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This dissertation introduces a new parallel architecture for implementing
production systems. Key innovations include the elimination of global synchro-
nization before each production firing and the overlapping between the matching
and the select-act phases of Production Systems. These innovations are made
possible by the use modern associative memory devices as control supporting
structures. Allowing a production to fire before the matching of previous pro-
duction firings is complete proved to be very efficient. The results produced by

the architecture are proven to be correct according to the serializability criterion.

The development of a new benchmark addresses the lack of good benchmarks
for the study of novel production system architectures. This benchmark allows
for variations in the number of productions, database size, size of local data

clusters, and ratio between local and global data.

A study of the production partition problem resulted in four different algo-
rithms. These algorithms take into consideration processor workload balance,

production interdependency, replication of data in memory, and reduction of

vi



communication traffic. Experimental studies with a comprehensive event driven
simulator indicate that the use of dynamic information from previous runs pro-

duces more successful algorithms.

A comparative study with a parallel architecture that does global synchro-
nization before every production firing shows that both improvements, namely
the elimination of global synchronization and the overlapping between matching,
selecting and firing, are very effective in improving the performance of produc-
tion systems. Further measurements indicate that only a modest amount of
associative memory is needed for this architecture and that the use of a bus as

an interconnection network does not constitute a bottleneck.

Finally, a multiple functional unit Rete Network is considered within each
processor of the architecture. New synchronization problems appear when mul-
tiple tokens are concurrently propagated through the Rete Network. Two syn-
chronizing buffers assure correct operation of the architecture. Performance
evaluations through system simulation and through analytical modeling indi-
cate that using a modest number of functional units in the Rete Network is cost
effective, but the architecture clearly yields diminishing returns when tens of

functional units are used.
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Chapter 1

Introduction

“.. I believe that at the end of the century the use of
words and general educated opinion will have altered
so much that one will be able to speak of machines

thinking without expecting to be contradicted.”

(Alan Turing, 1950) [87] as quoted in [34].

When Alan Turing proposed a general purpose machine, the word computer
was typically used to designate a person, usually a number crunching clerk,
whose function was to perform computations. Although Turing envisioned the
use of a general purpose machine to free clerks from their tedious tasks, his long
term goal and motivation was the construction of a thinking machine. After
many years of theoretical and practical work, including important contributions
to the construction of code-breaking machines that were key in the victory of the
allied forces in World War II, Alan Turing abandoned the field of computing

machine construction, predicting that by the turn of the century humankind



would have constructed a machine that could be regarded as a thinker [87].

Much has changed since the days when Godel showed the incompleteness
of arithmetic and Alan Turing and Alonzo Church were pondering Hilbert’s
Entscheidungs-problem. Hilbert had asked “Can mathematics be complete, con-
sistent and decidable?” [34, 35]. While Church used lambda-calculus to tackle
the problem, Turing conceived of a theoretical device, now famous as a Tur-
ing machine. Speculating about the numerous possibilities brought about by
such machines, Turing posed the question “Can machines think?” This very
question widened and rekindled old philosophical indagations about the mean-
ings of “thinking” and of “being intelligent” [12, 66]. Turing’s question is still
unanswered and it remains a distant goal of humankind either to construct
a thinking machine or to prove that such a machine cannot be constructed.
Computer scientists and knowledge experts are still developing techniques that
could eventually lead to a thinking machine. Meanwhile, philosophers continue

to ponder the possibility of deciding whether such machines are indeed thinking.

As Turing indicated, the meaning of words change over time and even more
so in periods of fast technological advances. For instance, the ready availability
of computers in the second half of this century has influenced models of thought
[9]. The transformation of Turing’s dream into a scientific discipline required
a narrow view of intelligence [76]. Although still quite far from the goal of
constructing a thinking machine, the study of Artificial Intelligence (AI) has
progressed in two directions: “Pure” Al is concerned with knowledge represen-
tation and with the construction of machines that mimic human intelligence;
“Applied” Al tries to construct artificial systems that perform tasks that are
assumed to require human intelligence, but does not concern itself with the ways

these tasks are accomplished [47].



Studies in applied AI have branched into many areas of research such as
knowledge systems [31], genetic and evolutionary algorithms [24, 25, 36], fuzzy
systems [94], neural networks [33], interactive agents [57, 68], and asynchronous

organization [17], just to name some.

In the area of knowledge representation and processing, Production Sys-
tems are predominant structures. In such systems, knowledge is represented in
the form of statements about a given knowledge domain in which the system
operates. The collection of all statements form a knowledge base. A set of pro-
ductions, also called rules, specify changes to this knowledge base according to
its current state. The productions to be executed are selected by the inference
engine and their actions alter the knowledge base accordingly. This disserta-
tion addresses the problem of building a computer architecture that implements

Production Systems.

Early experiments with Production Systems followed the pure branch of
AT: the interest was centered on reproducing “simple” human activities in a
computer to understand how these activities are performed in the human brain.
Scientists chose to investigate activities that are easily performed by a four-
year-old child, such as building a pile of blocks. Early results were disastrous
because the scientists had failed to “teach” their machine basic notions of space
and gravitation law. As a result, the machine would start building the pile by
trying to place the top block first [65]. These early experiments led scientists to
understand that a great amount of common-sense knowledge is involved even
in the most simple tasks. It was also observed that knowledge based systems

would be much easier to build in restricted knowledge domains.

This underestimation of the importance and complexity of common-sense

knowledge reflects the fact that people tend to regard as simple and trivial knowl-



edge that has been acquired a long time in the past [57]. This phenomenon is
observed at the individual level and at the species level. For instance, a con-
cept that seems difficult for a freshman is regarded as elementary by the same
student in his senior year. At the species level, in the end of the twentieth cen-
tury concepts such as quantum mechanics, fractals, quarks and black holes are
understood only by a selected group of scientists. On the other hand, children
understand currently accepted concepts such as the shape of the Earth and its
movement, while the best scientists of the fifteenth century rejected these very

ideas.

The initial failure with seemingly easy tasks motivated scientists to look for
activities confined to a controlled environment where “common-sense knowl-
edge” would not play such an important role as in a child’s playground. This
search pointed to the activities of experts, such as medical diagnosis, chemical
analysis, computer system configuration, and airline routing planning. To the
surprise of some, many expert activities were very suitable to be codified into
a small set of rules. Such realizations lead to the birth of the exzpert system or
knowledge based system area of research. The developments in this area trans-
formed what started as pure Al study into an applied one: today the interest is
centered on the extraction of knowledge from an expert to reproduce the task

in a computer.

When a knowledge based system is used as an expert system that manip-
ulates a number of “rules,” it is also called a rule-based system. Production
systems are commonly used to implement rule-based systems. When the infer-
ence engine of a production system is used to derive new knowledge from a set

of basic facts or axioms, the system is called a theorem proving system.

A production system inference engine is said to use forward chaining or



forward inference when the system starts in an initial state and executes enabled
productions to move to the final state. A backward chaining system starts at the
goal state and tries to find the possible conditions that resulted in that state.
Backward systems are often used for theorem proving while forward systems are
common in expert systems [67]. In this research we study production systems

with forward inference engines.

The investigation of new computer architectures for Production Systems is
motivated by the unique characteristics and resource needs of such systems.
First, the execution of Production Systems requires an impressive amount of
searching. Second, most of the data manipulated by Processing Systems is
symbolic. Because of these characteristics, execution of Production Systems in
general purpose computers have failed to deliver the speed required by many

industrial and commercial activities.

