of the application. An application

can spawn more rays after the closest hit, which RRA does not account for.

Furthermore, RRA does not give accurate traversal counters for procedural

geometries, as it can not know the topology of procedural geometries from the

acceleration structure alone. ReRay, on the other hand, does account for all

rays traced by an application for a given frame, and also gives accurate counts

for procedural geometries because ReRay does not perform emulation and re-

trieves its numbers from instrumentation of the running application. ReRay

also does not require the acceleration structure to generate intersection and

any-hit shader count heat maps. However, ReRay does require the application

to enable intersection and any-hit shaders on all geometries to give accurate

counts, but this process could be automated in future work.

Other tools exist for debugging and analyzing ray-tracing applications

through the collection of ray data [14], [28], [50], [51]. However, these re-

quire extensive modifications to application source code to collect ray data

and are designed for ray visualization or for the study of light propagation

throughout a scene. Although a ray-visualization tool can be made to work

with the ReRay toolchain, it is not the main focus of this chapter. Further-

more, the ray data collected by ReRay lacks key information required to fully

study light propagation. ReRay instead focuses on capturing and studying

interactions within the Vulkan ray-tracing pipeline, as well as the distribution

of work across threads and warps on the hardware. ReRay uses this infor-

mation to produce performance metrics and heat maps that reveal specifics

about hardware execution and driver implementations of data structures and

algorithms used for ray tracing in Vulkan.

While there are a number of existing debuggers and profilers for applica-

tions using Vulkan or other graphics APIs [22], [33], [41], they mainly operate

by measuring the timing and frequency of graphics API calls. These tools also

monitor hardware performance counters to aid in reasoning about performance

47

bottlenecks. ReRay is complimentary to these types of tools and focuses on

providing a method to deeply analyze the performance of traceRay calls in

Vulkan, which invoke the ray-tracing pipeline.

Finally, while this chapter shows that SIMT efficiency and ray-tracing per-

formance can be improved through reassignment of threads to warps, other

more sophisticated and effective methods have been devised for this goal. For

instance, algorithmic changes can exploit the types and frequency of materials

and textures in specific games and scenes [15], [23], alternative formulations of

the ray-tracing algorithm for better hardware utilization at the cost of addi-

tional memory usage [26], [65], ray-sorting algorithms [23], [31], the addition

of ray-intersection prediction hardware [29], and hardware shader execution

reordering [40]. However, ReRay could be extended and used to evaluate the

effectiveness of these methods in a similar way to how it evaluates thread

swizzling. In particular, shader execution reordering is a promising avenue for

further study with ReRay and is further discussed in the next section.

3.7 Limitations and Future Work

ReRay is a powerful tool for analyzing and optimizing Vulkan ray-tracing

applications, but it has limitations that should be addressed in future work.

Furthermore, there are avenues for exploring new features and improvements

to the toolchain that would enhance its utility for developers and researchers.

3.7.1 Benchmark Selection and Availability

The evaluation of ReRay’s warp repacking methods used a single benchmark

— RayTracingInVulkan [13] — to measure the performance for different sort-

ing methods. The benchmark was chosen due to its simplicity and ease of

modification to implement thread swizzling. However, this benchmark is not

representative of the workloads that developers are interested in optimizing.

In comparison with other ray-tracing applications, Ray Tracing In One Week-

end uses a handful of simple shaders. The scenes from RayTracingInVulkan

used for the evaluation are composed of a few hundred textureless objects,

48

which are simple in comparison to more complex scenes found in video games

and other applications which may consist of thousands of objects with more

materials and textures that put more strain on the memory hierarchy of the

GPU.

More extensive studies with ReRay should use a wider variety of ray-tracing

benchmarks to evaluate the performance of any proposed optimization method.

At the time of ReRay’s inception, the number of ray-tracing applications avail-

able was limited, and even more limited when constrained to considering ap-

plications specifically utilizing the Vulkan ray-tracing extension. Although

the number of available ray-tracing applications has steadily been increasing

as ray tracing becomes more popular in the gaming industry and hardware

support becomes more widespread, the vast majority of ray-tracing applica-

tions are built using the competing DirectX 12 graphics API. To circumvent

this issue, the Vulkan Vision framework could be extended to work with the

VKD3D-Proton [17] Vulkan implementation of DirectX 12 to enable the anal-

ysis of ray-tracing workloads from a wider variety of applications built using

the competing DirectX 12 API.

3.7.2 Unnecessary Intersection Test Classification

The current implementation of ReRay reports unnecessary intersection tests

as intersection tests that would not have occurred if intersections with objects

along a ray had been processed in order of increasing distance along the ray.

These unnecessary intersection tests may be further classified as occurring due

to three reasons: 1. (R1) the acceleration structure, as defined by the appli-

cation, contains geometry whose AABBs overlap; 2. (R2) quantization [32]

and other techniques performed by the device or driver to optimize accelera-

tion structures may cause rays to intersect with AABBs that would not have

intersected with the geometry’s original AABB definitions [62]; or 3. (R3)

hardware ray-traversal units may not process ray intersections in order of dis-

tance along the ray due to the construction of the acceleration structure and

implementations of the ray-traversal algorithm to take advantage of parallel

processing [27], [32].

49

The current implementation of ReRay does not provide methods to deter-

mine the cause of the unnecessary intersection tests. Future work could extend

ReRay to provide a way to classify the causes of unnecessary intersection tests.

One obstacle to the classification of unnecessary intersection tests is that

the information about the acceleration structure produced by the device or

driver is opaque to the application. A possible way to overcome this obstacle

is to create a reference acceleration structure using the application’s original

definitions of AABBs and simulate execution of the ray-traversal process using

this reference acceleration structure. The simulated ray-traversal process must

be an ideal ray-traversal process that processes ray intersections in order of

distance along the ray. Differences between the simulated ray-traversal process

and the actual ray-traversal that occurred during the ray-tracing pipeline’s

execution could be used to infer information about the opaque acceleration

structure and partially classify causes of unnecessary intersection tests:

1. Any unnecessary intersection tests caused by overlapping AABBs from

the original application’s AABB definitions (R1) will be present in both

the simulated ray-traversal process and the actual ray-traversal process.

2. Any unnecessary intersection tests caused by quantization and other

techniques performed by the device or driver to optimize acceleration

structures (R2) would only be present in the actual ray-traversal pro-

cess and not in the simulated ray-traversal process. This is because the

AABBs in the opaque acceleration structure must be greater or equal to

the original size of the AABBs [62].

3. Any unnecessary intersection tests caused by hardware ray-traversal units

not processing ray intersections in order of distance along the ray (R3)

would only be present in the actual ray-traversal process and not in the

simulated ray-traversal process.

As described, this technique would only be able to classify unnecessary

intersection tests as belonging to R1 or to the set {R2,R3}. Another limita-

tion of this proposed technique is that it only works for procedural geometries.

50

The AABBs of triangle meshes are not defined by the application but are in-

stead generated by the driver during acceleration-structure construction. This

technique may not be useful to most ray-tracing applications because such

applications use triangle meshes.

3.7.3 Hardware Warp Repacking Support

The current implementation of ReRay does not support hardware warp repack-

ing during ray-tracing-pipeline execution. This is a limitation of the current

implementation of Vulkan Vision; Vulkan Vision determines the thread-to-

warp assignment of a ray-tracing pipeline just once at the beginning of exe-

cution of the ray-generation shader through the use of subgroup (i.e., warp-

wide) operations and an atomic counter [43]. This method has two problems:

1. (P1) it does not consider the possibility of the assignment of threads-to-

warps changing during the execution of the rest of the ray-tracing pipeline;

and 2. (P2) it relies upon the assumption that all threads in a warp are active

when beginning execution of the ray-generation shader, as there is only one

such shader in a ray-tracing pipeline.

The Vulkan specification [62] defines invocation repack instructions as in-

structions that may alter the set of threads that are executing and change

the current thread-to-warp assignment. The OpTraceRayKHR instruction is

one such invocation repack instruction that is executed in the ray-generation

shader to begin ray tracing [62]. Hence, if the hardware performs warp repack-

ing during ray tracing, the thread-to-warp assignment may change during

the execution of the ray-tracing pipeline, and the thread-to-warp assignment

recorded by Vulkan Vision would no longer be correct due to P1.

To support hardware warp repacking, Vulkan Vision must be extended

to capture the new thread-to-warp assignment at each invocation repack in-

struction and to update the thread-to-warp assignment accordingly. This

is another complex problem to solve because the thread-to-warp assignment

may change during the execution of OpTraceRayKHR, which implies that the

thread-to-warp assignment may change when executing other shaders in the

ray-tracing pipeline (Intersection, Any-Hit, Closest-Hit, and Miss). Due to

51

P2, the method of determining thread-to-warp assignments using Vulkan sub-

group operations and an atomic counter can no longer be applied because the

assumption is broken when considering other shader types in the ray-tracing

pipeline, where only a subset of threads in a warp may be active due to each

thread tracing a different ray and therefore intersecting different objects re-

quiring different shaders to be executed. Moreover, due to hardware features

such as NVIDIA’s Independent Thread Scheduling, not all threads in the same

warp may return from execution of the OpTraceRayKHR instruction at the same

time, yet again breaking the assumption in P2. This creates a problem where

the exact thread-to-warp assignment during execution is known only at the

beginning of the ray-generation shader and nowhere else in the ray-tracing

pipeline.

The most straight-forward solution to this problem is to use a proprietary

extension to capture the thread-to-warp assignment information directly from

the driver. Another solution is to propose a modification to the Vulkan spec-

ification to allow usage of the existing built-in variable SubgroupId within

ray-tracing shaders, which would enable determining of the thread-to-warp

assignment without the need for a proprietary extension.

3.7.4 Shader Execution Reordering

A recent technology introduced by NVIDIA, called Shader Execution Reorder-

ing (SER) [40], enables developers to perform explicit hardware warp repack-

ing on NVIDIA GPUs. At a high level, SER simply replaces the OpTrac-

eRayKHR instruction with three new instructions: OpHitObjectTraceRayNV,

OpReorderThreadWithHitObjectNV, and OpHitObjectExecuteShaderNV. OpHi-

tObjectTraceRayNV traces a ray, executing Any-Hit and Intersection shaders

to find the closest hit, and records the hit information into an object called

a HitObject. OpReorderThreadWithHitObjectNV performs hardware warp

repacking based on the information contained within the HitObject and an

additional optional bit vector argument containing hint bits that the devel-

oper is free to define. OpHitObjectExecuteShaderNV executes the Closest-Hit

and/or Miss shader for the corresponding HitObject.

52

The OpReorderThreadWithHitObjectNV instruction is the most interesting

of the three instructions because it allows developers to provide coherence hints

in the form of a bit vector to guide the hardware into creating more coherent

warps during hardware warp repacking. A coherent warp in this context means

that all the threads in the warp execute similar shaders and access similar

locations in memory. The order of priority when repacking threads into warps

is stated in the SER white paper [40] to be:

1. Shader ID of the Closest-Hit or Miss shader to be executed for the Hi-

tObject

2. Coherence hint bits, from the most significant to least significant bits

3. Spatial location of the intersection with the HitObject

ReRay provides opportunities to study the effects that SER could have on

an application’s ray-tracing-pipeline-execution trace. Notably, these studies

could be performed without having access to a GPU that supports SER. Since

SER is currently only available on NVIDIA GPUs with the Ada Lovelace

architecture released late in 2022, SER is still a novel feature that not all

developers may have access to.

One application for ReRay with regards to SER is guiding the creation of

coherence hints for the reorder-thread function. Shader-code instrumentation

for ReRay could be extended to capture information such as branch patterns

and memory access patterns in the execution of Closest-Hit and Miss shaders

in the ray-tracing pipeline. Correlation between the properties of objects that

are hit, and the branch patterns and memory access patterns of the shaders

that are executed could be used to generate coherence hints based on the

properties of the objects.

Another application for ReRay with regards to SER is to examine the

distribution of Closest-Hit and Miss shader calls from the execution trace of

a ray-tracing pipeline and then to estimate the maximum benefits to SIMT

efficiency that is possible by using SER to perform warp repacking. To ob-

tain this estimate, a new module similar to ReRay’s Replayer module from

53

1 // Warp 0

2 0. begin , int1 , miss , begin , int1 , repint , chit

3 1. begin , int1 , repint , chit , begin , int1 , miss

4 2. begin , int2 , repint , chit , begin , int2 , repint , chit

5 3. begin , int2 , repint , chit , begin , int2 , repint , chit

6

7 // Warp 1

8 4. begin , int1 , repint , chit , begin , int1 , miss

9 5. begin , int1 , miss , begin , int1 , repint , chit

10 6. begin , int2 , miss , begin , int2 , miss

11 7. begin , int2 , miss , begin , int2 , miss

Listing 3.2: Example of ray events per thread from two warps each consisting
of four threads that each trace two rays. There is one ray generation shader
(begin), one closest hit shader (chit), one miss shader, and two intersection
shaders (int1, and int2).

Section 3.2.1 could be created to simulate the operation of SER. Such a mod-

ule would break down existing per-thread-ray-event traces into multiple traces

such that each trace contains ray events for one ray from each thread up to,

but not including, Closest-Hit and Miss shader events. The Closest-Hit and

Miss shader events are instead processed at the beginning of the next trace

with warp repacking performed to make coherent warps for Closest-Hit and

Miss shader execution. To illustrate, consider a per-thread trace of ray events

shown in Listing 3.2 consisting of two warps, with each warp composed of four

threads and each thread tracing two rays. A module for simulating SER could

produce a set of three new ray-event traces as shown in Listing 3.3. Trace A

shows the initial per-thread ray events for generating the primary rays, up to,

but not including, Closest-Hit and Miss shader events. The Closest-Hit and

Miss shader events are enclosed in round brackets to represent that they are

queued for execution after warp repacking, and are not actually a part of the

execution trace. Trace B is created by performing warp repacking on trace A

using a simulation of SER. In this case, the warps can be repacked such that

all Closest-Hit shader executions are packed into warp 0 and all Miss shader

executions are packed into warp 1. In more complex traces, involving larger

numbers of warps, the warp repacking would use developer-provided coherence

hints (if available) and the spatial locations of the ray events (not shown in

the trace for brevity) to create more coherent warps. Analogously to trace

54

1 ========== PER -THREAD -RAY -EVENT TRACE A ==========

2

3 // Warp 0

4 0. begin , int1 , (miss)

5 1. begin , int1 , repint , (chit)

6 2. begin , int2 , repint , (chit)

7 3. begin , int2 , repint , (chit)

8

9 // Warp 1

10 4. begin , int1 , repint , (chit)

11 5. begin , int1 , (miss)

12 6. begin , int2 , (miss)

13 7. begin , int2 , (miss)

14

15 ========== PER -THREAD -RAY -EVENT TRACE B ==========

16

17 // Warp 0

18 0. miss , begin , int1 , repint , (chit)

19 5. miss , begin , int1 , repint , (chit)

20 6. miss , begin , int2 , (miss)

21 7. miss , begin , int2 , (miss)

22

23 // Warp 1

24 4. chit , begin , int1 , (miss)

25 1. chit , begin , int1 , (miss)

26 2. chit , begin , int2 , repint , (chit)

27 3. chit , begin , int2 , repint , (chit)

28

29 ========== PER -THREAD -RAY -EVENT TRACE C ==========

30

31 // Warp 0

32 4. miss , begin

33 1. miss , begin

34 6. miss , begin

35 7. miss , begin

36

37 // Warp 1

38 0. chit , begin

39 5. chit , begin

40 2. chit , begin

41 3. chit , begin

Listing 3.3: Per-thread-ray-event traces from Listing 3.2 broken into three
new per-thread-ray-tracing-event traces to simulate the operation of SER.
Ray events in enclosed in round brackets signify that the event is queued for
execution after SER performs warp repacking, and is executed at the beginning
of the next ray-tracing-event trace.

55

B, trace C is created by performing warp repacking on trace B, again using a

simulation of SER. The per-thread-ray events in Trace C all end with a begin

event to represent execution returning to the Ray-Generation shader after the

Closest-Hit and Miss shaders have completed execution.

Some limitations and considerations when implementing a module for sim-

ulating SER are:

1. There is no guarantee that SER performs warp repacking across all

threads in such a synchronized manner as shown in the example traces

from Listing 3.3. Due to Independent Thread Scheduling, threads may

return from ray traversal (OpHitObjectTraceRayNV) at different times,

and the GPU may perform warp repacking with whatever set of threads

are currently available at the time. The repacked warps could then be-

gin Closest-Hit and Miss shader execution before other threads have

returned from ray traversal;

2. The details of how spatial location is factored into warp repacking are

not provided in the SER white paper [40]. There are multiple different

ways to produce sorting keys from spatial locations [31], and the method

employed by SER for warp repacking is unknown.