Chapter 2 presents a generic architecture for Production System that em-
phasizes the matching engine. Most of the previous research in the area has
concentrated on the matching phase of the system. The presentation of the
Rete Network is followed by a discussion of this early work, as well as an analy-
sis of current trends of research. A survey of some previous experimental work
is given to show that, in production systems, data is accessed much more often

than it is modified.

The presentation of a concurrent production system architecture in Chapter
3 is preceded by a number of important definitions. This novel architecture
consists of a small number of powerful processors that implement a parallel
production system without global synchronization. After providing a detailed
description of the architecture and processing model, we present a proof that the

proposed architecture produces correct results under the serializability criterion.



The absence of a comprehensive set of benchmarking tools is a well-known
weakness of production system research. Chapter 4 presents a new benchmark-
ing facility that is a modification of the Traveling Salesperson Problem. The
great advantage of this benchmark is that it allows for variation in the number
of productions, database size, ratio between local and global data, and size of
local data clusters. Chapter 4 also describes and presents static measures for

other performance evaluation benchmarks.

Chapter 5 studies the problem of partitioning productions among processors
in a parallel machine. All the partition algorithms presented have a common
set of goals: minimizing the duplication of working memory elements, reducing
traffic in the bus, and balancing the amount of processing in each processor. Our
experiments indicate that dynamic algorithms that consider the firing frequency
of each production perform better than algorithms based exclusively on static

information.

In Chapter 6, system simulation is used to measure performance. The most
salient innovations in the new architecture are the elimination of global synchro-
nization to resolve the conflict set and the overlapping between the matching
and the select-act phases of production systems. The performance of the new
architecture is compared to that of a synchronizing architecture that does not
allow overlapping between production system phases. Other measures presented
in this chapter include the following: measures for effectiveness of associative

memories, estimates for memory size, and level of activity in the bus.

The evaluation of the architecture through system simulation in Chapter 6
indicated that the bottleneck in the architecture execution is in the processing
of tokens in the f-nodes of the Rete Network. In Chapter 7 we extend the

architecture by allowing the use of a multiple functional $-unit Rete Network



within each processor. Performance measurements indicate that considerable

speedup is obtained with a modest number of additional functional units.

The ability to predict the benefits of a new device without constructing or
simulating it, facilitates the process of designing a new computer architecture.
Chapter 8 develops an analytical model based on queueing theory to predict
the amount of performance improvement obtained in a Rete Network with m

functional units.

The introduction of this novel architecture delivers performance improve-
ments beyond what was thought possible just a few years ago. We hope that
these results can inspire new research which will eventually lead to the construc-
tion of faster production system machines. A broader use of expert systems in
commerce, industry, and services would release human experts from tedious

activities and result in more efficient, safe, and cost-effective processes.

The slow advance since Turing’s days indicates that progress towards the
construction of a thinking machine might be counted in centuries rather than in
years as Turing had anticipated. Moreover, because expert systems are brittle
and only operate in a narrow area of structured knowledge, they have a very
limited capability for knowledge representation, [32, 65]. Considered as a pure
AT technique and viewed against the backdrop of the human enterprise to con-
struct a thinking machine, production systems are just a “sliver” that might be

forgotten in some fringe of history.

However, if production systems are viewed as an applied Al technique, they
already have a successful history. The integration of databases with expert
systems creates an ever increasing demand for faster machines that can execute
production systems with large knowledge bases [31, 84]. Production Systems

have also been integrated with other Al technologies to deliver adaptive support



systems [18]. Systems that for along time seemed a mere academic curiosity such
as medical diagnosers [10] are now delivering advisory services and reducing the
cost of health care [14]. Expert systems have been replacing expensively trained
human experts in many areas for more than fifteen years: a 1984 inventory
reported over one-hundred thirty systems built [56] while a 1992 article list

more than eighty vendors of tools to help design expert systems [84].



Chapter 2

Background

Considerable efforts have been made towards speeding up production system
machines in the past twenty years [6, 52]. Originally, production systems were
realized as interpreted language programs for sequential machines. The high
cost of matching motivated the development of concurrent matching systems
and, subsequently, systems that also allowed multiple productions to be fired
at the same time. In a separate line of research, modern compile optimization
techniques were developed to run production system programs more efficiently

on general purpose sequential machines.

These efforts have led to great advances in the understanding of the issues
involved in the construction of faster production system machines, but only lim-
ited improvement in actual performance. Also, there have been few attempts to
integrate progress made in different areas: the use of the restrictive commutativ-
ity criterion for correctness and the notion of a match-select-act “cycle” forced
even advanced architectures to perform synchronization before each production

firing; compile optimization techniques were mostly restricted to sequential ma-
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chines; many of the concurrent matching engines were constructed with a large
number of small processors and were not combined with parallel firing tech-
niques. Moreover, parallel processing researchers failed to take advantage of the
fact that, in typical production systems, reading operations are performed much

more often than writing ones.

2.1 A Generic Production System Architecture

Most of the research towards speeding up expert systems uses the architec-
tural model represented in Figure 2.1. The memory of the system is divided
into a set of productions or rules stored in the production memory, and a set of
facts stored in the working memory. The working memory gets its name from
the fact that it is used as a “scratch” memory where the system writes and
overwrites partial results. Fach fact of the knowledge domain is stored in this

memory as a unit called a Working Memory Element (WME).

A production stored in the production memory consists of a set of condi-
tions and a set of actions. In a forward chaining system, the productions are
usually syntactically expressed with the conditions positioned to the left of an
arrow. Therefore, the conditions are called the Left Hand Side (LHS) of the
production. Similarly, the assertions or actions, positioned to the right of the
arrow, are called the Right Hand Side (RHS) of the production. Some research
groups have adopted a nomenclature that is adequate for both forward and
backward chaining systems [16]. They label the conditions the antecedents of

the production and the assertions the consequents of the production.

A production in the production memory is said to be fireable if all its non-

negated conditions are satisfied and none of its negated conditions is satisfied.
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Figure 2.1: Generic Production System Architecture

Also, if variables appear in more than one condition element, all instantiations of
the same variable must be bound to the same value. The match engine compares
(or matches) all conditions of all productions in the production memory against
all facts in the working memory, while keeping track of variable bindings to
check which productions are fireable. The set of all fireable productions at the
end of the match processing is called the conflict set. The conflict set resolver
decides which production is selected to fire in the current cycle. Criteria used to

select the winning production include: recency, specificity, priority, and context.
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After a production is selected to fire, the act phase of the system produces
changes in the memory, creating or deleting WMEs. Most production systems
generate changes that affect only the Working Memory, altering the facts in the
knowledge base. Some systems also generate new productions or eliminate old
ones. We suggest that such systems be called adaptive expert systems [39] or
learning expert systems, because they have the capability of adapting to changes

in the environment.

2.2 The Matching Engine

The amount of work performed by the matching engine is a combinatorial
function of the number of productions in the system and the number of facts in
the knowledge base. However, two characteristics of production systems allow an
efficient solution to this problem: distinct productions have identical condition
elements and pieces of knowledge stored in the working memory of a production
system change slowly over time. The slow change in the knowledge base implies
that if the results of the matching in one cycle are saved for the next cycle, a
substantial amount of work can be eliminated. The existence of productions
with identical antecedents allows the construction of an algorithm in which the

results of matching shared conditions are used by all productions that need it.