3. The costs of warp repacking, such as the time taken to produce sorting

keys, cluster threads into coherent warps, and migrate live registers of

threads between warps and across Streaming Multiprocessors, are un-

known. These costs may be significant and may outweigh the benefits

of improved warp coherence, especially if the shaders executed by the

threads are trivial to execute [40]

4. Providing developer-defined coherence hints to the ReRay module for

simulating [40] would require an easy-to-use mechanism. Such a mech-

anism may come in the form of an intrinsic instruction that developers

may insert into their Closest-Hit and Miss shaders to provide coherence

hints for ReRay’s Vulkan Vision shader-code instrumentation to capture

and record alongside the ray-tracing-pipeline-execution trace. These in-

56

trinsic instructions would have no effect on the actual execution of the

shader and would only be used by ReRay to record the coherence hints

In addition to estimating the effects of SER on an application’s ray-tracing-

pipeline-execution trace, ReRay could also be a powerful tool for examine the

thread-to-warp assignments created by SER after OpReorderThreadWithHi-

tObjectNV. The current implementation of ReRay does not support capturing

ray-tracing-pipeline-execution traces when hardware warp repacking is per-

formed. To support SER, ReRay’s Vulkan Vision shader-code instrumenta-

tion could be extended to capture the new thread-to-warp assignments after

each OpReorderThreadWithHitObjectNV instruction. However, there is still

the issue of Independent Thread Scheduling that may cause threads in the

same warp to return from OpHitObjectTraceRayNV, and consequently OpRe-

orderThreadWithHitObjectNV, at different times. Therefore, Vulkan Vision’s

method of determining the thread-to-warp assignment cannot be used. A

proprietary extension may be used instead to determine the thread-to-warp

assignment directly from the driver within each shader. However, as will be

seen in the next section, such an extension comes with its own set of problems

in addition to no longer being platform-agnostic.

3.7.5 Shader Execution Reordering Preliminary Perfor-
mance Study

With Shader Execution Reordering (SER) being a novel technology, there is

a lack of information about how SER affects the performance of ray-tracing

applications. Although ReRay can be used to simulate the operation of SER

and estimate the benefits of improved warp coherence, it is also important

to understand how SER affects the performance of ray-tracing applications in

practice.

As a preliminary study, the RayTracingInVulkan [13] application is mod-

ified to use SER. The modification replaces the OpTraceRayKHR instruction

with the three new instructions provided by SER. No coherence hints were

provided to the OpReorderThreadWithHitObjectNV instruction. All applica-

57

tion settings are at their default values, except that ray accumulation is turned

off to ensure that the rays being traced per frame are the same to enable a

performance comparison of the application with and without SER. The ap-

plication’s present mode is also set to Immediate mode to allow it to render

frames as quickly as possible without being stalled by the refresh rate of the

display. This preliminary study is performed on an NVIDIA GeForce RTX

4060 Laptop GPU.

Figure 3.15: Shader-timing heat map for the RayTracingInVulkan application
on the Ray Tracing In One Weekend scene.

58

Figure 3.16: Shader-timing heatmap for the RayTracingInVulkan application
on the Ray Tracing In One Weekend scene with Shader Execution Reordering
enabled.

Figure 3.17: Shader-timing heat map for the RayTracingInVulkan application
on the Ray Tracing In One Weekend scene with Shader Execution Reorder-
ing but with the OpReorderThreadWithHitObjectNV instruction omitted to
disable warp repacking.

59

RayTracingInVulkan has a built-in shader-timing heat map that enables

the visualization of the time it takes for each pixel to be computed. The effect

of SER in the rendering of the Ray Tracing In One Weekend scene from Fig-

ure 3.7 can me observed using this heat map. Figure 3.15 shows a screenshot

of the shader-timing heat map of the unmodified application (Baseline). Fig-

ure 3.16 shows a screenshot of the shader-timing heat map of the application

with the described modification to enable SER (SER-Enabled). Figure 3.17

shows a screenshot of the shader-timing heat map of the application with SER

enabled, but the OpReorderThreadWithHitObjectNV instruction is omitted to

disable warp repacking (SER-NoRepack). The same default heat map scale

value of 1.5 is used for all the figures to allow for comparison.

In addition to shader-timing heat maps, the application includes a bench-

mark mode that measures the average frame rate, in Frames Per Second (FPS),

over a period of one minute. According to the benchmark, Baseline has an

average frame rate of 85.9 FPS. SER-Enabled has an average frame rate of

60.7 FPS. SER-NoRepack has an average frame rate of 74.8 FPS.

SER-Enabled has a 29.3% decrease in average frame rate compared to

Baseline. This difference is also reflected in the shader-timing heat maps,

where much of the shader-timing heat map of SER-Enabled (Figure 3.16) is

hot where Baseline (Figure 3.15) was cold. The performance decrease may be

due to the simplicity of the shaders in the application and the costs associated

with hardware warp repacking. The shaders used by RayTracingInVulkan are

not very costly to execute and the scene is lacking in object count, variety

of materials, and use of textures as found in more complex ray-tracing ap-

plications. A more complex ray-tracing application with more costly shaders

and complex scenes may take more advantage of SER to obtain a performance

increase. For instance, the Unreal Engine 5 game engine reportedly obtained

a 20-50% increase in performance due to a simple modification to enable SER

[37] — one that is analagous to the modification described for the RayTracing-

InVulkan application in this preliminary study.

While it is clear that SER does not improve performance for the Ray-

TracingInVulkan application, it is not clear whether the performance decrease

60

is entirely due to the overheads of warp repacking and lack of shader and

scene complexity. As reported, SER-NoRepack has an average frame rate

of 74.8 FPS, which is still an 18.9% decrease in average frame rate compared

to Baseline. The shader-timing heat map for SER-NoRepack (Figure 3.17)

also does not appear to have increased the amount of hot pixels compared

to Baseline (Figure 3.15). Peculiarly, SER-NoRepack’s shader-timing heat

map appears to have less hot pixels overall, indicating that many of the pixels

in the image are taking less time to compute than in the Baseline. Per-

haps the most plausible explanation for the performance decrease from SER-

NoRepack is due to Independent Thread Scheduling, where threads in the

same warp are no longer executing in lock-step. Evidence for Independent

Thread Scheduling is visible when comparing the shader-timing heat maps at

a per-warp level. Warps are composed of threads computing pixels in 8x4

rectangles (see Section 3.2.2) across the frame. In Baseline, all threads in

the same warp are colored the same, as shown by all pixels in 8x4 rectan-

gles receiving the same color. This coloring indicates that all the threads in

the warp are taking the same amount of time to compute, and therefore sug-

gests execution is occurring in lock-step. Meanwhile, the shader-timing heat

map for SER-NoRepack shows individual pixels colored as opposed to entire

warps, indicating that threads in the same warp are taking different amounts of

time to complete. These heat maps suggest that the threads in the warp are

not executing in lock-step—a distinct characteristic of Independent Thread

Scheduling. Independent Thread Scheduling may cause a performance de-

crease because the frame rate is determined by the pixel that takes the longest

time to compute. When Independent Thread Scheduling is enabled, individual

threads may take longer to compute than when threads are executing in lock-

step because a warp needs to be scheduled to execute for multiple Program

Counters (one for each thread) as opposed to a warp executing with a single

Program Counter for all threads in lock-step.

Another area of interest with SER is the thread-to-warp assignments cre-

ated after warp repacking, and the distribution of warps to Streaming Multi-

processors (SMs) across the NVIDIA GPU. To examine these areas of interest,

61

a proprietary extension, VK NV shader sm built ins, provides volatile built-

in variables to shaders that enable querying the current thread’s warp ID and

SM ID. Unlike Vulkan Vision’s warp IDs, VK NV shader sm built ins’s warp

IDs are not unique across the entire GPU but are unique within an SM. The

NVIDIA GeForce RTX 4060 Laptop GPU used in this study has 24 SMs.

Some questions that could be answered with this information are:

1. (Q1) Is SER actually performing warp repacking?

2. (Q2) Does SER repack warps across SMs?

Figure 3.18: Visualization of SM ID assignment for each pixel in the Ray-
TracingInVulkan application. Each pixel color is one of 24 shades of green
corresponding to an SM ID, from black (SM ID 0) to bright green (SM ID 23).

62

Figure 3.19: Visualization of SM ID assignment for each pixel in the Ray-
TracingInVulkan application with SER enabled. Each pixel color is one of 24
shades of green corresponding to an SM ID, from black (SM ID 0) to bright
green (SM ID 23).

Answering Q1 is important to confirm that the modification to enable

SER in RayTracingInVulkan is actually working, and that SER indeed does

what NVIDIA claims that it does. To confirm that SER is performing warp

repacking, the Ray-Generation shader of RayTracingInVulkan is modified to

color pixels corresponding to the SM ID reported by each thread. The color

of each pixel is one of 24 shades of green, each shade corresponding to an

SM ID, with brighter shades corresponding to a higher SM ID number. The

modification is performed after ray tracing has completed, and the code over-

writing the pixel color is enclosed by a conditional statement to ensure that the

rest of the Ray-Generation shader is not eliminated by the shader compilers’

dead-code elimination passes. Figure 3.18 shows the SM ID assignment for

each pixel in the RayTracingInVulkan application without SER (Baseline).

Figure 3.19 shows the SM ID assignment for each pixel in the RayTracingIn-

Vulkan application with SER enabled (SER-Enabled). If SER is enabled but

the OpReorderThreadWithHitObjectNV instruction is omitted to disable warp

repacking (SER-NoRepack), the SM ID assignment appears to be the same

63

as Figure 3.18, which confirms that warp repacking was indeed not performed

when examining SER-NoRepack from the performance test, and that the

performance decrease was due to Independent Thread Scheduling.

As can be seen in Figure 3.18, each SM operates on 8x4 rectangles of

pixels scattered across different regions of the frame, which confirms that warps

are not being repacked and simply retain their thread-to-warp assignments

from the beginning of the Ray-Generation shader to the end. In contrast,

Figure 3.19 shows that SMs are no longer constrained to operating on warps

composed of pixels in 8x4 rectangles, which is evidence that warp repacking is

being performed to create more coherent warps that no longer conform to the

original thread-to-warp assignments.

Figure 3.20: Visualization of the workload for SM ID 23 in the RayTracingIn-
Vulkan application with SER enabled.

Although it is not visually obvious in Figure 3.19, SMs 0 and 1 are not

processing any pixels in the SER-Enabled configuration. Figure 3.20 high-

lights all pixels that are processed by the SM 23 when SER is enabled, with

all other pixels being colored black. Creating similar figures for SMs 0 and

1 would show that no pixels are being processed by these SMs when SER

is enabled. Furthermore, if SER is enabled but with the OpReorderThread-

64

WithHitObjectNV instruction omitted to disable warp repacking, SMs 0 and

1 continue processing pixels as would be expected with SER disabled. These

empirical observations suggests that SMs 0 and 1 may be responsible for per-

forming warp repacking. Therefore, when SER is enabled, not only are there

the overheads of warp repacking to consider, but also two SMs are no longer

processing pixels, which may further contribute to the performance decrease

observed in the performance test.

To answer Q2, the Ray-Generation shader of RayTracingInVulkan with

SER enabled is modified to record the SM ID of the SM each thread is as-

signed to, and output a green color if the SM ID has changed at the end of

the Ray-Generation shader. Otherwise, the pixel is colored black. Unexpect-

edly, this modification appears to disable SER. Simply the act of reading and

storing SM ID into a local variable at the beginning of the Ray-Generation

shader is enough to disable SER, even when the local variable holding the SM

ID is unused. While it appears that SMs 0 and 1 still do not process any

pixels, the rest of the SMs process pixels in roughly the same manner as the

application without SER enabled. This unexpected interaction between the

VK NV shader sm built ins extension and SER makes it impossible to answer

Q2 or other questions regarding SER behavior.

3.8 Conclusion

ReRay is a toolchain and a workflow for assessing, debugging, and optimizing

the performance of Vulkan ray-tracing applications using ray-trace execution

data automatically captured through instrumentation. ReRay does not require

hand modification of application source code, making it a readily available and

easily applicable tool for any standard-conforming Vulkan ray-tracing applica-

tion. Using ReRay, we have shown that black-box hardware- and driver-level

implementation behaviors such as warp execution order and thread-to-warp as-

signment can be revealed and assessed by examining and manipulating thread

and warp IDs. Furthermore, metrics such as SIMT efficiency, intersection-

shader call counts, and unnecessary intersection test counts can be generated

65

by ReRay to reveal performance bottlenecks such as areas of high thread di-

vergence, trapped rays, and wasteful shader execution.

ReRay is an open-source project and it is extensible to allow users to de-

velop new performance metrics, simulators, and visualization tools for Vulkan

ray-tracing applications. ReRay is a great addition to any Vulkan developer’s

toolkit because it provides a greater insight into ray-tracing performance by

capturing and examining all ray-tracing pipeline events that occur in any frame

of an application.

66

Chapter 4

Shader Resource Analysis and
Optimization

Applications must manage the allocation, binding, and updating of resources

used by shaders in their pipelines. The Vulkan API provides a low-level inter-

face for the application to manage resources. The flexibility of this low-level

interface enables developers to optimize resource management to suit the needs

of their applications to an extent that was not possible with higher-level APIs

such as OpenGL. However, this optimization requires developers to have a

deeper understanding of the life cycle of resources and how they are used in a

graphics pipeline.

This chapter proposes a method for capturing and observing the usage of

resources in Vulkan applications, with a focus on uniform buffers. Uniform

buffers are used to store read-only data that remain constant for all shader

invocations within a particular draw call. This data is typically used to pass

transformation matrices, lighting parameters, material properties, and graph-

ics settings to shaders in a pipeline. Individual values within a uniform buffer

may be updated at varying frequencies because there is a wide variety of data

that may reside in uniform buffers. Developers can optimize their applications

by analyzing the usage of individual values within uniform buffers to make

informed decisions about how to manage and restructure uniform buffers to

reduce memory access and GPU state-change overheads [11], [19].

The proposed method involves the creation of a Vulkan layer that inter-

cepts Vulkan API calls to observe and capture the usage of descriptor sets

67

and uniform buffers in standards-conforming Vulkan applications. Descrip-

tor sets containing bindings with varying update frequencies can be split into

multiple descriptor sets to reduce memory management overheads and GPU

state-change overheads [19]. The layer is also capable of capturing statistics

regarding the usage of individual values within uniform buffers by each pipeline

in an application to give recommendations to developers such as using push

constants or inline uniform blocks for small amounts of frequently updated

sets of uniform values. If the values in an uniform buffer remain constant

throughout the observed lifetime of an application, then the buffer may be an

eligible target for value specializations that eliminate memory accesses [11].

4.1 Device Memory Types and Resources in

Vulkan

Vulkan has several types of device memory from which resources may be allo-

cated. A device memory is accessible by the GPU and it can be classified by its

properties such as: host visible, host coherent, host cached, and device local.

The CPU can directly access host-visible memory. Device-local memory reside

on the device itself (i.e., GPU VRAM). Host-cached memory is cached by the

CPU. A memory is host coherent if writes to the memory by the CPU are vis-

ible to the GPU — and vice-versa — without the need for explicit flushing of

caches and invalidation of mapped memory ranges. A memory type may have

multiple properties. Applications are responsible for choosing an appropriate

available memory type with properties that best suit the use-cases of a given

resource to be allocated.

In Vulkan, a resource is a view of a region of memory with associated

formatting information that describes how the data in the memory region

should be interpreted. There are two primary resource types in Vulkan: buffers

and images. Buffers are linear arrays of bytes whose contents are up to the

application to interpret. Images are multi-dimensional arrays of data used

for textures, frame buffers, and other image-related purposes. Buffers and

images are further classified by their usage, such as uniform buffers, storage

68

buffers, vertex buffers, index buffers, storage images, and sampled images.

This chapter focuses on uniform buffers used to store read-only data that

remain constant for all shader invocations within a draw call.

4.2 Shader Resource Binding

Programmable shader stages in pipelines require access to resources. A pipeline

layout describes the set of resources that are accessible by the various stages

of a pipeline. Conceptually, a pipeline layout is composed of a sequence of

descriptor-set layouts. Each descriptor-set layout is a blueprint for a collec-

tion of references to specific resource types. A descriptor-set layout is further

organized into descriptor bindings which are fixed-size arrays of references to

resources of the same type. A descriptor binding containing more than one

reference to a resource is also called a descriptor array. A descriptor set is an

instantiation of a descriptor-set layout with concretized references to resources.

An individual reference to a resource is called a resource descriptor, or just

descriptor. In shader code, a resource is denoted by a set number, a binding

number, and an array index if the descriptor binding contains more than one

descriptor. The set number corresponds to the index of a descriptor set in the

pipeline layout. The binding number corresponds to the index of a descriptor

binding in the descriptor set. The array index corresponds to the index of

the descriptor in a descriptor binding, which may be omitted if the descriptor

binding contains only one descriptor. Figure 4.1 illustrates the relationships

between a pipeline, pipeline layout, descriptor set, and descriptor set layout

using Unified Modelling Language (UML)-style connections.

69

Pipeline

Shader

Descriptor Set Layout

Binding 0: [UniformBuffer,UniformBuffer]

Descriptor Set Layout

Binding 0: [UniformBuffer]

Binding 1: [UniformBuffer]

Pipeline Layout

Descriptor Set Layout

Descriptor Set Layout

layout(set=0, binding=0) uniform Foo {...};
layout(set=0, binding=1) uniform Bar {...};
layout(set=1, binding=0) uniform Baz {...}[2];

Shader Code

Descriptor Set A

Binding 0: [Foo]

Binding 1: [Bar]

Descriptor Set B

Binding 0: [Baz_1,Baz_2]

Figure 4.1: An illustration of the relationships between a Pipeline, Pipeline
Layout, Descriptor Set, and Descriptor-Set Layout. Relationships between
entities are shown with UML-style connections.

In addition to descriptor-set layouts, a pipeline layout may also contain

push-constant ranges [56] and inline uniform blocks [60]. Inline uniform blocks

are a way to store uniform data directly in descriptor sets without the need

for a separate buffer. A push-constant range is a sequence of bytes provided

by a command before a pipeline invocation. Due to the way they are stored,

both push-constant ranges and inline uniform blocks have restrictions on the

amount of data that they can hold, but the benefit is that they reduce the

amount of indirection required to read the data. Inline uniform blocks have

the advantage of being reusable across multiple pipelines, while push constants

are specific to a single pipeline.

Command Buffer

Draw

Set 0

Set 1

Draw

Descriptor Set A

Descriptor Set B Descriptor Set C

vkBeginCommandBuffer
vkCmdBindPipeline(Pipeline)
vkCmdBindDescriptorSets(Set 0 = A, Set 1 = B)
vkCmdDraw
vkCmdBindPipeline(Pipeline)
vkCmdBindDescriptorSets(Set 1 = C)
vkCmdDraw

vkEndCommandBuffer Commands

Pipeline Graphics Pipeline Graphics Pipeline
Application Code

Figure 4.2: Simplified illustration of the process by which application code
records a command buffer for submission to a queue for execution.

In order to invoke a pipeline for execution, an application must record

70

commands into a command buffer. Command buffers are a region of memory

containing commands to be executed by the GPU. A command buffer may

contain multiple invocations of the same or different pipelines with differing

descriptor sets and push constants. In the example shown in Figure 4.2 two

different graphics pipelines α and β are recorded into a single command buffer

for execution. Names of the commands in Vulkan use the term bind to describe

the act of setting the state of the GPU. For each pipeline, the application must

bind the pipeline to be executed (vkCmdBindPipeline), bind the descriptor sets

to be used by the pipeline according to its pipeline layout (vkCmdBindDescrip-

torSets), set push constants (if any), and then invoke the pipeline with a draw

command (vkCmdDraw). Inline uniform blocks behave the same as descriptor

sets and are bound in the same fashion. After a command buffer has been

recorded, it is submitted to a GPU queue for execution.

Pipeline layout compatibility enables pipelines to share descriptor sets dur-

ing command-buffer recording. In Figure 4.2 both pipelines α and β use de-

scriptor set A in descriptor-set index 0, but descriptor set A was not explicitly

given in the vkCmdBindDescriptorSets command before the vkCmdDraw com-

mand for pipeline β. This is because pipeline layout compatibility allows de-

scriptor sets to remain bound across multiple vkCmdBindPipeline commands

so long as the pipeline layouts of each pipeline expect equivalent descriptor-set

layouts from set number zero up to and including the set number where the

descriptor sets of interest are bound.

An additional type of descriptor that applications may use to allow flex-

ibility in resource binding is called dynamic descriptors. Descriptor sets can

contain a mix of both regular (static) and dynamic descriptors. However,

descriptor sets containing dynamic descriptors require an additional parame-

ter specifying an array of dynamic offsets — one for each dynamic descriptor

— when bound to a pipeline with the vkCmdBindDescriptorSets command.

Dynamic offsets are used to specify the offset in the buffer referenced by each

dynamic descriptor. Although the buffer referenced by a descriptor is fixed, the

dynamic offset for each dynamic descriptor can be changed between pipeline

invocations by binding the same descriptor set and changing the dynamic

71

offsets. Therefore, dynamic descriptors enable more opportunities to reuse de-

scriptor sets across multiple pipelines because applications can place multiple

resources into a large buffer and reuse the same descriptor set across multiple

pipeline invocations by changing the dynamic offsets to different regions of the

buffer.

4.3 Related Work

Since the introduction of the Vulkan API, developers have been exploring

ways to optimize their applications to take advantage of the low-level control it

provides over older APIs such as OpenGL. One particular area of optimization

is in the management and use of resources by shaders in pipelines.

In OpenGL, the primary means of supplying uniform data to shaders is via

uniform variables. Uniform variables are global variables declared in a shader

program that contain uniform data passed to it from the application through

the OpenGL API. In GLSL, uniform variables are declared with the keyword

uniform and have a type, a name, and an optional array size. For example, the

statement uniform vec4 mvpMatrix declares a uniform variable of type mat4 (a

4x4 matrix of floats) with the name mvpMatrix. The application sets the values

of uniform variables using OpenGL functions — requiring only the name and

type of the uniform variable, and the value or values to be assigned to the

variable. For example, to set the value the uniform variable mvpMatrix one

would call the function glUniformMatrix4fv(loc, 1, GL_FALSE, matrix). loc is

the location of the uniform variable obtained by glGetUniformLocation(program

, "mvpMatrix") where program is an object representing the OpenGL shader

program and "mvpMatrix" is the name of the uniform variable to be located.

Uniform variables may be arrays of elements or matrices, thus the constant 1

specifies that there is only one matrix. GL_FALSE states that the matrix should

not be transposed by the driver before assigning it to the uniform variable.

matrix is an array of 16 floats representing the matrix elements in column-major

order. The benefit of uniform variables is that memory management and the

transfer of data between the CPU and GPU is handled by the graphics driver,

72

which is frequently updated with heuristics to maintain good performance for

a wide variety of applications.

Crawford et al. show that a significant portion of uniform variables in a

variety of OpenGL games contains unused data or remains constant during

the runtime of replayed application execution traces [10], [11]. Furthermore,

Crawford et al.’s experiments indicate significant performance improvements

to individual graphics pipelines and replays of application execution traces

when modified to eliminate unused and runtime-constant uniform data. These

performance improvements may be attributed to two factors: (1) a reduction in

the number of OpenGL calls to update uniform data because runtime-constant

uniform data is specialized into shaders instead of being supplied by the CPU;

and (2) the reduced amount of data transferred to the GPU by the remaining

OpenGL calls due to a truncation of large uniform data arrays containing

unused data elements.

However, the performance evaluation method employed by Crawford et al.

is not representative of real-world applications. Crawford et al. created a

specialized testing harness to run vertex and fragment shaders extracted from

application traces in an isolated environment. The testing harness assigned

arbitrary default values to all uniform variables in the shaders. These values

were not representative of typical values used by the application. Crawford

acknowledged the issue, but claimed that the experiments would take far longer

to run if they were to extract and use real-world values from the original

applications [10].

Unlike OpenGL, Vulkan does not have the concept of uniform variables.

Instead, all uniform data must be organized into uniform buffers. Developers

have control over the layout of the uniform buffers that they provide to shaders

and can share the same uniform buffers between multiple shader stages and

graphics pipelines. Furthermore, applications have the additional complexity

of managing and binding to pipelines the descriptor sets that reference the

uniform buffers. As a result, the design of graphics rendering engines in games

that traditionally used OpenGL have evolved over time with the transition to

Vulkan.

73

Yong et al. address an issue regarding pipeline layouts in Vulkan appli-

cations previously developed for the OpenGL or other high-level APIs [19].

They claim that due to lack of shading-language features to organize shader

resources, developers are inclined to use a single “monolithic” descriptor set

to hold all resources used by a pipeline. Performance issues arise when a

descriptor set contains descriptors that are updated at wildly differing fre-

quencies because a descriptor set is immutable from the time it is bound to

a command buffer to the time every command buffer binding the descriptor

set has completed execution on the GPU. If any descriptors in a descriptor

set will differ between two pipeline invocations in the same command buffer

or in coexisting command buffers, then each pipeline invocation will require

its own dedicated descriptor set to be allocated and bound even if many of

the descriptors in the descriptor set are the same between pipeline invocations.

By partitioning descriptors into multiple descriptor sets based on their rates of

change, the number of large descriptor sets that must be allocated and bound

can be drastically reduced. Instead, smaller descriptor sets can be allocated

and bound to pipelines to reduce the amount of memory that must be allo-

cated to descriptor sets, the amount of CPU time spent updating and writing

commands to bind descriptor sets, and the amount of data to be sent to the

GPU. Yong et al. demonstrated that significant performance improvements

can be achieved when descriptors are partitioned as such. To facilitate these

changes, Yong et al. created a shading-language library to allow developers to

more easily organize resources in shader code. However, a question remains

as to whether monolithic descriptor sets are still a problem in modern Vulkan

applications and, if they are, how developers can be informed about the usage

of resources in their pipelines to make informed decisions about how to better

organize resources in a graphics pipeline. Even if an application does not use

monolithic descriptor sets, the partitioning of descriptors into descriptor sets

may still not be optimal.

This chapter proposes a method that extends the work of Crawford et al.

and Yong et al. by providing developers with insights into the usage of de-

scriptor sets and uniform buffers in Vulkan applications. These insights can

74

inform developers about ways to optimize applications through the restructur-

ing of descriptor sets and uniform buffers to reduce memory access and GPU

state-change overheads. The presentation contrasts with the work by Craw-

ford et al. highlighting differences in the available tools, profiling strategies,

optimization techniques, and performance evaluation methodologies between

OpenGL and Vulkan.

4.4 Shader Resource Usage Profiling Layer

This section describes a Vulkan instrumentation layer that captures and ob-

serves descriptor sets and uniform buffers in Vulkan applications. The layer

operates by intercepting key Vulkan functions responsible for creating, manag-

ing, and using descriptor sets and uniform buffers in an application. Figure 4.3

shows a block diagram of several key steps that an application takes to prepare

pipelines for execution on the GPU. Arrows between blocks indicate depen-

dencies between steps, with the name of the Vulkan object passed between the

steps. Steps that are not dependent on each other may be executed in parallel

by multiple threads. Applications take additional steps to prepare pipelines for

execution on the GPU, which are not shown in the diagram because the instru-

mentation layer does not need to intercept these steps to observe descriptor

set usage and uniform buffer contents.

75

VkDescriptorSet

Descriptor set
creation

VkDescriptorSet
Descriptor set

updates

Queue submission

VkCommandBuffer

Command buffer
recording

VkMemory

VkMemory

Memory allocation

VkBuffer

VkBuffer

Buffer creation Memory mapping

VkPipeline Pipeline creation

VkShaderModule

Shader module
creation

Binding buffers to
memory allocations

Figure 4.3: A block diagram of various steps Vulkan applications take to pre-
pare pipelines for execution on the GPU. Arrows between blocks indicate de-
pendencies between steps, with the name of the Vulkan object passed between
them.

The operation of the layer can be broken down into two facilities: descriptor-

set usage tracking and uniform-buffer value profiling. Uniform-buffer value

profiling is an extension to the descriptor-set usage tracking.

This layer is designed for the version 1.0 core Vulkan specification and

does not support later versions or extensions. Some features from extensions

and later versions of Vulkan that affect the operation of the layer, or pro-

vide additional optimization opportunities from profiling data, are discussed

in subsequent chapters.

4.4.1 Descriptor Set Usage Tracking

Observing the usage of descriptor sets in Vulkan applications involves tracking

the creation, updating, and binding of descriptor sets in command buffers

before each pipeline invocation.

76

Descriptor set creation. The process to create descriptor sets applications

follows these steps: create a descriptor memory pool; define descriptor-set

layouts; and then allocate descriptor sets from the pool using the layouts.

The layer intercepts the function vkAllocateDescriptorSets function to keep a

record of all descriptor sets allocated by the application.

Descriptor set updates. Applications update the contents of descriptor

sets with the vkUpdateDescriptorSets function. Descriptor sets may be up-

dated at any time before they are bound to a command buffer. The vkUpdat-

eDescriptorSets function receives as a parameter an array of VkWriteDescrip-

torSet structs, which describes operations to write descriptors into descriptor

sets. The operation description includes: 1. the type of descriptor — corre-

sponding to the type of resource that it will reference — to be written; 2. the

destination descriptor set; 3. the destination descriptor binding number; 4. the

destination descriptor array index; 5. the number of descriptors to write start-

ing from the destination descriptor array index; 6. a pointer to the resources

to be referenced by the descriptors; and 7. in the case of a buffer resource, an

offset into the buffer. vkUpdateDescriptorSets also takes an array of VkCopy-

DescriptorSet structs that describes operations to copy descriptors from one

descriptor set to another. The Vulkan specification states that the operations

are processed in the order in which they appear in each array, and that the

write operations are performed first, followed by the copy operations. The

layer interprets the write and copy operations to update the contents of all

descriptor sets after each vkUpdateDescriptorSets call.

Command buffer recording. During command-buffer recording, the layer

keeps a list of bound descriptor sets before each pipeline invocation. Keeping

this list requires the layer to interpret the vkCmdBindPipeline and vkCmd-

BindDescriptorSets commands to determine which pipeline was last bound

and what descriptor sets were bound before each vkCmdDraw. An example

of command-buffer recording is shown in Figure 4.2. The order and num-

ber of vkCmdBindPipeline and vkCmdBindDescriptorSets commands before a

77

vkCmdDraw can vary, but having more than one of each of these commands is

wasteful and is not a typical behavior in Vulkan applications. All compatible

descriptor sets must be bound for all set numbers for each pipeline. Leaving a

descriptor set unbound leads to undefined behavior. A separate Vulkan vali-

dation layer catches these kinds of errors during application development and

thus they should not appear in production applications.

Command buffers are considered invalid if any descriptor set updates are

made to a descriptor set that is currently bound by them. Therefore, the

layer can perform an analysis of descriptor-set usage within each command

buffer during or after command-buffer recording because the descriptor set

contents will not change until the command buffer has been submitted and

completed execution on the GPU. Furthermore, this analysis can be carried out

independently for each command buffer because the state of bound descriptor

sets and pipelines do not persist across command-buffer boundaries even when

multiple command buffers are consecutively submitted to a GPU queue for

execution.

Queue submission. A layer can combine per-command-buffer analysis re-

sults to build a profile for the overall descriptor set usage by an application.

This profile can be built just before command buffers are submitted to a GPU

queue for execution using the vkQueueSubmit command. Details of the analy-

sis are discussed in Section 4.5.1 along with suggestions for how the information

can be used to optimize applications.

4.4.2 Uniform Buffer Value Profiling

Uniform buffer value profiling extends the descriptor-set usage tracking facility

by reading the contents of uniform buffers before they are submitted to a GPU

queue for execution. All memory allocations, buffers, and mapped memory

addresses, created by the application are tracked by the layer to identify and

keep information necessary to read uniform buffer data. GPU commands

for updating and copying data to uniform buffers are also tracked to handle

uniform buffers residing in non-host-visible memory.

78

Buffer creation and memory allocation. The vkCreateBuffer function is

intercepted to make a record of all buffers created by an application. Buffers

created with the usage flag VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT are uni-

form buffers. Allocation of device memory is done using the vkAllocateMemory

function which is intercepted by the layer to keep a record of all such memory

allocations created by the application. The records include the memory type,

properties, and size of memory allocations, as well as the Vulkan object Vk-

Memory that represents the memory allocation. The association of buffers to

memory allocations is recorded by intercepting the vkBindBufferMemory func-

tion, which associates a buffer to a memory allocation with an offset starting

address.

The size of a memory allocation is not necessarily the same as the size of a

buffer. Applications are encouraged to allocate a large memory space and then

to sub-allocate resources from that space because there are operating-system-

imposed limits on the maximum number of simultaneously active memory

allocations in use by an application. Also, memory allocation/de-allocation

can be costly due to interaction with the operating system and drivers [55].