The best-known state saving algorithm is the Rete Network created by Forgy
[20]. Forgy reports that Rete is inspired by the Pandemonium machine of Self-
ridge [74]. Pandemonium was one of the earliest learning machines and consisted
of multiple layers of demons. A demon in a given level supervised an inferior
level of demons. When it observed meaningful patterns, it sent messages to a

superior level. The top-level demons performed more telling actions.
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The Rete Network is a data-flow graph that encodes the antecedents of pro-
ductions. The inputs to the Rete Network are changes to the working memory
generated in the act phase of one cycle, and the outputs of the network are
changes to the conflict set used to choose a production to be fired in the next
cycle. The following discussion of Rete Networks is presented here after Gupta

and Forgy [27, 29], Lee and Schor [53], and Miranker [58].

root

constant-
test

\ . nodes

fly = color = swim= neck = legs =
false? black+white? true? long? long?

o-memories

f-memories

L Terminal

nodes

Pl P2
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(swim <b> true) (neck <b> long)
-—> (legs <b> long)

——>
(type <b> Ostriches))

(type <b> Penguin))

Figure 2.2: Section of a Rete Network

Figure 2.2 presents a Rete Network with the set of production antecedents

encoded in it. The network is formed by four different kind of nodes: constant-
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test nodes, memory nodes, two-input nodes and terminal nodes. The constant-
test nodes appear in the first layer of the network. They store attributes that
have constants in the value field and perform intra-condition tests to determine
if a working memory element satisfies these constant fields of the condition
element. In the original Rete Network, the result of this test was stored in a
local a-memory [29]. Some authors claim that the a-memories can be eliminated
because the constant test takes a negligible amount of time [53]. In this case

the one-input nodes are called a-nodes and are memoryless.

Two-input nodes, also called and-nodes, join-nodes, or F-nodes, perform
the matching between distinct condition elements. A F-node has one memory
associated with each input. A token arriving in a f-node come either from
another -node or from an a-node. Whenever a new token arrives in one of a
node’s inputs, it is compared with all tokens present in the other side memory.
Good hashing techniques are necessary to speed up the matching in the two-

input nodes. Otherwise, it might be necessary to process long lists of tokens.

[27].

Performance evaluation, modifications, and improvements of Rete are found
in the works of Gupta [27, 29], Lee & Schor [53], Stolfo [80], Kelly and Seviora
[42, 43], Gaudiot and Sohn [23, 78], and Barachini & Theuretzbacher [7]. Mi-
ranker proposed a useful modification to the traditional Rete Network in which
intermediate memory nodes are eliminated. This modified Rete is called Treat

[58].

A study by Gupta [27] motivated extensive research on concurrent matching.
Gaudiot and Sohn [23, 78] proposed a data-driven machine with parallel match-
ing. They advocated the suitability of data-flow machines for the processing of

production systems. Kelly and Seviora [42, 43] proposed a multiprocessor archi-
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tecture that supports comparison level partitioning and consists of a matching
multiprocessor attached to a host computer. Rowe et al. [8, 69] developed
METE/PIPER, an extension of Rete to explore intra-production parallelism in
match processing and conflict resolution. Other noteworthy parallel implemen-

tations of Rete appear in [3, 30, 39, 52, 80, 81, 73].

2.3 Current Research and Trends

Parallel firing systems is a current research topic that The ability to fire
productions in parallel introduces some new issues such as the identification of
dependencies among productions. Kuo and Moldovan [50, 51] Schmolze [71],
Kuo et al. [49], and Xu and Hwang [92] have worked in this area and suggested
solutions to ensure the correctness of a parallel firing engine operation. The
partitioning of production among processors also becomes an important issue
in parallel firing systems. Oflazer [64], and Xu and Hwang [92] presented some
interesting results in this area. In most of the research geared towards parallel
firing of productions, it is assumed that there is a synchronization point before
each production fires, that is, no production firing takes place until all matching

activities are completed.

There is no agreement on a good criterion to establish correctness of a par-
allel production system. Some researchers claim that serializability imposes
too heavy a burden on the programmer, and suggest the use of a commuta-
tivity criterion that restricts the available parallelism even more [38]. Other
researchers suggest that the serializability criterion is already too restrictive
and argue the use of control structures tailored to each problem [62, 63]. A

very recent work by Schmolze proposes the concept of a convergent production
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set in which serializability provides complete control of the final result. In such
a system serializability is certainly enough to guarantee correctness [72]. An
study of serializability as a correctness criterion based on a transaction model
for parallel rule firing can be found in Srivastava et al. [79]. There is yet a third
school of thought that advocates a meta-rule mechanism to allow the designer

of the system to specify explicitly the control structure [83].

The elimination of synchronization in parallel production systems follows a
trend of research in other areas of systems architecture, such as the develop-
ment of A-Teams and scale-efficient organizations [17, 60, 85]. We anticipate
that some results from these areas might be useful in improving execution of
production systems. In this research we wager that the serializability criterion

1S a winner.

Acharya and Tambe have obtained impressive speed increases in the match-
ing phase of production systems by means of storing collections of WM Es instead
of single WMEs in the Rete Network [2]. Gordin and Pasik explored the use of
set-oriented constructs as a means to integrate database management systems
(DBMS) and rule-based systems [26]. Wu and Browne proposed the use of set-
oriented constructions in an object-based model for parallel rule-based systems,
their goal is to increase concurrency [91]. An expansion on the use of collections
to construct a parallel firing, asynchronous, collection-oriented system is still to

be further studied. It is certainly a promising idea.

Another important area of research is in Production Systems languages and
design aid tools. Murthy [60] correctly points out that for some problems, it is
possible to gather a few hundred heuristics and put together a production system
in a few weeks. However, maintaining these systems during their lifetimes might

be very expensive. One example is the R1 system at DEC that at one time
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required a few hundred people for its maintenance. Good software engineering
techniques need to be adopted in the construction of production systems to

avoid such situations.

2.4 Read-Write Ratio in Production Systems

This section analyzes some published research to determine the expected
read-write ratio in production systems. We are interested in learning the number
of WMEs read for each WME modification performed. This ratio is important in
evaluating the possibility of using a broadcasting network as an interconnection

mechanism in a multiprocessor production system machine.

In a comparative study between Rete and Treat, Nayak et al. [61] measures
the number of productions, the number of condition elements per production,
the number of PS cycles executed, and the number of addition and deletion of
WMEs reproduced on Table 2.1. The benchmarks in this table are the Eight
Puzzle (EP), the Missionaries and Cannibals (M&C), R1 Soar, and Neomycin-
Soar (NM). EP and M&C are toy programs, R1-Soar is an implementation of a
subset of the system R1 that configures computer systems for DEC, implemented
in Soar, and Neomycin-Soar is an implementation of a portion of Neomycin in
Soar. Neomycin diagnoses infectious diseases like meningitis. The authors call
attention to the fact that in a Soar program there is an average of 9 condition

elements per production, compared with an average of 3 in OPS5H programs.

We examine these results to estimate how many reads are there for each
write. In other words, how many antecedents are tested for each action taken
on the consequents of a production. Therefore we define the Read-Write Ratio

R,.,, as follows:
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Benchmark | # Prod. gﬁi[ # Cycles | Add. | Del.
EP 71 8.8 796 1,715 | 1,313
M&C 78 8.9 1,617 6,609 | 5,620
R1-Soar 334 9.9 3,732 7,810 | 6,458
NM 419 8.8 2,173 4,554 | 4,336

Table 2.1: Measures by Nayak et al.