Even if a dedicated allocation is created for a single buffer, the size of this

allocation may differ due to hardware-specific allocation size and alignment

requirements queried using the function vkGetBufferMemoryRequirements.

Uniform buffers may reside in different memory types leading to either di-

rect or indirect reading of their contents by the layer. If the memory type has

the host-visible property, then the layer can read the contents of the uniform

buffer through a void pointer obtained by mapping the memory to the ap-

plication’s virtual address space. However, reads may be slow if the memory

type does not also have the host-cached property. If the memory type does not

have the host-visible property, then the application will be writing data to the

uniform buffer using GPU commands which may involve the use of an interme-

diate host-visible transfer buffer that is copied to the uniform buffer residing

in non-host-visible memory. The layer must track these GPU commands to

determine the contents of uniform buffers residing in non-host-visible memory.

79

Memory mapping. Applications use the functions vkMapMemory and vkUn-

mapMemory to map and un-map host-visible device memory (represented by

a VkMemory object) into the application’s virtual address space. Thus, the

application uses a void pointer to read and write data to the memory region.

The layer intercepts these function to keep a record of all mapped memory

regions, the resulting void pointers, and the offsets into each memory region

where the void pointers point to. Applications may un-map memory regions

when they are done reading or writing data to them, but may also leave them

mapped for the lifetime of the application. Memory that stays mapped for the

lifetime of an application is referred to as persistently-mapped memory.

Shader module creation. To determine the format of data residing in uni-

form buffers, the layer intercepts the vkCreateShaderModule function respon-

sible for creating shader modules in programmable shader stages of pipelines.

The SPIR-V byte code passed to the function contains annotations describing

the location and memory layout of all uniform buffers used by the shaders.

The location consists of a set number, binding number, count of descriptors in

the descriptor binding, and composite data type of a uniform buffer (uniform

data structure). The memory layout consists of annotations describing the

data types, offsets, and array element strides of members of the uniform data

structure.

Additionally, an analysis of the SPIR-V byte code can be performed to

find all uses of uniform buffer data in the shader code. As found by Crawford

et al., significant portions of uniform data provided to graphics pipelines are

not used by their shaders [10], [11]. Application developers can be informed

about unused uniform buffer data that could potentially be removed from

uniform buffers to improve GPU cache utilization and reduce memory transfer

overheads between the CPU and GPU.

Pipeline creation. The application creates graphics pipelines using the

function vkCreateGraphicsPipelines. The function takes an array of VkGraph-

icsPipelineCreateInfo structs that describes the configuration of graphics pipelines

80

to be created, including the shaders used by each pipeline. The association

of shader modules to pipelines is recorded by the layer to determine which

pipelines use which shaders and determine the format of data residing in uni-

form buffers bound to and used by the pipeline by referring to the annotations

in the shader modules’ SPIR-V byte code.

Command buffer recording. When descriptor sets are bound in a com-

mand buffer with vkCmdBindDescriptorSets, the layer records the dynamic

offsets for any descriptor sets containing dynamic descriptors. The associ-

ations of bound pipelines to descriptor sets before pipeline invocations are

already handled by the descriptor set usage tracking facility. It is at this point

that the layer can determine the uniform buffers used by each pipeline invo-

cation. However, the contents of uniform buffers may yet change before the

pipeline is executed on the GPU.

As mentioned earlier, if a uniform buffer does not reside in host-visible

memory, then the uniform buffer data is provided from GPU commands. The

commands for updating and copying data to buffers are vkCmdUpdateBuffer

and vkCmdCopyBuffer respectively. The buffer update operation, vkCmdUp-

dateBuffer, is used to update the contents of a buffer with a small amount

of data provided by the application. The buffer copy operation, vkCmdCopy-

Buffer, is used to copy the contents of one buffer to another buffer. In the case

of a buffer update to a uniform buffer, the layer can read the data directly

passed to the vkCmdUpdateBuffer function to determine the contents of the

uniform buffer. In the case of a buffer copy to a uniform buffer, the layer will

need to make a record of the association between the source buffer and the

destination uniform buffer. The layer can later read the contents of the source

buffer to determine the contents of the destination uniform buffer. The source

buffer is likely a host-visible transfer buffer used by the application to copy

data to the destination uniform buffer residing in non-host-visible memory.

The layer will need to separately determine how to read the contents of the

source buffer.

81

Queue submission. Just before command buffers are submitted to a GPU

command queue for execution using the vkQueueSubmit function, the layer

reads the contents of uniform buffers (or the source transfer buffers for buffer

copy operations) bound to pipelines in the submitted command buffers. The

layer reads uniform buffer contents before queue submission because this is

the last opportunity to read the contents of uniform buffers before they are

executed on the GPU. There may be edge cases where the contents of uniform

buffers are modified after queue submission on the GPU by aliasing uniform

buffer memory with a read-and-write shader-storage buffer and then modifying

the data in shader code, but this is not common practice in Vulkan applications

and may result in undefined behavior.

Reading all uniform buffer contents just before queue submission may sig-

nificantly delay the submission of command buffers to the GPU. If this delay is

unacceptable, then the layer may need to read the contents of uniform buffers

as the application modifies them. This is a difficult task because the layer must

know when the application modifies data through the void pointer, and what

bytes were modified without reading and comparing to a copy. An approach to

achieve this task is to create shadow memory allocations for each memory al-

location associated with a uniform buffer. The layer can then replace the void

pointer returned by vkMapMemory with a pointer to the shadow memory allo-

cation that the application has no access to. When the application attempts to

read or write data to the shadow memory, a custom memory access violation

handler can be used to forward the read or write operation to the actual mem-

ory allocation. The use of this handler enables the layer to read the contents

of uniform buffers as the application modifies them page-by-page. This ap-

proach is used by the gfxreconstruct Vulkan frame capture tool to capture and

replay Vulkan applications [30]. Another benefit to shadow memory is that the

frequency at which uniform buffer data is updated can be determined. The

layer can suggest binding less-frequently-updated uniform buffers to device-

local memory to minimize memory access latency during shader execution at

the expense of increased overhead for updating the data.

82

4.5 Benefits and Evaluation

Using a Vulkan layer to analyze the usage of descriptor sets and uniform buffers

in Vulkan applications can provide insight into opportunities for performance

improvements through more efficient use of these resources to reduce the num-

ber of GPU state changes and the number of memory accesses. This section

describes how to analyze descriptor-set and uniform-buffer usage per pipeline.

It then discusses how the results of the analyses may be used to enable Vulkan

features such as dynamic descriptors and inline uniform blocks with the goal of

improving descriptor-set and uniform-buffer usage. Finally it discussed meth-

ods for evaluating the effectiveness of these improvements.

4.5.1 Descriptor Set Usage Analysis

The primary goal of improving descriptor-set usage is to reduce the amount

of descriptor data that needs to be allocated, updated, and bound in each

pipeline invocation. There are two conditions that require the allocation, up-

dating, and bounding of a new descriptor set: (1) at least one of the descriptors

in a descriptor set must be changed before the next pipeline invocation in the

command buffer; or (2) the descriptor set is incompatible with the pipeline

layout of the next pipeline to be bound in the command buffer. The binding

of new descriptor sets because of differences in pipeline layouts may be un-

avoidable due to differences in inputs required by the newly-bound pipeline.

However, for consecutive invocations of the same pipeline, it is possible to

either eliminate or lower the cost of the binding of new descriptor sets by

(1) repartitioning the descriptors into different descriptor sets; and (2) modi-

fying the pipeline’s layout to match the new partitioning.

Consecutive pipeline invocations of the same pipeline occur within a com-

mand buffer because hardware vendors recommend pipeline invocations to be

sorted within command buffers to minimize the number of times that a new

pipeline needs to be bound [3], [9]. Applications are also encouraged to use

large command buffers to minimize the total number of command buffers in

use [3]. Therefore, command buffers contain a large number of pipeline invo-

83

cations, and pipeline invocations occur consecutively in the command buffer.

Consider the command buffer in Figure 4.4. This command buffer binds

a pipeline that uses a monolithic descriptor set to reference all resources used

by the pipeline. The data used by the pipeline differs between pipeline invo-

cations as seen in the timeline of bound descriptor sets for each pipeline in-

vocation, shown beneath the command-buffer illustration. Once a descriptor

set is bound in a command buffer it is immutable. Thus, each pipeline invo-

cation requires its own dedicated descriptor set because each of them differs

from the descriptor set bound to the previous pipeline invocation. However,

many of the descriptors in the descriptor sets do not change between pipeline

invocations, resulting in redundant descriptors. Descriptor sets must be allo-

cated and written to before being bound to the command buffer. Redundant

descriptors cause wasting of memory and CPU time for the writing of redun-

dant data to similar descriptor sets and require extra data to be sent to the

GPU when the command buffer is submitted for execution. A repartitioning

of descriptors into different descriptor sets should aim to reduce the amount

of redundancy between descriptor sets.

84

Command Buffer

Draw

Set 0

Draw

Descriptor Set A

Commands

Pipeline Graphics Pipeline

Descriptor Set A

Binding 0: [1]

Binding 1: [2]

Binding 2: [5]

Binding 3: [6]

Binding 4: [7,8]

Descriptor Set B

Binding 0: [1]

Binding 1: [3]

Binding 2: [5]

Binding 3: [6]

Binding 4: [9,8]

Descriptor Set B

Set 0

Binding 0: 100%

Binding 1: 33.33%

Binding 2: 66.66%

Binding 3: 100%

Binding 4: 33.33%

Draw

Descriptor Set C

Binding 0: [1]

Binding 1: [3]

Binding 2: [5]

Binding 3: [6]

Binding 4: [10,12]

Set 0
Timeline

Graphics Pipeline Descriptor-Binding Slot Redundancies

Descriptor Set D

Draw

Descriptor Set D

Binding 0: [1]

Binding 1: [4]

Binding 2: [11]

Binding 3: [6]

Binding 4: [10,12]

Descriptor Set C

Figure 4.4: An example of a command buffer that performs four consecutive
draw calls (pipeline invocations) using a pipeline with a monolithic descrip-
tor set pipeline layout. Beneath the illustration of the command buffer is a
timeline showing the descriptor sets bound to set number 0 (Set 0) before
every pipeline invocation. Each descriptor set is illustrated by a list of its
descriptor bindings in descriptor-binding slots numbered from 0 to 4. Each
descriptor binding contains an array of descriptors denoted by an ordered
comma-separated list of positive integers enclosed in square brackets. Arrows
between descriptor-binding slots on the timeline indicate redundancy at the
descriptor-binding slot due to the descriptor bindings being equivalent across
descriptor sets. Beneath the timeline is the redundancy measurement result
for all descriptor-binding slots.

Repartitioning by Descriptor-Binding Slot Redundancy

As described in Section 4.2, a pipeline layout is defined by a sequence of

descriptor-set layouts. During command-buffer recording, descriptor sets are

bound to pipelines at specific slots denoted by set numbers corresponding to

the index of a descriptor-set layout in the pipeline layout. Each set-numbered

slot may only hold a descriptor set that has a format matching that described

85

by the corresponding descriptor-set layout. Descriptor sets are composed of a

sequence of descriptor bindings, where a descriptor binding is a fixed-size array

of descriptors of the same type. Each descriptor binding belongs to a slot in

the descriptor set indexed by a binding number. Shaders access descriptors

by specifying a set number, a binding number and, if the descriptor binding

contains more than one descriptor, an array index.

A repartitioning of descriptors into descriptor sets to reduce the num-

ber of redundant descriptors between descriptor sets involves modifying the

pipeline’s layout. For simplicity, repartitioning is performed at the granularity

of descriptor-binding slots rather than individual descriptors. A descriptor-

binding slot is a tuple (s, b) where s is a set number and b is a binding

number. A repartitioning of descriptor-binding slots creates a mapping of

(s, b) 7→ (s′, b′) where (s′, b′) is the set number and binding number of the

same descriptor-binding slot in the new pipeline layout. All descriptor bind-

ings that were bound to slot (s, b) in the previous pipeline layout are bound

to (s′, b′) in the new pipeline layout. This repartitioning facilitates the modi-

fication of shader code to conform to new pipeline layouts by changing the set

and binding numbers where descriptors are accessed.

The following definitions apply to a single pipeline:

• N is the number of descriptor-set layouts in the pipeline layout.

• S = {s ∈ N0 : s ∈ [0, N)} is the set of set numbers in the pipeline layout.

We need the following additional definitions:

• Ks is the number of descriptor bindings in any descriptor set bound to

set number s.

• Bs = {b ∈ N0 : b ∈ [0, Ks)} is the set of binding numbers in any

descriptor set bound to set number s. According to the definitions of

descriptor-set layout, pipeline layout, and descriptor set, all descriptor

sets bound to the same set number must have the same number of de-

scriptor bindings.

86

• D = {(s, b) : s ∈ S, b ∈ Bs} is the set of descriptor-binding slots where

descriptor bindings may reside.

• T is the number of times the pipeline is invoked consecutively in a com-

mand buffer.

• vt(s,b) is the content of a descriptor binding residing in descriptor-binding

slot (s, b) immediately before the t-th pipeline invocation in the command

buffer, where t ∈ N and t ≤ T . Two descriptor bindings vt1(s,b) and vt2(s,b)

are equal if and only if they contain the same descriptors and, in the

case of multiple descriptors, the descriptors appear in the same order.

A repartitioning of descriptor-binding slots can be informed by measur-

ing the amount of redundancy in descriptor bindings that occurs in each

descriptor-binding slot. Descriptor bindings vt(s,b) and vt+1
(s,b) are considered re-

dundant in descriptor-binding slot (s, b) if the descriptor bindings are equal

between the consecutive pipeline invocations t and t + 1. The overall redun-

dancy occurring in descriptor-binding slot (s, b) is defined as follows:

R(s,b) =

∑T−1
t=1 1vt

(s,b)
=vt+1

(s,b)
(t)

T − 1

where 1vt
(s,b)

=vt+1
(s,b)

(t) is an indicator function that returns 1 if vt(s,b) and vt+1
(s,b) are

equal, and 0 otherwise.

Descriptor-binding slots with similar amounts of redundancy may be grouped

together into descriptor sets for the new pipeline layout to minimize the total

number of descriptors that need to be allocated, updated, and bound in the

command buffer. To illustrate, consider the monolithic descriptor set pipeline

layout example in Figure 4.4. Redundancy occurring at a descriptor-binding

slot is illustrated visually by arrows connecting descriptor-binding slots across

descriptor sets on the timeline of bound descriptor sets. The bottom of Fig-

ure 4.4 lists the overall redundancy of each descriptor-binding slot. A reparti-

87

tioning of descriptor-binding slots in Figure 4.4 is as follows:

(0, 0) 7→ (0, 0),

(0, 3) 7→ (0, 1),

(0, 2) 7→ (1, 0),

(0, 1) 7→ (2, 0),

(0, 4) 7→ (2, 1)

The result of this repartitioning is shown in Figure 4.5. The repartitioning

by redundancy in descriptor-binding slots takes advantage of pipeline layout

compatibility to reuse descriptor sets across pipeline invocations. Thereby, this

repartitioning reduces the number of descriptor sets that need to be allocated,

updated, and bound in the command buffer. This reuse of descriptor sets is

illustrated in the timeline of bound descriptor-sets in Figure 4.5 by dashed ar-

rows between descriptor-binding slots of the same descriptor set across pipeline

invocations. Although the dashed arrows indicate that the descriptor-binding

slot is occupied by a descriptor binding from a reused descriptor set, the dashed

arrows do still count towards the redundancy of a descriptor-binding slot to

maintain the property that redundancy in a descriptor-binding slot remains

the same after a repartitioning of descriptor-binding slots.

88

Command Buffer

Draw

Set 0

Set 1

Draw

Descriptor Set A'

Descriptor Set B'

Commands

Pipeline Graphics Pipeline '

Descriptor Set A'

Binding 0: [1]

Binding 1: [6]

Set 1

Binding 0: 66.66%

Descriptor Set B'

Binding 0: [5]

Descriptor Set B'

Binding 0: [5]

Set 0

Binding 0: 100%

Binding 1: 100%

Draw

Descriptor Set B'

Binding 0: [5]

Set 0
Timeline

Set 1
Timeline

Graphics Pipeline ' Descriptor-Binding Slot Redundancies

Descriptor Set C'

Draw

Descriptor Set C'

Binding 0: [11]

Set 2 Descriptor Set D' Descriptor Set E' Descriptor Set F' Descriptor Set G'

Descriptor Set D'

Binding 0: [2]

Binding 1: [7,8]

Descriptor Set E'

Binding 0: [3]

Binding 1: [9,8]

Descriptor Set F'

Binding 0: [3]

Binding 1: [10,12]

Set 2
Timeline

Descriptor Set G'

Binding 0: [4]

Binding 1: [10,12]

Descriptor Set A'

Binding 0: [1]

Binding 1: [6]

Descriptor Set A'

Binding 0: [1]

Binding 1: [6]

Descriptor Set A'

Binding 0: [1]

Binding 1: [6]

Set 2

Binding 0: 33.33%

Binding 1: 33.33%

Figure 4.5: Illustration of a command buffer that performs four consecutive
draw calls (pipeline invocations). Beneath the illustration of the command
buffer is a timeline showing the descriptor sets bound at each set number be-
fore every pipeline invocation. Each descriptor set is illustrated by a list of
its descriptor bindings in numbered descriptor-binding slots. Each descrip-
tor binding contains an array of descriptors denoted by an ordered comma-
separated list of positive integers enclosed in square brackets. Arrows between
descriptor-binding slots on the timeline indicate redundancy at the descriptor-
binding slot due to the descriptor bindings being equivalent across descrip-
tor sets. Beneath the timeline is the redundancy measurement result for all
descriptor-binding slots.

Redundancy in a descriptor-binding slot is closely related to the rate of

change of descriptor data with respect to the number of pipeline invocations.

A high rate of change in a descriptor-binding slot results in few pipeline in-

vocations between changes, which implies a low redundancy in the descriptor-

binding slot — and vice-versa. Grouping descriptor-binding slots with similar

89

redundancy into descriptor sets is equivalent to grouping descriptor-binding

slots with similar rates of change in descriptor data into the same descriptor

set, which is the suggested approach to creating descriptor sets [3], [19].

Evaluating Descriptor-Binding Slot Repartitioning

Recall the primary goal of improving descriptor-set usage is to reduce the

amount of descriptor data that needs to be allocated, updated, and bound in

each pipeline invocation. The repartitioning of descriptor-binding slots by re-

dundancy achieves this goal by reducing the amount of redundant descriptors

between descriptor sets bound across consecutive pipeline invocations. Fig-

ure 4.4 displays redundancies present in four consecutive pipeline invocations

of a pipeline α using a monolithic descriptor set to hold all of its resource

descriptors. Figure 4.5 displays equivalent invocations of pipeline α′ whose

layout is a partitioning of the monolithic descriptor set used by pipeline α. To

quantitatively evaluate the effectiveness of the repartitioning, the number of

descriptors used over the same sequence of pipeline invocations is compared

before and after repartitioning. Figure 4.6 depicts all descriptor sets bound

before each pipeline invocation for pipelines α and α. Pipeline α binds a total

of 4 unique descriptor sets over the course of four pipeline invocations, and

each descriptor set contains 6 descriptors. Therefore, pipeline α uses a total

of 24 descriptors. Pipeline α′ binds a total of 7 unique descriptor sets over the

course of the same four pipeline invocations:

• There is 1 unique descriptor set associated with set number 0, and it

contains 2 descriptors

• There are 2 unique descriptor sets associated with set number 1, and

they each contain 1 descriptor

• There are 4 unique descriptor sets associated with set number 2, and

they each contain 3 descriptors

Therefore, pipeline α′ uses a total of 16 descriptors. The repartitioning has

resulted in an overall 33.33% reduction in the number of descriptors used over

the same four pipeline invocations.

90

Bound Descriptor Sets per Draw Call

Descriptor Set B'

Binding 0: [5]

Descriptor Set D'

Binding 0: [2]

Binding 1: [7,8]

Descriptor Set A'

Binding 0: [1]

Binding 1: [6]

Descriptor Set E'

Binding 0: [3]

Binding 1: [9,8]

Descriptor Set B

Binding 0: [1]

Binding 1: [3]

Binding 2: [5]

Binding 3: [6]

Binding 4: [9,8]

Descriptor Set F'

Binding 0: [3]

Binding 1: [10,12]

Descriptor Set G'

Binding 0: [4]

Binding 1: [10,12]

Descriptor Set C'

Binding 0: [11]

Descriptor Set C

Binding 0: [1]

Binding 1: [3]

Binding 2: [5]

Binding 3: [6]

Binding 4: [10,12]

Descriptor Set D

Binding 0: [1]

Binding 1: [4]

Binding 2: [11]

Binding 3: [6]

Binding 4: [10,12]

Descriptor Set A

Binding 0: [1]

Binding 1: [2]

Binding 2: [5]

Binding 3: [6]

Binding 4: [7,8]

Draw 1 Draw 2 Draw 3 Draw 4

Monolithic
Descriptor Set
Pipeline Layout

(Pipeline)

Repartitioned
Pipeline Layout

(Pipeline)

Draw 1 Draw 2 Draw 3 Draw 4

Set 0 Redundancy

Binding 0: 100%

Binding 1: 33.33%

Binding 2: 66.66%

Binding 3: 100%

Binding 4: 33.33%

Set 1 Redundancy

Binding 0: 66.66%

Set 0 Redundancy

Binding 0: 100%

Binding 1: 100%

Set 2 Redundancy

Binding 0: 33.33%

Binding 1: 33.33%

Set 0

Set 1

Set 2

Set 0

Figure 4.6: A depiction of all descriptor sets bound just before each draw call
(pipeline invocation) for two different pipelines α and α′. Pipeline α uses a
monolithic descriptor set pipeline layout. Pipeline α′ a pipeline layout where
descriptor sets are created to group descriptor-binding slots with similar re-
dundancy. The redundancy in each descriptor-binding slot is listed on the
right-most column. Descriptor-binding slots are also colored based on their
redundancy: A red color indicates low redundancy (33.33%); a yellow color
indicates medium redundancy (66.66%); a green color indicates high redun-
dancy (100%).

While the example repartitioning in Figure 4.5 uses three descriptor sets, it

is possible to use four descriptor sets to further reduce the number of redundant

descriptors between descriptor sets. To scale up to pipeline layouts that use

more descriptor bindings with varying rates of change, it may be possible

to dedicate a descriptor set to each descriptor binding. Due to hardware

limitations, however, there is a maximum number of descriptor sets that can be

bound to a pipeline at any given time. This limit can be obtained by querying

the vkGetPhysicalDeviceProperties function and reading the integer property

maxBoundDescriptorSets. Furthermore, it is a balancing act to determine

what is the optimal number of descriptor sets to use and how many descriptor

91

bindings to place in each descriptor set. Nuno et al. recommend, on NVIDIA’s

technical blog regarding best practices for Vulkan API usage, that applications

should achieve the conflicting goals of keeping the number of descriptor sets in

pipeline layouts to a minimum, while also minimizing the number of descriptors

in descriptor sets [34]. However, it is not clear which of these two goals is more

important. A study of the trade-offs between the number of descriptor sets

and the number of descriptors in descriptor sets is needed to determine a good

partitioning of descriptors into descriptor sets.

4.5.2 Uniform Buffer Value Analysis

Opportunities to improve the management of uniform buffers can be identi-

fied through analysis of the data contained within the uniform buffers for each

pipeline invocation. For OpenGL programs, Crawford et al. finds that signifi-

cant portions of the data in uniform buffers is often unused or remain constant

at runtime. They use value specialization and truncation of arrays in shader

code to improve performance [10], [11]. In Vulkan, further opportunities for

optimization are available through the use of features that combine uniform

data with shader-resource binding mechanisms such as push constants and

inline uniform blocks.

Just before a command buffer is submitted to the GPU for execution, the

uniform buffer value profiling facility of the Vulkan layer (Section 4.4.2) can

read all the data contained within every uniform buffer used by each pipeline

invocation in the command buffer. The formats of the data contained within

the uniform buffers are also known to the Vulkan layer because the SPIR-

V byte code of the shaders comprising each pipeline are read by the layer to

obtain the layout of the uniform data structure. With this knowledge, analyses

can be performed to determine information about each field of a uniform data

structure such as the frequency of changes in value, the number of unique

values observed, and top-N values observed [8].

The goal of uniform buffer value analysis is to provide information about

the usage of uniform data structures by each pipeline of the application.

Pipelines can be analyzed independently of each other, and the results of

92

the analysis may be used to optimize the usage of uniform buffers for each

pipeline. Shader SPIR-V byte code analysis can reveal unused fields or array

elements of uniform data structures may be eliminated from uniform buffers

to reduce memory usage, memory transfer times, and improve GPU cache

utilization. Likewise, fields of uniform data structures that appear to remain

constant at runtime may be eligible for value specialization in shader code.

Value specialization replaces the field of the uniform data structure with a

compile-time constant value in the shader code, eliminating the need for the

field to be present in the uniform buffer and enabling compiler transformations

to further optimize the shader code such as constant folding and dead code

elimination. This also eliminates memory accesses to uniform buffers and can

enable the elimination of the associated data from the uniform buffer entirely.

In Vulkan, value specialization can be achieved using specialization constants.

Specialization constants are a feature of the Vulkan API that can be used

to specialize the values of variables in shader code at pipeline creation time.

The SPIR-V byte code of shaders can be modified to replace references to the

runtime-constant uniform data with specialization constants. The advantage

of using specialization constants over directly performing value specialization

in shader code is that the shader code does not need to be duplicated by the

application or an optimization layer for each possible specialization; instead,

the Vulkan driver compiles and transforms the shader code for each special-

ization at pipeline creation time.

Similar work in value specialization has been done by Crawford et al. for

OpenGL programs with respect to uniform variables instead of buffers [10],

[11]. While OpenGL does support uniform buffers, the work by Crawford et

al. focuses on the use of uniform variables which are easier to eliminate from

shader code. In Vulkan, it is not easy to make changes to uniform buffers

since the same uniform buffer may be used by multiple pipelines; some of the

data contained within a uniform buffer may be used by some pipelines and not

others. It may be more costly for an application to manage multiple uniform

buffers than to manage a single uniform buffer with potentially unused data

for some of the pipelines that use it. Managing multiple specialized uniform

93

buffers for each pipeline could result in redundant data between uniform buffers

— leading to increased memory usage. Additional overheads in managing

resource descriptors for each uniform buffer is also an issue, as each uniform

buffer requires its own descriptor for a pipeline to have access to it.

A more practical type of value specialization called zero-value specializa-

tion [44] is applicable when fields of uniform data structures often take on

the value of zero. Zero-value specialization is a form of value specialization

that inserts specialized fast-paths into code that replaces references to zero-

originating variables with a compile-time constant value of zero, greatly reduc-

ing and simplifying many arithmetic operations in the fast path. Zero-value

specialization does not only apply to uniform buffer data; it can apply to all

sources of zeros, from textures to arithmetic and comparison operations in

shader code.

Optimizing Uniform Buffer Usage with Descriptor Sets

Other approaches exist in Vulkan to optimize uniform buffer usage when con-

sidering their usage in tandem with descriptor sets. For instance, it may be the

case that there are duplicate uniform buffers. This would be observed when a

uniform buffer descriptor has changed between two pipeline invocations, but

the data read from the uniform buffer remains the same. It may be possible to

eliminate one of the two uniform buffers and its associated descriptor. More

opportunities exist when considering Vulkan features such as push constants

and inline uniform blocks that can be used to improve the efficiency of both

uniform buffer and descriptor set usage simultaneously.

Push constants are a way to provide a small amount of data to a pipeline

at the time of a pipeline invocation [56]. Push constants are stored in a

region of memory that is part of the command buffer and therefore are not

backed by a uniform buffer. The amount of data that can be stored in push

constants is hardware-dependent, and can be queried by the application using

the vkGetPhysicalDeviceProperties function and reading the integer property

maxPushConstantsSize. In addition to not requiring a backing uniform buffer,

push constants do not require a descriptor set to be modified or bound to be

94

used by a pipeline. These properties make push constants useful for small data

that changes frequently, due to less overheads required in updating the data

and fewer indirections required to access the data. An example of data that

may be suitable for push constants is a transformation matrix that is different

for each draw call in a command buffer. A transformation matrix can be set

in push constants before each pipeline invocation in the command buffer. The

pipeline can then read the transformation matrix directly from push constants

without needing to read from a uniform buffer through a resource descriptor.

To determine the suitability of using push constants for particular fields of

uniform data structures, the Vulkan layer can analyze the frequency of changes

in the values of suitably-small fields. Furthermore, since uniform buffers may

be shared between multiple pipelines, such analyses should combine results

from multiple pipelines that use the same uniform buffer. The Vulkan layer can

then provide recommendations to the application on which fields of uniform

data structures may be suitable for push constants, and list all pipelines that

should be modified to accommodate the use of push constants for those fields

and the change in uniform buffer format.

Inline uniform blocks are a feature available in a Vulkan extension VK -

EXT inline uniform block or in Vulkan 1.3 as a way to store uniform data

directly in descriptor sets without the need for a uniform buffer [60]. Like

push constants, inline uniform blocks reduce the amount of indirection re-

quired to read uniform data. The amount of data that can be stored in an

inline uniform block is also hardware-dependent, and can be queried by the

application using the vkGetPhysicalDeviceProperties2 function. Furthermore,

there is a maximum number of inline uniform blocks can be included in pipeline

layouts and accessed by shader stages, queried with the same function. Unlike

push constants, inline uniform blocks can be shared between multiple disjoint

pipeline invocations, since push constant data is shared globally for all pipeline

invocations and may be overwritten between pipeline invocations. Eligibility

of uniform buffers to be replaced with inline uniform blocks can be determined

by a Vulkan layer by examining the sizes of uniform buffers. Deciding which

uniform buffers should be replaced with inline uniform blocks can be a topic for

95

future research, utilizing static and dynamic analysis of the usage of uniform

buffers by shaders across pipelines.

Evaluating Uniform Buffer Optimizations

Several aspects are considered when evaluating the effectiveness of optimiza-

tions to uniform buffer usage on pipeline execution times in Vulkan appli-

cations. A performance-measurement layer separate from the profiling layer

described in Section 4.4 can be made to provide fine-grained measurements of

application performance on both the CPU and GPU sides.

On the CPU side, there is the time spent writing data into uniform buffers.

This time may be measurable, but would incur significant overheads due to

requiring the use of shadow memory to be able to observe writes to uniform

buffer memory, since the application writes to uniform buffers directly through

a void pointer as opposed to a Vulkan API function that can be intercepted

by a Vulkan layer.

Since uniform buffer optimizations such as the use of push constants and

inline uniform blocks can affect descriptor sets, another CPU-side aspect of

performance is the time taken to allocate descriptor sets, write data into them,

writing commands to bind them in command buffers, and submit the command

buffers for execution. The CPU time taken by these steps can be measured by

computing the delta in time before and after their respective Vulkan commands

outlined in Section 4.4.

On the GPU side, the running time of pipelines before and after opti-

mizations is of primary interest. One method to measure the running time of

pipelines is to insert a GPU timestamp query [57] before and after pipeline

invocations in command buffers. Timestamp queries require the allocation of

a memory pool — called a query pool — for the timestamp queries to store

results to and for the CPU to read results from. Query pools are created

with the vkCreateQueryPool function. During command buffer recording, a

Vulkan layer can insert timestamp query commands with the function vkCmd-

WriteTimestamp to write GPU timestamps into a query pool. The results

of timestamp queries may be polled and read by the CPU using the vkGet-

96

QueryPoolResults function. The metric of time recorded by GPU timestamp

queries is not defined in the Vulkan API, but is guaranteed to monotonically

increase over time. The accuracy of GPU timestamp also varies between dif-

ferent hardware.

The vkCmdWriteTimestamp command introduces an execution dependency

on all commands executed before it in the command buffer before the times-

tamp is written. Due to the execution dependency, timestamp queries will

prevent the GPU from possibly overlapping the execution of commands across

the boundary of the timestamp query. On one hand, the execution depen-

dency incurs significant overhead on application performance, which prevents

measuring performance in real-time during application execution if there are

many timestamp queries. On the other hand, the execution dependency en-

sures that pipelines execute in isolation, as they will not overlap with other

pipeline executions in the command buffer. Due to the overheads, using many

GPU timestamps to measure pipeline execution performance is best suited for

measuring performance in frames captured using a frame-capture tool such as

NVIDIA NSight Graphics’ C++ Capture [41] or gfxreconstruct [30]. These

frame captures are reproducible snapshots of a program’s execution trace to

render a single frame or a sequence of frames. Vulkan layers can be applied

to a frame capture in the same way as the original application, and their re-

producibility allows repeated performance measurements on the same frame.

Using GPU timestamps on frame captures enables the performance measure-

ment of each pipeline in a reproducible but realistic setting that uses the same

inputs as the original application — avoiding the issue Crawford et al. had

of lacking representative shader inputs when measuring the performance of

individual pipelines in an isolated environment [10].