_ ftreads # WM FEs probed
 Hwrites  #FWDMEsadded + # W MEs deleted

R (2.1)

Table 2.2 shows numbers computed based on the results published by Nayak
et al. The total number of writes in the first column is just the sum of the
number of WMEs written and the number of WMEs read. If changes to the
Working Memory use modify operations (like in OPS5) the number of writes
tend to be smaller. If no modify operation is available, a modification needs to
be implemented by a delete followed by an add operation. The total number
of Condition FElements in the program was computed just by multiplying the
average number of CEs per production by the number of productions. We
assume that the conflict set is generated from scratch every time, therefore the
total number of reads is equal the total number of CEs multiplied by the number
of cycles that takes for the system to reach a state with the solution. This
implies a very optimistic scenario where each WME is read only once in each
cycle. The truly worst case has a complexity that is exponential in the number of
antecedents in a production. The ratio R,,, varies between 100 and 1000, and is
bigger for more “real life” problems. This number would be significantly smaller
if the entire conflict set would not be generated before firing each production,

or if some form of state saving is used. Even with such improvements, reads are
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expected to significantly outnumber writes.

Benchmark | Total # Writes | Total # CEs | Total # Reads | R,
EP 3,028 625 497,500 164
M&C 12,229 694 1,122,198 92
R1-Soar 14,268 3,307 12,341,724 864
NM 8,890 3,687 8,011,851 901

Table 2.2: Read-Write ratio (R, ) estimates based on the study by Nayak
et al.

Perhaps the most important measurement study on production systems to
date was published as the Ph.D. dissertation of Anoop Gupta [28]. He mea-
sured six production systems: R1, a program for configuring VAX computer
systems; XSEL, a program which acts as a sales assistant for VAX computer
systems; PTRANS, a program for factory management; HAUNT, an adventure
game program; DAA, a program for VLSI design; and SOAR, an experimental
problem solving architecture implemented as a production system. Gupta calls
“surface measurement” the measures that one can do using exclusively the text
of a production system without concern with the initial data base. Table 2.3
presents some of the surface measurements done by Gupta, as well as the R,,,

computed by us.

Gupta presents the average number of actions and conditions per produc-
tion, we compute the R, based on these numbers. Once more we assume that
a conflict set is generated from scratch at every cycle, therefore the number of
reads is given by the product of the number of productions and the average
number of CEs per production. This measure is expected to be smaller in a
parallel production system due to the partial decoupling among group of pro-

ductions assigned to distinct processors. Also if the conflict set is not generated



Benchmark | # Prod gﬁi[ Jéicotd # types ’gg VC%S Ry
R1 1,932 | 5.58 | 2.90 31 4.73 | 1.61 | 3,717
XSEL 1,443 | 3.84 | 2.41 36 3.64 | 0.96 | 2,299
PTRANS 1,016 | 3.12 | 3.64 81 4.11 | 2.14 | 871
HAUNT 834 2.41 | 2.51 23 2.08 | 0.24 | 801
DAA 131 3.91 | 2.86 20 3.80 | 2.69 | 179
SOAR 103 5.80 | 1.83 12 3.78 | 1.70 | 326

Table 2.3: Surface measurements by Gupta and the corresponding R,

estimates.
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at every cycle, or if some state saving algorithm is used, the number of reads will

be smaller. Gupta measures another interesting number, that is, the number of

WME types in each benchmark (showed in Table 2.3 as number of types). This

gives us an idea of the number of different “types” or classes of productions in

the expert system and indicates the potential to partition the productions into

independent sets.

The analysis of Nayak et al. and Gupta’s experimental work confirms that

the number of times that the knowledge base is probed is much higher than

the number of times that it is modified. Such a situation suggests that a par-

allel architecture based on a broadcasting network with concurrent reading and

exclusive writing operations might be an efficient design.



Chapter 3

Architectural Model

“Fverything should be made as simple as possible,

but not simpler.”

(Albert Einsten) as quoted in [57].

The architectural model proposed in this research consists of a moderate
number of processors interconnected through a broadcasting network. The set of
productions is partitioned among these processors with each production assigned
to exactly one processor. A processor reads data only from its local memory,
i.e., no read operations are performed over the network. Due to the absence of
network reads and the low frequency of network writes, a simple bus should be
adequate as the broadcasting system. This conclusion is supported by detailed
experimental results showing the bus not to be a bottleneck even for a twenty
processor system. A number of associative memories implement a system of
lookaside tables to allow parallel operations in each processor. This scheme does

not allow parallel production firing within a processor, but allows the match-

21



22

select-act phases of a PS to overlap. A snooping directory isolates the activities
in remote processors from the activities in a local processor, and interrupts
a local operation only when pieces of data that affect the local processor are

broadcast over the network.

Section 3.1 presents basic definitions that set the environment for the pro-
cessing model. Section 3.2 introduces the architectural organization and ex-
pands on the processor model, conflict set management, and processor opera-
tion. Section 3.3 presents a theorem that demonstrates that the results produced
by the processing model is correct according to the serializability criterion of

correctness.

3.1 Basic Definitions

A Production R; consists of a set of antecedents A(R;) and a set of conse-
quents C'(R;): the antecedents specify the conditions upon which the production

can be fired; the consequents specify the actions performed when the production

is fired.

Definition 3.1 The database manipulated by a Production System consists of
a set of assertions. Fach assertion is represented by a« Working Memory
Element (WME), notated by Wi. A WMFE consists of a class name and a set

of attribute-value pairs that together characterize its type, T[Wyg].

Consequence 3.1 Two WMEs of the same type are distinguished only by the

values associated with their attributes.

Definition 3.2 Fach production antecedent specifies a type of WMFE and a set

of values for its attribute-value pairs. A WMFE Wy is tested by an antecedent
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if it has the specified type. An antecedent is matched by a WME if the WMFE
has the type specified and all the values in the antecedent match the ones in the

WME.

Definition 3.3 If the antecedents of a production R; test WMFEs of type T|W}],
then Wy, belongs to the antecedents of R;, it is notated by Wy, € A(R;).

Consequence 3.2 A WMFE might belong to the antecedents of more than one

production.

Definition 3.4 A non-negated antecedent tests for the presence of ¢ WMFE
in the memory. A negated antecedent tests for the absence of any match-
ing WMFE in the memory. A production R; is said to be fireable if all its
non-negated antecedents are matched and none of its negated antecedents are

matched.

The consequent of a production can specify three kinds of actions that mod-

ify WMEs: addition, deletion, or modification.

Definition 3.5 A WMFE W} belongs to the consequents of a production R; iff
the firing of R; adds (deletes) any WME of type T[Wy] to (from) the Working
Memory. This is denoted by Wy, € C(R;).

Consequence 3.3 A WMFE might belong to the consequents of more than one

production.

Definition 3.6 If an antecedent of production R; tests for the presence of a
WME Wy, this is a positive test, notated by Sa(r,)[Wk] = +, which is read as
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“R; has at least one antecedent that tests for the presence of a WME of type
T[Wk]”. In a similar fashion, if the test is for absence of Wy, it is a negative

test, denoted by S 4(r,)[Wk] = —.

Definition 3.7 When the consequent of a production specifies the addition of a
WME W; to Working Memory, it is a positive action, denoted by
Scory[Wk] = +. A negative action specifies the deletion of a WME Wy,
denoted by So(r,)[Wk] = —.

Consequence 3.4 The notation Syr,)[Wk] # Sor,)[Wi] implies that Wy €
A(R;), Wi € C(R;), and that R; test of Wy is positive (negative) while R;

action on W is negative (positive).

Consequence 3.5 A modify action is considered as a combination of two ac-
tions: a negative one that removes the old WME and a positive one that creates

the modified WME.

In this model, productions are partitioned into disjoint sets with one set
assigned to each processor. R, € P; indicates that production R, belongs to
processor P;. The Working Memory is distributed among the processors in
such a way that a processor stores in its local memory all WMEs tested by its

productions. This is stated in Axiom 3.1.

Axiom 3.1 (Condition for Ownership) A WMFE Wy, is stored in the local
memory of a processor P; iff Wi, € A(R,) and R, € P,.

In the processing model discussed in section 3.2 some productions fire locally

while others need to change WMUEs that are stored in the local memory of remote
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processors. The following definitions describe important situations that appear

in the execution of the model.

Definition 3.8 A WME W), is local to a processor P; iff Wy, is stored in the
local memory of P;; Wy is not stored in the local memory of any other processor

P;; and there is no production allocated to a processor other than P; that changes

Wi.

Definition 3.9 A WMFE W, is pseudo-local to a processor P; iff Wy, is stored
in the local memory of P;; Wy is not stored in the local memory of any other
processor P;; and there is at least one production allocated to P; # P; that

changes Wj,. We say that P; shares Wj,.

For example, a WME that is written by many processors and read by only
one processor is pseudo-local for the processor that reads it; it is a shared WME
for all processors that write it!. A processor does not stores shared WMEs in

its local memory.

Definition 3.10 A production R, fires locally in a processor P; iff VW €
C(R,), Wy is local or pseudo-local to P;.

Consequence 3.6 A production that does not fire locally, is said to be a global

production. Such a production must propagate actions to remote processors.

Definition 3.11 A production R, enables a production R, iff AW} such that
Sc(rRa) Wkl = SR, [Wk]. A production R, disables a production R, iff IWy
such that Sc(r,)[Wk] # 5aRm)[Wk]-

Tt is also called a shared action or a shared output.
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Definition 3.12 A production R, has an output conflict with a production
Ry iff IWy such So(r,)[Wk] # Sc(rum) [Wel-

Productions that can fire locally are classified as Independent of Network
Transactions (INT) or Dependent on Network Transactions (DNT), according
to their dependencies with other productions that belong to other processors.
INT and DNT productions have to be processed differently for correct execu-
tion according to the serializable criterion. The following definition states that
a production that can fire locally is DNT if and only if any of the following

conditions hold:

(i) two of the antecedents of the production are changed by the consequents of
a single production allocated to another processor: one of these changes

produces an enabling dependency and the other produces a disabling one;

(i1) the production has two conflicting writes with a production allocated to

another processor;
(iii) the production has an output conflict and a disabling dependency with a

production allocated to another processor.

Definition 3.13 A production R, € P; is DNT iff R, can fire locally and any

of the following conditions hold:

(i). IWy, Wi, and R, € P; # P; such that Wy and W, are pseudo-local for
Pi, Sara) (Wil # Sorm) Wi, and S 4r,)[Wi] = So(r,,) [Wi]-

(it). AWy, Wi, and R, € P; # P; such that Wy and Wi are pseudo-local for
Py, Sc®a) Wil # Sor,)[Wil, and Sor,)[Wil # Sor,.,)[Wil-
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(iii). AWy, Wi, and R, € P; # P; such that Wy and W; are pseudo-local for
Pi, Sara) (Wil # Sora)[Wil, and Scr,)[Wil # Sc(r,) [Wi]-

Definition 3.14 A production R, is INT iff R, can fire locally and R, is not
DNT.

An INT production can start firing at any time as long as its antecedents are
satisfied. A DNT production P; only starts firing after all tokens generated by
a production P;, currently being fired by a remote processor, are broadcast in
the network and consumed by the processor that fires P;. This prevents P; and

P; actions from being intermingled, avoiding thus non-serializable behavior.

3.2 System Overview

The parallel architecture presented in this dissertation stems from the real-
ization that improvements restricted to the matching phase of the traditional
match-select-act cycle of Production Systems (PS) fail to produce significant
speedup. Even machines that allow concurrent execution of the acting and
matching phases, while maintaining the global production selection, yield lim-
ited improvements in speed. The architecture proposed here allows parallel
firing of productions allocated to distinct processors. Within a processor, ac-
tivities related to matching, acting and selecting are concurrent. Thus the next
instantiation to be fired may be selected even before the Rete Network updates

due to a previous production firing are completed.

Such aggressive parallelism is possible because the concept of a match-select-
act cycle is eliminated. The principle of firing the most recent and specific in-

stantiation is replaced by an approximation of it: only instantiations that are
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known at the time of the selection are considered, we call this a partially in-
formed selection mechanism. The use of associative memories allows for quick
elimination of instantiations that are no longer fireable. We also replace the
restrictive commutativity criterion by the serializability criterion of correctness.
The use of serializability reduces the number of situations in which synchroniza-

tion is necessary, increasing the amount of parallelism available.

The observation that in production systems reading operations are much
more frequent than writing operations motivates an architecture based on a
broadcasting network over which only writing operations occur. Such an ar-
chitectural model imposes limits to the number of processors used. However,
two characteristics of PS make them compatible with an architecture with a
moderate number of processors: the amount of inter-production parallelism is
limited and, as a PS grows, the size of the database grows much faster than its

production set.

The parallel architecture is formed by identical processors connected via
a Broadcasting Interconnection Network (BIN), as shown on Figure 3.1. At
start-up the I/O processor (I/OP) loads the productions on all processors. Sys-
tem level 1/O and user interface are also handled through the I/OP. The main
components of each processor are the Snooping Directory (SD), the Matching
Engine (ME), the Production Controller (PC) and the Instantiation Controller
(IC). The Snooping Directory is an associative memory that identifies whether
a token broadcast on the BIN conveys an action relevant to the local processor.
Relevant tokens are kept in a Broadcasting Network Buffer (BNB) until the
IC and the ME are able to process it. The Matching Engine is a Rete-based
matcher that implements a state-saving algorithm. The IC uses specialized

memory structures to maintain and rapidly update the list of fireable instanti-
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ations. To perform this task, it has to monitor the outputs of ME as well as
the firing of local (through PC) and global (through SD) productions. One of
the memories controlled by IC is the Firing Instantiation Memory (FIM) that
keeps a list of all the production instantiations that are enabled to fire. The
Production Controller (PC) selects an instantiation to be fired from the list
maintained by IC, and, whenever necessary, synchronizes the production firing

with BIN operations to guarantee that production firings appear to be atomic.

Broadcasting Interconnection Network

; I ; |

P&@Sm PQ@S Dy, /0P

1y 1C,

e

Figure 3.1: Parallel Machine Model

Productions are divided in three categories: local INT, local DNT, and
global. The firing of a local INT production does not require BIN ownership
because all its actions modify local WMEs only. Therefore, upon selecting an
INT production, the PC immediately propagates its actions to ME and IC.
To avoid interleaving of actions belonging to distinct productions, all tokens
broadcast in BIN during local production firing are buffered in BNB. These
tokens are processed as soon as the local firing finishes. When a local DNT
production is selected, its execution has to wait until the BIN changes ownership,
which is an indication that the firing of a global production has been concluded.