While CPU time measurements and GPU timestamp queries on frame cap-

tures may provide insights into how optimizations affect the performance of

pipelines in a single frame, they may not provide a complete picture of the

performance of the application as a whole. Performance of multiple frame cap-

tures is required to determine the average performance of the application across

multiple scenarios. The question of what frames to capture that are represen-

97

tative of the application’s performance in all scenarios is an open question.

Video games are interactive applications that respond to user input and also

have non-deterministic behavior due to the use of random number generators,

physics simulations, and other sources of unpredictability. It may not be fea-

sible to generalize performance results from a small number of frame captures

to the entire application.

Instead of fine-grained performance measurements, coarse-grained perfor-

mance measurements are more suitable for evaluating the effectiveness of all

optimizations. Frame-time measurements are the primary metric used by game

developers to evaluate the performance of their applications [64]. Frame time

is a measure of the time taken to render a single frame of the application,

in milliseconds, and is inversely proportional to the frame rate or FPS of the

application. Many tools exist to measure the frame time of an application in

real time, and often come built into the applications themselves. The frame

time of the application should be monitored during prolonged execution over

a wide variety of scenarios, such as during play-testing and, if applicable, the

benchmark modes of the application. Frame captures are made when the frame

time drops below a certain threshold set by the target frame rate of the appli-

cation by the developers (e.g., 16.67 milliseconds for a 60 frames-per-second

target frame rate). Optimizations to uniform buffer and descriptor usage can

be made to frame captures to determine if the frame time improves compared

to the original frame captures. If so, the optimizations may be applied to

the original application, and further testing is required to determine if the

improvements are consistent across all observed scenarios during play-testing

and benchmarking.

Frame profiling tools such as NVIDIA NSight Graphics [41] and AMD’s

Radeon GPU Profiler [2] may also be used to provide insights into the per-

formance of application frame captures. These tools provide CPU time mea-

surements and GPU time measurements for various Vulkan API functions and

GPU commands like that achieved with CPU time and GPU timestamp queries

using a Vulkan layer. Unlike the Vulkan layer, the frame-profiling tools mea-

sure GPU execution time of pipelines in milliseconds to allow a developer to

98

more easily identify pipeline executions that dominate frame time. Hardware

performance counters such cache throughput and hit rates are also provided by

these tools. Since uniform buffer and descriptor optimizations may lower the

number of memory accesses, cache throughput and hit rates may be a useful

metric to determine if the optimizations are effective. However, these profiling

tools do not have an API that can be used to automate the collection and anal-

ysis of performance data, and therefore are not suitable for use in automated

performance testing. To minimize overheads and enable real-time fine-grained

performance measurement in an application, a Vulkan layer may be adapted

to collect performance data for specific pipelines of interest as opposed to all

pipelines in the application.

4.6 Technological Advancements and Consid-

erations

4.6.1 Vulkan Extensions to Resource Descriptors

The Vulkan API is constantly evolving, and new features and extensions are

being added to the API to enable more ways to improve performance and

flexibility. Some of these features and extensions affect the usage of descriptor

sets in Vulkan applications. Some of the new features and extensions that are

relevant to the analysis of descriptor sets include: descriptor buffers, descriptor

indexing, and push descriptors

Descriptor buffers. The Vulkan API extensionVK EXT descriptor buffer [58]

introduces a new way to create, update, and bind resource descriptors in

Vulkan applications through the use of resource descriptor buffers, or just

descriptor buffers for short. Descriptor buffers do away with the abstract

descriptor pool and descriptor set model used in the core Vulkan API and

instead allow applications to directly manage resource descriptors by using

buffers as the backing storage for them. No longer do applications use the

functions vkCreateDescriptorPool, vkAllocateDescriptorSets, vkUpdateDescrip-

torSets, and vkCmdBindDescriptorSets to allocate, update, and bind descrip-

99

tor sets. A different set of functions are provided to facilitate the creation,

update, and binding of descriptor buffers.

Supporting descriptor buffers in the layer would require drastic changes to

the Descriptor-Set Usage Tracking facility to accommodate the new descrip-

tor buffer model. Instead of intercepting vkAllocateDescriptorSets to track

descriptor-set allocations, the layer would track the creation of buffers from

vkCreateBuffer that have usage flags of the form VK BUFFER USAGE * DE-

SCRIPTOR BUFFER BIT EXT indicating that they are descriptor buffers.

The contents of descriptor buffers are updated using the vkGetDescriptorEXT

function which takes in a device address of a resource (as opposed to the Vulkan

object representing the resource) and writes a corresponding descriptor into a

descriptor buffer. For buffers, the device address is queried by the application

using the function vkGetBufferDeviceAddressEXT. Similar functions exist to

query other types of resources for their device addresses. The layer would need

to intercept the vkGetDescriptorEXT and vkGet*DeviceAddressEXT func-

tions to keep track of the contents of descriptor buffers and associate the device

addresses of resources in the descriptors with their corresponding Vulkan ob-

jects. The binding of descriptor buffers to command buffers is accomplished us-

ing the functions vkCmdBindDescriptorBuffersEXT and vkCmdSetDescriptor-

BufferOffsetsEXT, which the layer intercepts to track what descriptor buffers

are bound to each command buffer and what offsets within the descriptor

buffers are used before each pipeline invocation.

Descriptor indexing. Descriptor indexing [59] was a Vulkan extension that

has now become a core feature in Vulkan 1.2. Descriptor indexing enables two

features to Vulkan applications, but only one of them is relevant to the analysis

of descriptor sets. This feature is called Update-After-Bind. It allows appli-

cations to update individual descriptors in a descriptor set without invalidat-

ing existing command buffers that have bound the descriptor set. To enable

this feature, individual descriptor bindings can be flagged as update-after-bind

when creating descriptor-set layouts. With Update-After-Bind there is no need

to re-record command buffers when descriptor sets are modified. When a de-

100

scriptor set has update-after-bind descriptor bindings, the layer does not need

to perform an analysis of descriptor-set usage within each command buffer

during or after command-buffer recording because command buffers are not

necessarily invalidated when descriptor-set updates are made to descriptor sets

that are bound to them. The analysis of descriptor-set usage within command

buffers are instead deferred to just before command-buffer submission time,

as this is the latest point in time when the application may update descriptor

sets before they are used by the GPU.

In addition to Update-After-Bind, an additional flag called VK DESCRIP-

TOR BINDING UPDATE UNUSED WHILE PENDING BIT can be set. Like

Update-After-Bind, this flag allows applications to update individual descrip-

tors in a descriptor set without invalidating existing command buffers that

have bound the descriptor set. The difference is that descriptors may be up-

dated even while a command buffer is currently pending execution on the GPU,

as long as the descriptors being updated are not used by the command buffer

in pipeline shader stages. The VK DESCRIPTOR BINDING UPDATE UN-

USED WHILE PENDING BIT can be paired with the flag VK DESCRIP-

TOR BINDING PARTIALLY BOUND BIT to allow the of updating descrip-

tors even while a command buffer is currently executing, as long as the descrip-

tors being updated are not dynamically used by any active shader invocations.

These flags complicate descriptor-set profiling and evaluation because descrip-

tors in descriptor sets are no longer static after command-buffer recording or

submission. However, the greater flexibility of being able to modify descriptor

sets at more points in time may make the purpose of a descriptor-set usage

profiling layer less relevant because applications need far fewer descriptor sets

to supply resources to pipelines.

Push descriptors. The Vulkan API extensionVK KHR push descriptor [61]

adds a way to supply descriptors to pipelines inline within command buffers

without the need for descriptor sets. Push descriptors are similar to push

constants in that they are provided by a command before a pipeline invoca-

tion. Their memory is managed internally by the command buffer and are

101

therefore limited in size. The layer can track the usage of push descriptors in

command buffers by intercepting the vkCmdPushDescriptorSetKHR function.

The vkCmdPushDescriptorSetKHR function takes in a pipeline layout to be

programmed to, a set number for the set in the pipeline layout to be updated,

and an array of VkWriteDescriptorSet structures describing the descriptors to

be pushed. Push descriptors can not contain dynamic descriptors.

4.6.2 Automatic Uniform Value Specialization

Vulkan layers have the potential to automatically employ profile-guided opti-

mization by modifying the behavior of Vulkan API function calls and making

new Vulkan API function calls on behalf of the application. One possible opti-

mization is to automatically specialize uniform data values in pipelines’ shader

stages based on the data values that are most frequently used or are runtime-

constant. However, there are several challenges to implementing automatic

uniform data value specialization in a Vulkan layer.

Pipeline compilation. A well-known problem in video games is the long

compilation times for pipelines [7], [12]. Games may have thousands of pipelines

for rendering different objects with varying materials and visual effects. Fail-

ing to compile a pipeline (or several pipelines) in time for when it is needed

to render a frame results in a noticeable delay described as “stuttering” or a

sudden drop in application frame rate that negatively impacts the user expe-

rience. Game engines and the Vulkan API have several techniques to mitigate

this problem, such as pre-compiling pipelines during game loading screens, us-

ing multi-threading to preemptively compile pipelines in the background [46],

using pipeline caches to save compiled pipelines for later reuse [4], and using

pipeline derivatives to compile similar pipelines more quickly [4]. Despite these

techniques, the problem of pipeline compilation time remains a significant chal-

lenge because different combinations of, for example, material properties may

require a different pipeline to be compiled. The total number of possible varia-

tions of pipelines may also be infeasible to pre-compile or to store in a pipeline

cache.

102

A Vulkan layer that automatically specializes uniform data values must be

able to compile pipelines in a timely manner to avoid stuttering. Integrating

the compilation of specialized pipelines is a non-trivial task that requires the

layer to have knowledge of the application’s pipeline compilation process and

the ability to modify the pipeline compilation process to compile specialized

pipelines in addition to the original pipelines. Depending on the number of

values that need to be specialized, a large number of specialized pipelines may

be compiled — scaling exponentially with the number of values that needs to

be specialized per variable in uniform buffers.

Maintaining correctness. Automatic uniform value specialization can lead

to incorrectly-rendered frames if an incorrect specialized pipeline is chosen to

replace the original pipeline in a pipeline invocation. Maintaining correctness

means that the layer must be able to determine when it is safe to specialize a

pipeline and when it is not, while also ensuring that the specialized pipeline is

correct for the uniform data values that are known at the time a pipeline is to

be executed. One area where an automatic uniform value specialization layer

may fail to maintain correctness is during command-buffer recording when the

layer is unable to determine the contents of uniform buffers that will be used

by a pipeline.

Command buffers are immutable once they have been recorded. Descrip-

tor sets with update-after-bind descriptor bindings may be updated after

command-buffer recording and before command-buffer submission. The con-

tents of the uniform buffers referenced by descriptors are also mutable be-

fore the uniform buffers are used by an executing pipeline. These factors

make it impossible to replace pipeline invocations with invocations of special-

ized pipelines during the typical time an application performs command-buffer

recording.

An approach to tackling the command-buffer recording problem is for the

layer to make blueprints of command buffers that bind specializable pipelines.

Just before the original command buffer is submitted, the layer can record

a new command buffer using the blueprint while substituting the original

103

pipelines with correctly-chosen specialized pipelines based on values in the

uniform buffers. The original command buffer to be submitted is replaced

with the new command buffer that binds the specialized pipelines.

Major performance issues arise from this approach. Reading the contents of

uniform buffers (or intermediate transfer buffers in the case of uniform buffers

in non-host-visible memory) to determine the correct specialized pipeline to

use is costly, and further exacerbated when the buffers reside in memory that

does not have the host-cached property to enable fast reads. Applications may

also reuse command buffers multiple times to avoid having to re-record them,

which makes this approach negate the benefits of having reusable command

buffers.

Eliminating memory accesses. Substituting pipeline invocations with in-

vocations of specialized pipelines may enable the layer to eliminate writes

to uniform buffer memory for the uniform data values that are specialized.

However, the layer has no knowledge of which uniform buffers created by the

application are used for which pipelines until command buffer recording. The

layer also has no knowledge of the values that applications intend to write to

uniform buffer memory until the write actually occurs (if using shadow mem-

ory to track writes) or until the layer reads the contents of the uniform buffer

memory to check the contents. This lack of knowledge about the application

prevents the layer from being able to discard writes to uniform buffer memory

that are not needed by the specialized pipelines. Thus, performance improve-

ments, if any, would be from minimizing uniform buffer memory accesses from

shader execution on the GPU as opposed to eliminating writes to uniform

buffer memory from the CPU.

All the issues mentioned with regards to pipeline compilation, maintaining

correctness, and eliminating memory accesses make automatic uniform value

specialization a challenging and impractical optimization to implement in a

Vulkan layer designed to be application-agnostic. Uniform value specialization

is better suited for application-specific optimizations that are implemented by

the application itself, as the application has the necessary knowledge of its own

104

pipeline compilation process, uniform buffer usage, and uniform data values

to make informed decisions about when and how to specialize pipelines and

reduce uniform buffer memory accesses.

4.6.3 Other Pipeline Types

Uniform buffers are not exclusive to graphics pipelines and can be used by other

types of pipelines in Vulkan such as compute pipelines, ray-tracing pipelines,

and mesh-shading pipelines.

Compute pipelines. Compute pipelines are used for general-purpose com-

putation on the GPU. Compute pipelines, unlike graphics pipelines, do not

have a 1-to-1 mapping of threads to work items such as vertices or frag-

ments. Compute pipelines are composed of a single compute-shader stage

that is executed by multiple threads organized into workgroups. A workgroup

is a group of threads that execute the compute shader and have access to a

shared workgroup-local memory to enable communication between threads in

the workgroup. When a compute pipeline is invoked using the vkCmdDispatch

function, the application specifies the number of workgroups to spawn to exe-

cute the compute shader. Within compute shaders, each thread can query its

own ID within a workgroup and the ID of the workgroup it belongs to. The

inputs and outputs of compute pipelines are defined entirely by the applica-

tion based on the compute pipeline’s layout and the implementation of the

compute shader itself.

To support descriptor set and uniform buffer profiling on compute pipelines,

the layer would need to intercept the vkCmdDispatch function to identify com-

pute pipeline invocations in command buffers. The rest of the layer would

function the same as for graphics pipelines. Compute pipelines exhibit dif-

ferent resource usage patterns compared to graphics pipelines due to their

general-purpose nature, and may therefore have more or less opportunities for

optimization with respect to descriptor set and uniform buffer usage depending

on their use case.

105

Mesh-shading pipelines. The mesh-shading pipeline is a relatively recent

pipeline type introduced in the Vulkan API that is an alternative to the graph-

ics pipeline. In addition to the vertex and fragment shader stages of a graphics

pipeline, a graphics pipeline also has the optional tessellation control, tessel-

lation evaluation, and geometry shader stages. These optional stages grant

applications the ability to modify the geometry of objects to be rendered after

vertex shading and before rasterization. Modifications possible with the op-

tional stages include subdividing the geometry to produce more vertices (i.e.,

tessellation) and transforming geometric primitives into different primitives,

possibly with more, or fewer, vertices.

The mesh-shading pipeline replaces the vertex, tessellation control, tessel-

lation evaluation, and geometry shader stages with a task shader stage and a

mesh shader stage. Unlike the shader stages that they replace in the graph-

ics pipeline, task and mesh shaders function much like compute shaders in

that they are executed in terms of workgroups and have access to shared

workgroup-local memory. The task shader stage emits zero or more mesh-

shader workgroups, while the mesh shader stage processes the workgroups

emitted by the task shader stage and produces triangles for the rasterization

stage of the pipeline. The compute-shader-like nature of task and mesh shader

stages allow for more predictable performance across different hardware due to

the execution model more closely resembling how modern GPUs operate [18].

The flexibility offered by the mesh-shading pipeline enables applications to

perform the same tasks as the vertex, tessellation, and geometry shader stages

of the graphics pipeline if desired. The mesh-shading pipeline also enables new

techniques that were not possible with the graphics pipeline such as meshlet

rendering, where a complex object (mesh) is divided into small groups of tri-

angles called meshlets that are processed together. The task shader would

be responsible for generating mesh-shader workgroups to process each mesh-

let, and the mesh shader would be responsible producing triangles from each

meshlet for rasterization. Notably, the task shader can be used to cull mesh-

lets that are not visible to the camera by simply omitting mesh-shader work-

groups for those meshlets, thereby reducing the amount of work that the rest

106

of the pipeline needs to do [25]. The meshlets themselves are pre-generated

as opposed to being generated on-the-fly by the GPU as is done in a graphics

pipeline before vertex shading, which allows an application to employ different

meshlet generation strategies to optimize aspects such as vertex cache usage

on the GPU or enable more opportunities for culling in the task shader [21].