The local DNT production is then fired in the same fashion as a local INT.
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A global production modifies shared WMEs, i.e., WMEs that belong to the
antecedents of productions assigned to other processors. Thus, these changes
need to be broadcast to all processors. When a global production is selected,
PC acquires access to the BIN, process all outstanding changes in the BNB,
and, if the selected production is still fireable, proceeds to broadcast tokens
with changes to shared WMEs. The BIN ownership is not released until all
actions that change shared WMEs are broadcast. After releasing the BIN,
PC prevents any incoming token from proceeding to local processing. These
tokens are buffered in BNB and processed locally after the local execution of
the selected production is complete. This avoids write interleaving in the local
memories and guarantees an atomic operation for production firing within a

processor.

The main steps in the machine operation are presented below in an algo-
rithmic form. The steps of the algorithm are performed by different structures

of the processing element.

Note that no production is fired while there are outstanding tokens in BNB.
The selection of a fireable instantiation in step 2 of PRODUCTION-FIRING is
done according to the “pseudo-recency” criterion: the most recent instantiation
in FIM is selected?. This is not a true recency criterion because ME may still
be processing a previous token, and thus the instantiations that it will produce

are not in FIM yet.

2 A single associative search in FIM produces the entry with the most recent time stamp.



31

PRODUCTION-FIRING
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execute all outstanding tokens in BNB on first-come first-serve basis
select a fireable instantiation I in FIM
if I is global
then Request BIN ownership
while BIN ownership is not granted
execute tokens broadcast in BIN captured by SD
if I is still fireable
then broadcast actions that change shared WMEs
execute actions that change shared WMIs
release BIN
else end PRODUCTION-FIRING
else 1if I, is DNT
then while BIN ownership doesn’t change
execute tokens broadcast in BIN
captured by SD
if I is still fireable and I has local actions
then disable local execution of any incoming token
execute local actions

enable local execution of incoming tokens

The test in step 7 is necessary because between the time the BIN was re-

quested and the time its ownership is acquired, incoming tokens might have

changed the status of the production selected to fire. If this occurs, the firing

of the selected production is aborted. Steps 12-14 are executed for produc-

tions that are dependent on network transactions, as defined in section 3.1. If



32

such productions were to start firing while a remote processor is in the middle
of a production execution, the intermingling of actions could result in non-
serializable behavior. Notice that the BIN is released in step 10, before changes
to local memory take place. To guarantee that no token is processed before the
local changes are executed, buffering of tokens in BNB in step 15 is activated

immediately upon releasing the BIN.

3.2.1 Detailed Processor Model

The processor architecture is detailed in Figure 3.2. The Instantiation Firing
Engine (IFE) implements the outgoing interface with the Broadcasting Inter-
connection Network (BIN) and synchronizes internal activities. The IFE selects
an instantiation to be fired among the ones stored in the Fireable Instantiation
Memory (FIM). If the production selected to fire is global, the IFE places a
request for ownership of the BIN®. Upon receiving BIN ownership, IFE waits
until all outstanding tokens stored in BNB are processed. If the selected instan-
tiation becomes unfireable due to such processing, IFE has to abandon it and
select a new instantiation. Otherwise IFE broadcasts tokens with changes to

the shared WMUEs, releases the BIN, and executes the local actions.

The Snooping Directory (SD), along with the Broadcasting Network Buffer
(BNB), implements the incoming network interface. The Snooping Directory
is an associative memory that contains all WME types that belong to the an-
tecedent sets of the productions assigned to the processing element*. BNB is
used to store tokens broadcast on BIN and captured by SD during the local

firing of a production, or during the execution of local actions of a global pro-

®The arbitration of the BIN is described in section 3.2.3.
*See the “Condition for Ownership”, Axiom 3.1, Section 3.1.



Figure 3.2: Processing Element Model

duction. The tokens stored in BNB are processed as soon as the firing of the
current production finishes. In the rare situation in which BNB is full, a halt
signal is issued to freeze the activity on BIN. When the halt signal is reset,
the activity in the bus resumes: the same processor that had BIN ownership

continues to broadcast tokens as if nothing had happened.

Whether a WME change is originated locally or captured from BIN, it needs
to be forwarded to the Rete Network and to the Fireable Instantiation Control
(FIC). The Rete Network used in this architecture has S-memories. To avoid

the high cost of waiting for the removal of a WME, which was pointed out
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by Miranker [58], negated antecedents are stored in both F-memories and in
the fireable instantiations produced for the conflict set. The presence of the
negated conditions in this representation allows the quick removal of non-fireable
instantiations when a new token is processed. There is a possibility that a WME
change previously processed by FIC and not yet processed by Rete disables an
instantiation freshly generated by Rete. To avoid a possibly non-serializable
behavior, before adding a new instantiations to FIM, FIC checks it against the
Pending Matching Memory (PMM), which stores all tokens still to be processed
by Rete. The deletion of an instantiation from FIM is also performed by FIC.
The operation of FIM, AFIM, PMM and FIC are explained in greater detail in

section 3.2.2.

3.2.2 Conflict Set Management

The Fireable Instantiation Control (FIC) uses the Antecedents of Fireable
Instantiation Memory (AFIM) to maintain a list of all enabled instantiations in
the Fireable Instantiation Memory (FIM). AFIM and FIM are fully associative
memories with capability to store don’t cares in some of their cells. The fields in
each line of FIM and AFIM are shown in Figure 3.3. FIC maintains an internal
timer that is used to time stamp each instantiation added to FIM. Each line of
AFIM stores either a WME that is the antecedent of a fireable instantiation, or

an a-test that specifies an instantiation negated antecedent. Its fields are:

Presence - indicates whether the AFIM line is occupied. It is used to manage

the space in the memory.
Negated - indicates whether this line stores a WME or a negated antecedent.

Type - stores the WME type.



35

Bindings - contains the values stored in each attribute-value pair of the WME.
Notice that the name of the attribute doesn’t need to be stored. Symbolic

names are translated into integer values at compile time.

a-test - is used only for negated antecedents: specifies the a-test to be per-

formed to verify a production antecedent.

Instantiation - indicates which fireable instantiations have this antecedent.

Presence Sign Type Bindings a-Test Instant. #
2
2
(a) AFIM

Presence Fireable PM_Address Time_Tag Instant. #

2

(b) FIM

Figure 3.3: (a) Antecedents of Fireable Instantiation Memory; (b) Fireable
Instantiation Memory.

Notice that because AFIM stores antecedents of fireable instantiations, most

of the variables are bound, therefore the bindings field stores mostly constants.
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For an easy handling of unbound variables, which match any value, the bindings
field of AFIM is a ternary memory. Besides the values 0 and 1, it can also store a
“don’t care” value X. Such a memory might be implemented using two bits per
cell, or using actual ternary logic in VLSI. One example of the latter is the Trit
Memory developed by Wade [88]. One alternative to implement a non-bound
value is to add a tag bit to bindings that indicates whether the value is bound
or not. The advantage of this representation is that there is only one extra bit

per word. Each line in FIM stores one fireable instantiation, with the following

fields:

Presence - indicates whether the line is occupied;
Fireable - indicates whether the instantiation stored in the line is still fireable®.

PM_Address - contains a pointer to the Production Memory indicating where

the production actions are stored.

Time_Tag - record the time in which the instantiation became fireable. It is

used to implement a pseudo-recency criterion to select an instantiation to

be fired.

The third piece of memory managed by FIC is a fully associative memory
called Pending Matching Memory (PMM). When a token is placed in the input
nodes of the Rete Network, it is also stored in PMM. The token is removed from
PMM when the Rete Network produces a signal indicating that all changes to
the conflict set originated by that token have being processed. Upon receiving

a new fireable instantiation from Rete, FIC associatively searches PMMS®. If

® An instantiation is only removed from FIM after an incremental garbage collector removes
the corresponding antecedents from AFIM.
SFIC has to perform an independent search for each antecedent of the new instantiation.
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any line of PMM indicates the deletion (addition) of a WME that matches a
non-negated (negated) condition of the instantiation, the new instantiation is
ignored”. If no such line is found in PMM, FIC records the new instantiation

in one line in FIM and stores each one of its antecedents in a separate line in

AFIM. Figure 3.4 shows the organization of PMM with four fields:

Presence - indicates whether there is a WME stored in the line.

Sign - indicates whether this WME has been added to or deleted from the

working memory.
Type - stores the type of WME.

Bindings - records the bindings of the WME.

Presence Sign Type Bindings

Figure 3.4: Pending Matching Memory

During the execution of a token, FIC performs three actions in parallel:
send the token to the Rete Network input; add the token to PMM; and update
FIM and AFIM. To update AFIM and FIM, first FIC executes an associative

"This instantiation must be ignored because the entry found in PMM indicates that a token
received after the one that enabled the instantiation, which is not yet fully processed in Rete,
will disable it.
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search in AFIM for entries with the same WME present in the token, but with
opposite sign. For each matching entry in AFIM, FIC marks the corresponding
instantiation in FIM as unfireable. Finally FIC resets the presence bit for these
entries in AFIM. This process leaves garbage® in FIM and AFIM. This garbage
is all the non-fireable instantiations still present in FIM plus the antecedents of

these instantiations in AFIM.

FIC has an Incremental Garbage Collector that searches FIM for an instan-
tiation Iy that is non-fireable. FIC performs an associative search in AFIM and
remove all antecedents of I, and then eliminates I from FIM. To guarantee the
consistency of FIM and AFIM, the garbage collection is always performed as an
atomic operation. For efficiency, the position in FIM in which the last garbage
collection was executed is kept internally in FIC, and is used as the starting
point of the next search. If FIM and AFIM are not full, garbage collection is
performed at least once between two instantiation additions. Whenever FIM or
AFIM are full, extra garbage collection is executed to free space. This solution
trades memory space for speed: a WME that is tested by antecedents of many

instantiations is stored many times in AFIM.

3.2.3 Broadcasting Interconnection Network Arbitration

Access arbitration in a broadcasting network is a well studied problem. In
this machine we adopt the scheme used in the first prototype of the Alpha
architecture by DEC [86]. During startup of a machine with n processors, each
processor is assigned an arbitrary priority number from 0 to n—1. n—1 is the

highest priority and 0 is the lowest. When a processor requests the network,

8«Garbage” is defined as a piece of data that still occupies space in memory, but will not
be referenced again.
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it uses its priority. The requester with highest priority is the winner and is
granted access to the network. The winner has possession of the network as
long as it needs to write all consequents of one production. After releasing the
network, the winner sets its own priority to zero. All processors that had a
priority number less than the winner increment their priority number by one,

regardless of whether they made a request.

This scheme works as a round robin arbitration if all processors are request-
ing the network at the same time. If fewer processors are requesting the network,
this mechanism creates the illusion that only these active processors are present

in the machine.

In section 3.2 we establish that broadcast writes need to be kept in a buffer
while a processor is firing local productions. When this buffer overflows, a halt
signal is issued by the processor. This signal stalls all network broadcasting
activities, giving time for the overloaded processor to consume its tokens and
alleviate its buffer load. When the stall signal is removed, the network continues
its activity without any change in the ownership. To avoid a great impact in
the speed of the machine, the buffer must be sufficiently large to avoid frequent

stalling of the network.

3.3 Correctness of the Processing Model

This section investigates whether the machine proposed in section 3.2 cor-
rectly executes a production system. The correctness criterion used is serializ-

ability [71], defined below.

Definition 3.15 (Serializability Criterion of Correctness) The parallel

execution of a collection of production instantiations I is correct iff there exists
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at least one serial execution of I that produces the same results as the parallel

execution.

Theorem 3.1 Giving the parallel machine model presented in this document,
the definition of local DNT, local INT, and global productions, Aziom 3.1 is a
necessary and sufficient condition of ownership to guarantee correct execution

of a production system under the serializability criterion of correctness.

Proof:

First we prove that axiom 3.1 is necessary. For the sake of contradic-
tion, suppose that the ownership condition stated in axiom 3.1 is not
satisfied. Assume that there is a production R, € P, and a WME
Wy, such that Wy, € A(R,,) and W}, is not stored in the local memory
of P;. Because reading operations are not allowed in the broadcast-
ing network, F; cannot perform the matching of R,. Therefore a
production system cannot be executed in such a machine. Thus,

axiom 3.1 is necessary.

To prove that axiom 3.1 is sufficient, we must show that, in every
possible circumstance, the results produced by this model could be
obtained by a sequential execution of the productions. Therefore, we
must analyze all situations in which parallel execution might occur
and show that each one of them results in a serializable outcome.
Because there is no parallel production firing within a processor, the
following analysis is restricted to concurrent firing of productions al-
located to distinct processors. Inter-processor parallelism occurs in
two situations: among productions firing locally in distinct proces-

sors and between a production being broadcast over the in BIN and



one (or more) firing locally. All situations described below involve

two productions being fired concurrently.

Situation 1: Productions that have only local WMFEs in its an-

tecedents and consequents.

The fact that all antecedents and consequents are local indicates that
the productions being fired in parallel are completely independent of
productions allocated to other processors, therefore the same results
produced by the parallel firing could be obtained by any sequential

firing of the same productions.

Situation 2: A production R,, € P; enables a production R, € P;;
R, and R, might have non-conflicting shared outputs; R, does not

disable R,; R, fires locally.

Since R, fires locally, all WMEs that are changed by both R, and
R,, are pseudo-local for P; and shared for P;. Because those are
non-conflicting outputs and R, enables R,,, parallelism occurs when
R, starts firing after being enabled by an action of R,, and before
R,, finishes broadcasting changes to the network. The firing of R,
prevent the changes broadcast by R,, from being processed locally
until R, finishes. As long as the actions broadcast by R, are queued
and processed after R, finishes, the result is the same as if R,, would

have been fired after R,, finished. Thus, it is serializable.

Situation 3: A production R,, € P; disables a production R, € P;;
there is no enabling dependencies between R,, and R,; R,, and R,

might have non-conflicting shared outputs; R, fires locally.
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The only possibility for the parallel firing of R,, and R, is for P; to
start firing R, before P; had broadcast any action that disables R,,.
Even if P; had broadcast some of the shared non-conflicting outputs
when R, starts firing, the effect is the same as firing R,, before R,,.

Therefore, the result is serializable.

Situation 4: A production R, € P; changes a pseudo-local WMFE
Wy and a production R, € P; modifies Wy. R, fires locally.