To support descriptor set and uniform buffer profiling on mesh-shading

pipelines, the layer would need to intercept the vkCmdDrawMeshTasksEXT

function to identify mesh-shading pipeline invocations in command buffers.

The rest of the layer would function the same as for graphics pipelines. Mesh

shading pipelines, like compute shader pipelines, may exhibit different resource

usage patterns compared to graphics pipelines. An application may create

mesh-shading pipelines that mirror the functionality of graphics pipelines, or

to use mesh shading pipelines to implement alternative rendering techniques.

Ray-tracing pipelines. Ray-tracing pipelines are a type of pipeline in the

Vulkan API that enables applications to perform hardware-accelerated ray-

tracing on the GPU. Ray-tracing pipelines are also seldomly used to render

single objects or visual effects like graphics pipelines typically do. Instead, a

single ray-tracing pipeline invocation is often enough to render entire scenes

with complex lighting and shadowing effects. To accomplish this feat, ray-

tracing pipelines reference a shader-binding table that maps objects in the

scene to shaders that are executed when rays intersect the objects. Due to the

wide variety of shaders, uniform buffers are less used in ray-tracing pipelines

compared to the graphics pipeline since there is less opportunity for reuse of

uniform data across a wide variety of different shaders. Instead of uniform

buffers, constant data specific to each object may be stored in shader-binding

table records alongside their shaders.

To support descriptor-set and uniform-buffer profiling on ray-tracing pipelines,

the layer would need to intercept the vkCmdTraceRays function to identify ray-

tracing pipeline invocations in command buffers. The rest of the layer would

function the same as for graphics pipelines.

107

4.6.4 GPU-Driven Rendering

A typical application iterates over all objects in a scene and performs a draw

call for each object individually, while binding appropriate descriptors and

pipelines prior to each draw call according to the object’s properties. This

procedure is quite inefficient due to the overheads of recording multiple com-

mands on the CPU to be sent to the GPU, and the frequent altering of GPU

state to render each object using different descriptors and pipelines.

As GPUs became more general purpose, game developers began to devise

ways to offload as much of the rendering process to the GPU as possible. The

general idea is to maximize the amount of work that the GPU can do in-

dependently of the CPU by loading the entire scene into GPU memory and

letting the GPU decide how to render the scene with minimal CPU interven-

tion. This shift towards offloading the rendering process to the GPU is called

GPU-driven rendering. GPU-driven rendering was first popularized by the

game Assassin’s Creed Unity from Ubisoft and has since been gaining more

traction in the video-game industry [5], [16].

The key enabler of GPU-driven rendering is the introduction of indirect

draw commands in Vulkan 1.2. Draw commands typically take a number of

parameters such as the offset into the vertex buffer to start processing vertices,

and the number of vertices to process. An indirect draw command instead

takes in a buffer that contains the parameters which the GPU reads from to

execute the draw command (or multiple draw commands). The key aspect of

this buffer is that it may be modified by the GPU within shaders such as a

compute shader from a compute pipeline — enabling use of compute shaders

to generate draw calls and perform tasks such as frustum and occlusion culling

to optimize scene rendering.

To support descriptor set and uniform buffer profiling on applications us-

ing indirect draw commands, the layer would need to intercept the vkCmd-

DrawIndirect function. The rest of the layer would function the same as for

graphics pipelines. However, a consequence of indirect draw commands is that

although the GPU can now generate its own draw commands, the graphics

108

pipeline used for the draw commands remains fixed. Therefore, the graphics

pipeline must be generalized to handle a wide variety of different types of ob-

jects. To handle this generality, game engines have adopted a bindless model

for storing and using resource descriptors used in graphics pipelines [54]. No

longer are there uniform buffers or push constants associated with each object.

All per-object resources are aggregated into large shader-storage buffers that

are indexed into by the GPU to access the resources needed to render specific

objects. The bindless model allows the GPU to access resources without the

need for the CPU to bind new descriptor sets for each object or set of ob-

jects to be rendered. In a typical bindless model, descriptors are consolidated

into a single monolithic descriptor set that is bound once at the beginning of

rendering. Modifications to descriptors within the descriptor set are enabled

with the use of the descriptor indexing feature of Vulkan 1.2 to update de-

scriptors on-the-fly even during command buffer execution. As a consequence

of the bindless model, there are fewer opportunities for the optimization of

descriptor set and uniform buffer usage in applications using a GPU-driven

renderer.

4.7 Conclusion

Vulkan’s layer system enables the creation of a powerful tool for developers to

observe and capture the usage of resources in Vulkan applications. The Vulkan

layer proposed in this chapter provides insights into the usage of descriptor sets

and uniform buffers in Vulkan applications’ command buffers and pipelines.

By taking advantage of the low-level control provided by Vulkan, devel-

opers are able to optimize their applications in ways previously not possible

with older APIs like OpenGL, such as the restructuring of pipeline layouts

and descriptor sets to minimize memory management and GPU state-change

overheads. Optimizations through value specialization of OpenGL’s uniform

variables is a technique that can be extended to Vulkan’s uniform buffers to

eliminate memory accesses and reduce the amount of data transferred to the

GPU. Further optimizations tying together uniform buffers and descriptors can

109

be achieved by utilizing Vulkan-specific features such as push constants and

inline uniform blocks to reduce the amount of indirection required to access

uniform buffer data.

However, with the rapidly-evolving landscape of computer graphics, the

importance of descriptor set and uniform buffer optimizations diminishes as

new hardware and API features are implemented to make shader resource

management more flexible and efficient. The industry is shifting back to the

use of monolithic descriptor sets due to hardware and API features enabling

“bindless”, dynamic and flexible updates to individual descriptors in a descrip-

tor set. Much of the data that used to reside in per-object uniform buffers

are now aggregated into large shader storage buffers to facilitate GPU-driven

rendering and bindless descriptor designs. These factors render some of the

optimizations proposed in this chapter less applicable due to changes in the

way shader resources are managed in modern Vulkan applications.

110

Chapter 5

Conclusion

This thesis expands upon the list of applications and limitations of the Vulkan

layer system for profiling Vulkan applications to better understand execution

behaviors affecting their performance.

Chapter 3 introduced the ReRay toolchain and workflow that builds on

top of the existing work of Vulkan Vision and RayScope. ReRay is used for

evaluating, debugging, and optimizing Vulkan ray-tracing applications by cap-

turing and analyzing ray-trace execution data generated from automatic GPU

shader-code instrumentation. Using ReRay, hardware execution behavior such

as warp execution order and unnecessary intersection tests are revealed. The

chapter also demonstrates and discusses how the ReRay toolchain can be used

to rapidly evaluate potential changes to the application’s renderer before the

developer carries out a costly implementation, such as the implementation of

warp repacking and how it impacts SIMT efficiency estimates in ray-tracing

pipeline execution traces. Limitations of ReRay are also discussed, such as

the inability to analyze ray-tracing pipeline execution traces from applications

using NVIDIA’s Shader Execution Reordering (SER) feature due to issues

stemming from assumptions made in the Vulkan-Vision framework for ob-

taining unique identifiers for warps without the use of a proprietary Vulkan

extension. Even with the use of a proprietary extension, SER remains elusive

to study due to unexpected behavior of the extension when used to query warp

identifiers before warp repacking.

Chapter 4 proposed a Vulkan profiling layer to observe the usage of shader

111

resource descriptors and uniform buffers in Vulkan applications to leverage

prior work on uniform-buffer value specialization and to examine the relevance

of prior work on descriptor set optimization. The proposed layer provides in-

sights into the resource management procedures of Vulkan applications, and

can inform developers about ways to optimize their applications through re-

structuring of descriptor sets and uniform buffers to reduce memory access

and GPU state-change overheads. The chapter mentions inefficiencies of the

Vulkan layer when reading uniform buffer data from Vulkan applications, as

buffer data is written to through void pointers and not through the Vulkan

API. This thesis also discussed the practical limitations of the implementa-

tion of an application-agnostic Vulkan layer to automatically perform shader

resource optimizations on behalf of the application. Despite the power of

application-agnostic Vulkan layers to modify application behavior, these layers

cannot alter the shader resource management system used by an application.

Finally, the chapter also discusses advancements in the Vulkan API, hardware

features, and the design of graphics renderers that complicate the design of

the Vulkan profiling layer, and makes prior work in descriptor set optimiza-

tion and uniform buffer value specialization less relevant for modern Vulkan

applications.

There are several directions for future work that may further explore the

capabilities and utilities of the Vulkan layer system. As mentioned in Chap-

ter 3, new methods may be explored for obtaining unique warp identifiers for

applications that use SER or other hardware warp repacking techniques. Such

a method would allow further study of how SER performs warp repacking

and affects the execution traces of ray-tracing pipelines. Other aspects of the

Vulkan API can also be examined and evaluated with the Vulkan layer sys-

tem. For instance, synchronization is a critical aspect of the Vulkan API to

ensure that work (e.g., buffer copies, pipeline execution) starts and completes

execution in the correct order. Synchronization is necessary to ensure that

work items do not read or write to the same memory locations at the same

time, or execute before dependent work items have completed. A Vulkan layer

may be developed to examine existing dependencies between work items and

112

identify potential synchronization bottlenecks from the overuse or misuse of

Vulkan synchronization primitives. Performance optimizations may be pos-

sible by reducing the number of synchronization primitives used, reordering

work items to reduce the number of synchronization primitives required, or

using alternative synchronization primitives to reduce stalling. With the flex-

ibility of the Vulkan layer system, many aspects of Vulkan API usage can

be examined to analyze the performance of Vulkan applications and identify

potential optimizations.

113

References

[1] AMD. “Amd radeon raytracing analyzer.” (Mar. 2022), [Online]. Avail-
able: https://www.youtube.com/watch?v=qae_skv1GsA.

[2] AMD. “Radeon gpu profiler,” AMD. (2024), [Online]. Available: https:
//gpuopen.com/rgp/.

[3] Amd rdna performance guide, en-GB. [Online]. Available: https : / /
gpuopen.com/learn/rdna-performance-guide/.

[4] D. Archard, Pipeline state object caching, Presentation at SIGGRAPH
2016, 2016. [Online]. Available: https://www.khronos.org/assets/
uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_

Jul16.pdf.

[5] W. Bahnassi, Advancing gpu-driven rendering with work graphs in di-
rect3d, en-US, Mar. 2024. [Online]. Available: https://developer.
nvidia.com/blog/advancing-gpu-driven-rendering-with-work-

graphs-in-direct3d-12/.

[6] L. Bavoil. “Optimizing dx12/dxr gpu workloads using nsight graphics:
Gpu trace and the peak-performance-percentage (p3) method (presented
by nvidia).” (2019), [Online]. Available: https://www.gdcvault.com/
play/1026202/Optimizing-DX12-DXR-GPU-Workloads.

[7] S. Butler, What is shader compilation and why does it make pc games
stutter? en, Nov. 2022. [Online]. Available: https://www.howtogeek.
com/846514/what- is- shader- compilation- and- why- does- it-

make-pc-games-stutter/.

[8] B. Calder, P. Feller, and A. Eustace, “Value profiling,” in Proceedings
of 30th Annual International Symposium on Microarchitecture, IEEE,
1997, pp. 259–269.

[9] T. Cheblokov. “Advanced api performance: Pipeline state objects.” (Oct.
2023), [Online]. Available: https://developer.nvidia.com/blog/
advanced-api-performance-pipeline-state-objects/.

[10] L. Crawford, “Shader optimization and specialization,” Ph.D. disserta-
tion, University of Edinburgh, 2022.

114

https://www.youtube.com/watch?v=qae_skv1GsA
https://gpuopen.com/rgp/
https://gpuopen.com/rgp/
https://gpuopen.com/learn/rdna-performance-guide/
https://gpuopen.com/learn/rdna-performance-guide/
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-siggraph/3D-BOF-SIGGRAPH_Jul16.pdf
https://developer.nvidia.com/blog/advancing-gpu-driven-rendering-with-work-graphs-in-direct3d-12/
https://developer.nvidia.com/blog/advancing-gpu-driven-rendering-with-work-graphs-in-direct3d-12/
https://developer.nvidia.com/blog/advancing-gpu-driven-rendering-with-work-graphs-in-direct3d-12/
https://www.gdcvault.com/play/1026202/Optimizing-DX12-DXR-GPU-Workloads
https://www.gdcvault.com/play/1026202/Optimizing-DX12-DXR-GPU-Workloads
https://www.howtogeek.com/846514/what-is-shader-compilation-and-why-does-it-make-pc-games-stutter/
https://www.howtogeek.com/846514/what-is-shader-compilation-and-why-does-it-make-pc-games-stutter/
https://www.howtogeek.com/846514/what-is-shader-compilation-and-why-does-it-make-pc-games-stutter/
https://developer.nvidia.com/blog/advanced-api-performance-pipeline-state-objects/
https://developer.nvidia.com/blog/advanced-api-performance-pipeline-state-objects/

[11] L. Crawford and M. O’Boyle, “Specialization opportunities in graphical
workloads,” in 2019 28th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), IEEE, 2019, pp. 272–283.

[12] N. Evanson, Shader compilation and why it causes stuttering, explained,
en-US, Feb. 2023. [Online]. Available: https://www.techspot.com/
article/2629-shader-compilation-explained/.

[13] T. Fautre. “Ray tracing in vulkan.” (2024), [Online]. Available: https:
//github.com/GPSnoopy/RayTracingInVulkan.

[14] C. Gribble, J. Fisher, D. Eby, E. Quigley, and G. Ludwig, “Ray tracing
visualization toolkit,” in Proceedings of the ACM SIGGRAPH Sympo-
sium on Interactive 3D Graphics and Games, ser. I3D ’12, Costa Mesa,
California: Association for Computing Machinery, 2012, pp. 71–78, isbn:
9781450311946. doi: 10.1145/2159616.2159628. [Online]. Available:
https://doi.org/10.1145/2159616.2159628.

[15] H. Gruen, C. Benthin, and S. Woop, “Sub-triangle opacity masks for
faster ray tracing of transparent objects,” Proceedings of the ACM on
Computer Graphics and Interactive Techniques, vol. 3, no. 2, pp. 1–12,
2020.

[16] U. Haar and S. Aaltonen, Gpu-driven rendering pipelines, 2015. [Online].
Available: https://www.advances.realtimerendering.com/s2015/
aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf.

[17] K. Hans. “Vkd3d-proton.” en. (2020), [Online]. Available: https://
github.com/HansKristian-Work/vkd3d-proton.

[18] S. Hargreaves. “Reinventing the geometry pipeline: Mesh shaders in di-
rectx 12.” en. (Mar. 2020), [Online]. Available: https://www.youtube.
com/watch?v=CFXKTXtil34.

[19] Y. He, T. Foley, T. Hofstee, H. Long, and K. Fatahalian, “Shader com-
ponents: Modular and high performance shader development,” en, ACM
Transactions on Graphics, vol. 36, no. 4, pp. 1–11, Aug. 2017, issn: 0730-
0301, 1557-7368. doi: 10.1145/3072959.3073648. [Online]. Available:
https://dl.acm.org/doi/10.1145/3072959.3073648.

[20] J. L. Hintze and R. D. Nelson, “Violin plots: A box plot-density trace
synergism,” The American Statistician, vol. 52, no. 2, pp. 181–184, 1998.

[21] M. B. Jensen, J. R. Frisvad, and J. A. Bærentzen, “Performance com-
parison of meshlet generation strategies,” Journal of Computer Graphics
Techniques (JCGT), vol. 12, no. 2, pp. 1–27, Dec. 2023, issn: 2331-7418.
[Online]. Available: http://jcgt.org/published/0012/02/01/.

[22] B. Karlsson. “Renderdoc.” (2024), [Online]. Available: https://renderdoc.
org/.

115

https://www.techspot.com/article/2629-shader-compilation-explained/
https://www.techspot.com/article/2629-shader-compilation-explained/
https://github.com/GPSnoopy/RayTracingInVulkan
https://github.com/GPSnoopy/RayTracingInVulkan
https://doi.org/10.1145/2159616.2159628
https://doi.org/10.1145/2159616.2159628
https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://www.advances.realtimerendering.com/s2015/aaltonenhaar_siggraph2015_combined_final_footer_220dpi.pdf
https://github.com/HansKristian-Work/vkd3d-proton
https://github.com/HansKristian-Work/vkd3d-proton
https://www.youtube.com/watch?v=CFXKTXtil34
https://www.youtube.com/watch?v=CFXKTXtil34
https://doi.org/10.1145/3072959.3073648
https://dl.acm.org/doi/10.1145/3072959.3073648
http://jcgt.org/published/0012/02/01/
https://renderdoc.org/
https://renderdoc.org/

[23] P. Kelly, Y. O’Donnell, K. Elst, J. Cañada, and E. Hart, “Ray tracing
in fortnite,” in Aug. 2021, pp. 791–821, isbn: 978-1-4842-7184-1. doi:
10.1007/978-1-4842-7185-8_48.

[24] J. Kessenich, G. Sellers, and D. Shreiner, OpenGL Programming Guide:
The official guide to learning OpenGL, version 4.5 with SPIR-V. Addison-
Wesley Professional, 2016.

[25] C. Kubisch. “Introduction to turing mesh shaders.” en. (Sep. 2018), [On-
line]. Available: https://developer.nvidia.com/blog/introduction-
turing-mesh-shaders/.

[26] S. Laine, T. Karras, and T. Aila, “Megakernels considered harmful:
Wavefront path tracing on gpus,” in Proceedings of the 5th High-Performance
Graphics Conference, ser. HPG ’13, Anaheim, California: Association for
Computing Machinery, 2013, pp. 137–143, isbn: 9781450321358. doi:
10.1145/2492045.2492060. [Online]. Available: https://doi.org/10.
1145/2492045.2492060.

[27] S. M. Laine, T. O. Aila, and T. T. KARRAS, Relative encoding for a
block-based bounding volume hierarchy, en, Jul. 2018. [Online]. Available:
https://patents.google.com/patent/US10032289B2/en.

[28] H. Lesev and A. Penev, “A framework for visual dynamic analysis of ray
tracing algorithms,” Cybernetics and Information Technologies, vol. 14,
no. 2, pp. 38–49, 15 Jul. 2014. doi: https://doi.org/10.2478/cait-
2014-0018. [Online]. Available: https://content.sciendo.com/view/
journals/cait/14/2/article-p38.xml.

[29] L. Liu, W. Chang, F. Demoullin, et al., “Intersection prediction for ac-
celerated gpu ray tracing,” in MICRO-54: 54th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, ser. MICRO ’21, Virtual
Event, Greece: Association for Computing Machinery, 2021, pp. 709–
723, isbn: 9781450385572. doi: 10.1145/3466752.3480097. [Online].
Available: https://doi-org.login.ezproxy.library.ualberta.ca/
10.1145/3466752.3480097.

[30] LunarG, Inc. “Gfxreconstruct api capture and replay - vulkan.” (2024),
[Online]. Available: https://vulkan.lunarg.com/doc/sdk/1.3.280.
0/windows/capture_tools.html.

[31] D. Meister, J. Boksansky, M. Guthe, and J. Bittner, “On ray reordering
techniques for faster gpu ray tracing,” in Symposium on Interactive 3D
Graphics and Games, 2020, pp. 1–9.

[32] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner,
“A survey on bounding volume hierarchies for ray tracing,” in Computer
Graphics Forum, Wiley Online Library, vol. 40, 2021, pp. 683–712.

[33] Microsoft. “Pix on windows.” (2021), [Online]. Available: https : / /
devblogs.microsoft.com/pix/.

116

https://doi.org/10.1007/978-1-4842-7185-8_48
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://developer.nvidia.com/blog/introduction-turing-mesh-shaders/
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/2492045.2492060
https://patents.google.com/patent/US10032289B2/en
https://doi.org/https://doi.org/10.2478/cait-2014-0018
https://doi.org/https://doi.org/10.2478/cait-2014-0018
https://content.sciendo.com/view/journals/cait/14/2/article-p38.xml
https://content.sciendo.com/view/journals/cait/14/2/article-p38.xml
https://doi.org/10.1145/3466752.3480097
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3466752.3480097
https://doi-org.login.ezproxy.library.ualberta.ca/10.1145/3466752.3480097
https://vulkan.lunarg.com/doc/sdk/1.3.280.0/windows/capture_tools.html
https://vulkan.lunarg.com/doc/sdk/1.3.280.0/windows/capture_tools.html
https://devblogs.microsoft.com/pix/
https://devblogs.microsoft.com/pix/

[34] M. R. Nuno Subtil and I. Fedorov. “Tips and tricks: Vulkan dos and
don’ts.” en. (Jun. 2019), [Online]. Available: https : / / developer .

nvidia.com/blog/vulkan-dos-donts/.

[35] NVIDIA. “Accelerate applications on nvidia ampere.” en. (2018), [On-
line]. Available: https://developer.nvidia.com/nvidia-ampere.

[36] NVIDIA. “Nvidia turing.” en. (May 2021), [Online]. Available: https:
//www.nvidia.com/en-in/geforce/turing/.

[37] NVIDIA. “Improve shader performance and in-game frame rates with
shader execution reordering.” en. (2022), [Online]. Available: https:
//developer.nvidia.com/blog/improve-shader-performance-and-

in-game-frame-rates-with-shader-execution-reordering/.

[38] NVIDIA. “Nvidia nsight systems,” NVIDIA. (2022), [Online]. Available:
https://developer.nvidia.com/nsight-systems.

[39] NVIDIA. “Nvidia system management interface,” NVIDIA. (2022), [On-
line]. Available: https://developer.nvidia.com/nvidia-system-
management-interface.

[40] NVIDIA. “Shader execution reordering.” en. (2022), [Online]. Available:
https://developer.nvidia.com/sites/default/files/akamai/

gameworks/ser-whitepaper.pdf.

[41] NVIDIA. “Nvidia nsight graphics,” NVIDIA. (2024), [Online]. Available:
https://developer.nvidia.com/nsight-graphics.

[42] D. Pankratz, “Data-driven analysis and design of vulkan ray-tracing ap-
plications using automatic instrumentation,” 2021.

[43] D. Pankratz, T. Nowicki, A. Eltantawy, and J. N. Amaral, “Vulkan Vi-
sion: Ray Tracing Workload Characterization using Automatic Graphics
Instrumentation,” in Code Generation and Optimization (CGO), Virtual
Conference: ACM/IEEE, 2021, pp. 137–149. doi: 10.1109/CGO51591.
2021.9370320.

[44] R. Rangan, M. W. Stephenson, A. Ukarande, S. Murthy, V. Agarwal,
and M. Blackstein, “Zeroploit: Exploiting zero valued operands in in-
teractive gaming applications,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 17, no. 3, pp. 1–26, 2020.

[45] T. Schiesser. “Ray tracing & dlss with the geforce rtx 3080.” en. (Oct.
2020), [Online]. Available: https : / / www . techspot . com / article /
2109-nvidia-rtx-3080-ray-tracing-dlss/.

[46] M. Schott, Vulkan multi-threading, en, Apr. 2016. [Online]. Available:
https://developer.nvidia.com/sites/default/files/akamai/

gameworks/blog/munich/mschott_vulkan_multi_threading.pdf.

[47] G. Sellers and J. Kessenich, Vulkan programming guide: The official guide
to learning vulkan. Addison-Wesley Professional, 2016.

117

https://developer.nvidia.com/blog/vulkan-dos-donts/
https://developer.nvidia.com/blog/vulkan-dos-donts/
https://developer.nvidia.com/nvidia-ampere
https://www.nvidia.com/en-in/geforce/turing/
https://www.nvidia.com/en-in/geforce/turing/
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/blog/improve-shader-performance-and-in-game-frame-rates-with-shader-execution-reordering/
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/ser-whitepaper.pdf
https://developer.nvidia.com/nsight-graphics
https://doi.org/10.1109/CGO51591.2021.9370320
https://doi.org/10.1109/CGO51591.2021.9370320
https://www.techspot.com/article/2109-nvidia-rtx-3080-ray-tracing-dlss/
https://www.techspot.com/article/2109-nvidia-rtx-3080-ray-tracing-dlss/
https://developer.nvidia.com/sites/default/files/akamai/gameworks/blog/munich/mschott_vulkan_multi_threading.pdf
https://developer.nvidia.com/sites/default/files/akamai/gameworks/blog/munich/mschott_vulkan_multi_threading.pdf

[48] J. Shepard. “Visualizing gl nv shader sm builtins.” en. (2020), [Online].
Available: https://wunkolo.github.io/post/2020/02/visualizing-
gl_nv_shader_sm_builtins/.

[49] P. Shirley, Ray Tracing in One Weekend, S. Hollasch and T. David
Black, Eds. 2020. [Online]. Available: https://raytracing.github.
io/books/RayTracingInOneWeekend.html.

[50] G. Simons, M. Ament, S. Herholz, C. Dachsbacher, M. Eisemann, and
E. Eisemann, “An Interactive Information Visualization Approach to
Physically-Based Rendering,” in Conference on Vision, Modeling & Vi-
sualization, M. Hullin, M. Stamminger, and T. Weinkauf, Eds., Bayreuth,
Germany: The Eurographics Association, Oct. 2016, pp. 145–152, isbn:
978-3-03868-025-3. doi: 10.2312/vmv.20161356.

[51] G. Simons, S. Herholz, V. Petitjean, et al., “Applying visual analytics to
physically based rendering,” in Computer Graphics Forum, Wiley Online
Library, vol. 38, 2019, pp. 197–208. doi: 10.1111/cgf.13452.

[52] P. Slusallek, P. Shirley, W. Mark, G. Stoll, and I. Wald, “Introduction
to real-time ray tracing,” in ACM SIGGRAPH 2005 Courses, ser. SIG-
GRAPH ’05, Los Angeles, California: Association for Computing Ma-
chinery, 2005, 1–es, isbn: 9781450378338. doi: 10 . 1145 / 1198555 .

1198740. [Online]. Available: https://doi.org/10.1145/1198555.
1198740.

[53] The Khronos Group, Inc. “Vulkan sdk, tools and drivers are ray tracing
ready.” (Feb. 2020), [Online]. Available: https://www.khronos.org/
news/press/vulkan-sdk-tools-and-drivers-are-ray-tracing-

ready.

[54] The Khronos Group, Inc. “Descriptor indexing.” (2024), [Online]. Avail-
able: https://docs.vulkan.org/samples/latest/samples/extensions/
descriptor_indexing/README.html.

[55] The Khronos Group, Inc. “Memory allocation.” (2024), [Online]. Avail-
able: https://docs.vulkan.org/guide/latest/memory_allocation.
html.

[56] The Khronos Group, Inc. “Push constants.” (2024), [Online]. Available:
https://docs.vulkan.org/guide/latest/push_constants.html.

[57] The Khronos Group, Inc. “Timestamp queries.” (2024), [Online]. Avail-
able: https://docs.vulkan.org/samples/latest/samples/api/
timestamp_queries/README.html.

[58] The Khronos Group, Inc. “Vk ext descriptor buffer.” (2024), [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-
extensions/man/html/VK_EXT_descriptor_buffer.html.

118

https://wunkolo.github.io/post/2020/02/visualizing-gl_nv_shader_sm_builtins/
https://wunkolo.github.io/post/2020/02/visualizing-gl_nv_shader_sm_builtins/
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://raytracing.github.io/books/RayTracingInOneWeekend.html
https://doi.org/10.2312/vmv.20161356
https://doi.org/10.1111/cgf.13452
https://doi.org/10.1145/1198555.1198740
https://doi.org/10.1145/1198555.1198740
https://doi.org/10.1145/1198555.1198740
https://doi.org/10.1145/1198555.1198740
https://www.khronos.org/news/press/vulkan-sdk-tools-and-drivers-are-ray-tracing-ready
https://www.khronos.org/news/press/vulkan-sdk-tools-and-drivers-are-ray-tracing-ready
https://www.khronos.org/news/press/vulkan-sdk-tools-and-drivers-are-ray-tracing-ready
https://docs.vulkan.org/samples/latest/samples/extensions/descriptor_indexing/README.html
https://docs.vulkan.org/samples/latest/samples/extensions/descriptor_indexing/README.html
https://docs.vulkan.org/guide/latest/memory_allocation.html
https://docs.vulkan.org/guide/latest/memory_allocation.html
https://docs.vulkan.org/guide/latest/push_constants.html
https://docs.vulkan.org/samples/latest/samples/api/timestamp_queries/README.html
https://docs.vulkan.org/samples/latest/samples/api/timestamp_queries/README.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_descriptor_buffer.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_descriptor_buffer.html

[59] The Khronos Group, Inc. “Vk ext descriptor indexing.” (2024), [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-
extensions/man/html/VK_EXT_descriptor_indexing.html.

[60] The Khronos Group, Inc. “Vk ext inline uniform block.” (2024), [On-
line]. Available: https://docs.vulkan.org/guide/latest/extensions/
VK_EXT_inline_uniform_block.html.

[61] The Khronos Group, Inc. “Vk khr push descriptor.” (2024), [Online].
Available: https://registry.khronos.org/vulkan/specs/1.3-
extensions/man/html/VK_KHR_push_descriptor.html.

[62] The Khronos Group, Inc. “Vulkan specification.” (2024), [Online]. Avail-
able: https://registry.khronos.org/vulkan/specs/1.3-extensions/
html/vkspec.html.

[63] The Khronos Group, Inc. “Vulkan validation layers.” (2024), [Online].
Available: https://github.com/KhronosGroup/Vulkan-ValidationLayers.

[64] Unity Technologies. “Performance profiling tips for game developers.”
en. (), [Online]. Available: https://unity.com/how-to/best-practices-
for-profiling-game-performance.

[65] D. G. Van Antwerpen, “Unbiased physically based rendering on the
gpu,” 2011. [Online]. Available: http://resolver.tudelft.nl/uuid:
4a5be464-dc52-4bd0-9ede-faefdaff8be6.

[66] D. Voorhies, “I.8 - space-filling curves and a measure of coherence,” in
Graphics Gems II, J. ARVO, Ed., San Diego: Morgan Kaufmann, 1991,
pp. 26–30, isbn: 978-0-08-050754-5. doi: https://doi.org/10.1016/
B978-0-08-050754-5.50018-9. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B9780080507545500189.

[67] J. Zink, M. Pettineo, and J. Hoxley, Practical rendering and computation
with Direct3D 11. AK Peters/CRC Press, 2016.

119

https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_descriptor_indexing.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_EXT_descriptor_indexing.html
https://docs.vulkan.org/guide/latest/extensions/VK_EXT_inline_uniform_block.html
https://docs.vulkan.org/guide/latest/extensions/VK_EXT_inline_uniform_block.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_push_descriptor.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VK_KHR_push_descriptor.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://registry.khronos.org/vulkan/specs/1.3-extensions/html/vkspec.html
https://github.com/KhronosGroup/Vulkan-ValidationLayers
https://unity.com/how-to/best-practices-for-profiling-game-performance
https://unity.com/how-to/best-practices-for-profiling-game-performance
http://resolver.tudelft.nl/uuid:4a5be464-dc52-4bd0-9ede-faefdaff8be6
http://resolver.tudelft.nl/uuid:4a5be464-dc52-4bd0-9ede-faefdaff8be6
https://doi.org/https://doi.org/10.1016/B978-0-08-050754-5.50018-9
https://doi.org/https://doi.org/10.1016/B978-0-08-050754-5.50018-9
https://www.sciencedirect.com/science/article/pii/B9780080507545500189
https://www.sciencedirect.com/science/article/pii/B9780080507545500189

	Introduction
	Background
	GPU Execution Model
	Vulkan
	Graphics Pipeline
	Ray-tracing Pipeline
	Ray-Tracing Performance
	Vulkan Vision
	RayScope

	ReRay
	Data-Capture Mechanism
	Ray Data Collection
	SIMT Shader Efficiency and Warp Data Collection

	ReRay Toolchain
	Estimating the Effects of Warp Repacking on SIMT Efficiency
	Visualizing Warp Execution Order

	Warp Repacking Methods
	Evaluation of Warp Repacking Methods
	Experimental Setup
	Analysis of SIMT Efficiency
	Analysis of GPU Frame Times

	Efficiency and Performance Insights via Heat Maps
	Related Work
	Limitations and Future Work
	Benchmark Selection and Availability
	Unnecessary Intersection Test Classification
	Hardware Warp Repacking Support
	Shader Execution Reordering
	Shader Execution Reordering Preliminary Performance Study

	Conclusion

	Shader Resource Analysis and Optimization
	Device Memory Types and Resources in Vulkan
	Shader Resource Binding
	Related Work
	Shader Resource Usage Profiling Layer
	Descriptor Set Usage Tracking
	Uniform Buffer Value Profiling

	Benefits and Evaluation
	Descriptor Set Usage Analysis
	Uniform Buffer Value Analysis

	Technological Advancements and Considerations
	Vulkan Extensions to Resource Descriptors
	Automatic Uniform Value Specialization
	Other Pipeline Types
	GPU-Driven Rendering

	Conclusion

	Conclusion
	References