In this situation, it is necessary to analyze three different cases:

Case 1: Wy is the only shared output between R, and R,,.
Notice that the (possibly) conflicting WME W, is exclusively
stored in P;?. Therefore if P; disables the BIN before P; broad-
cast changes to Wy, the result is the same of firing R, before
R,,. If P; disables BIN after changes to W} are broadcast, the
result is equivalent to firing R, after R,,. In both cases it is

serializable.

Case 2: R, and R,, have more than one shared output, but no
more than one of them is conflicting.
The concern with multiple shared outputs is that the actions
of the local and the global production might be intermingled.
This would happen if P; would inhibit actions from the network
after P; broadcast some but not all actions of R,,. Since R,,

has only one action conflicting with R,,, the interruption of the

?Otherwise R, could not fire locally.
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remote firing will either take place before or after this conflict-
ing action is broadcast. If the interruption occur before the
conflicting action is executed in P;, the result is equivalent to
R, firing before R,,. If it occurs after, the result is equivalent
to R, firing after R,,. In either case this situation results in a

serializable behavior.

Case 3: R, and R,, have more than one conflicting action.
In this case, if intermingled execution would be allowed, non-
serializable behavior would result. However, according with
condition (ii) of definition 3.13 this production is DNT and
therefore cannot start firing until the network changes owner-
ship, indicating that the global production either has finished
or has not started. This ensures the necessary synchronization

and results in serializable behavior.

Situation 5: A production R, € P; is enabled and disabled by a
production R, € P;; R, fires locally.

In this situation, there would be a non-serializable behavior if pro-
duction R, would be allowed to fire after P; had broadcast the action
that enables R, and before the action that disables R,, is broadcast.
This situation does not occur because, according to condition (i) of
definition 3.13, R,, is DNT: it only starts firing when the network

changes ownership.

Situation 6: A production R, € P; is enabled by a production
R, € P;; R, has one output conflict with R,,; R, and R, may or
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may not have shared non-conflicting writes; and R, fires locally.

Parallelism occurs if R,, starts firing in P; after the action that en-
ables R, have been broadcast by P; and before P; finishes broad-
casting R, actions. If at that point the conflicting action has been
already broadcast, the result will be equivalent to firing R, before
R,,. If the conflicting action has not been broadcast, the result is

equivalent to R, firing before R,. Either way, the result is serializ-

able.

Situation 7: A production R, € P; is disabled by a production
R, € P;; R, has one output conflict with R,,; R, and R, may or

may not have shared non-conflicting writes; R, fires locally.

This situation could result in non-serializable behavior if R, were
to start firing after P; broadcasts the conflicting action of R,,, and
before the action that disables R, is broadcast. However, this cannot

occur because, according to condition (iii) of definition 3.13, R, is

DNT.

Situations 1 through 7 deal with possible dependencies involving two
productions R, and R, allocated to distinct processors. The local
firing of R, in all situations indicates that its consequents change
only local or pseudo-local WMEs. Table 3.1 helps to verify that
every possible combination of dependencies among two productions

“.” indicates

in this situation have being analyzed. In this table a
no dependencies, “1” indicates one dependency, “2+” indicates two
or more dependencies, and “X” indicates any number of dependen-

cies. Table 3.1 has five columns: “Enabling” column indicates the
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number of actions in C(R,,) that enable R,; “Disabling” indicates
the number of actions in C(R,,) that disable R,; “Non-Conflicting
Write” indicate the number of non-conflicting shared actions be-
tween R, and R,; “Non-Conflicting Write” indicate the number
of non-conflicting shared actions between R, and R,,; and “Situa-
tion” indicates which of the situations analyzed in this proof covers
each case. Every possible combination of dependencies between two

productions is covered in table 3.1.

There is still the possibility that dependencies involving more than
two productions create a situation in which the parallel model yields
a non-serializable behavior. The only situation in which this might

occur are in cycles of disablings, analyzed in situation 8.

Situation 8: There is a cycle of disablings among productions allo-

cated to distinct processors.

First we analyze the special case in which the cycle is formed by
two productions R, € P; and R,, € P;. According to definition
3.11, if there is a cycle of disabling between R,, and R,,, there exist
two WMEs Wy and W, such that Scg,)[Wk] # Sar,)[Wk] and
Sc(Ra)IWIl # S 4Ry [Wi]. Therefore Wy is a shared WME for P;, W,
is a shared WME for P;, and neither R,, or R, can fire locally. The
acquisition of the broadcasting network works as a synchronizing
element preventing R, and R, from firing in parallel. The same
reasoning can be extended to disabling cycles with any number of

productions.
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Enabling | Disabling | Non-Conflicting | Conflicting | Situation
Write Write
- - - - 1
1 - X - 2
24+ - X - 2
- 1 X - 3
- 24+ X - 3
- - 1 - 4, case 1
- - 24 - 4, case 2
- - X 1 4, case 2
X X X 2+ 4, case 3
1 1 X X 5
1 24+ X X 5
24+ 1 X X 5
24+ 24+ X X 5
1 - X 1 6
24+ - X 1 6
X 1 X 1 7
X 24+ X 1 7

Table 3.1: Possible dependencies between R, and R,,.

This concludes the proof. Since the results are serializable for any
possible conflicting situation, we conclude that Axiom 3.1 is a suf-
ficient condition of ownership and that the results produced by the

model proposed are serializable.



Chapter 4

Benchmarking

A well known weakness of production system machine research is the lack
of a comprehensive and broadly used set of benchmarks for evaluation of per-
formance. In the process of searching for benchmarks to evaluate this novel
architecture, we contacted many researchers with the same problem: a new idea
to be evaluated in need of a suitable set of benchmark programs. Most of the
benchmarks obtained were toy programs with a small number of productions in
which the researcher can only change the size of the database. A benchmark in
which the number of productions and the database size can be independently
changed would allow researchers to study various aspects of new architectures.
Section 4.1 presents a new benchmark that has such characteristics. It is a
modification of the well known Traveling Salesperson Problem that we call a
Contemporaneous TSP (CTSP). Another benchmark that we wrote is a solu-
tion to the “Confusion of Patents Problem”. The following sections describe
CTSP in detail and briefly present some other benchmarks used to test the

architecture.
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4.1 A Contemporaneous TSP

In this modified version of the TSP, the cities are grouped into “countries”.
The tour has to be constructed such that the salesperson enters each country
only once. The location and borders of the countries must allow the construction

of a tour observing this restriction. The problem is formally stated as follows:

An instance of CTSP is represented by (K,C,c,pe, 0.,0,d). K =
{C1,C,...,C,} is a “continent” formed by “countries”. Each coun-
try C = {¢i1, €12, e, € m(s)} cONtains m(i) “cities”. The number of
cities per country m(i) is normally distributed with average u. and
standard deviation o.. The ordering O =< Cr(1), Cr(2ys ooy Cr(n) >
specifies the order in which the countries shall be visited. The func-
tion d(c;,c;) € Z7 specifies the distance between any two cities in
the continent. The problem consists of finding an ordering of cities
< Ci (1) Ciyr(2)s o0 Cir(m(i)) > Within each country C; that minimizes

the cost of the global tour:

n m(i)—1

n—1
Z Z d(e; r(5) Cir (1)) T Zd(ci,ﬂ'(m(i))vci—l—l,ﬂ'(l)) +
=1

=1 =1

d(cn,ﬂ'(m(n))vcl,ﬂ'(l))' (41)

This formulation of TSP is called “contemporaneous” because it reflects
some aspects of modern day life. In the current global economy, travelpersons
are likely to have greater needs than the traditional salesperson driving from
town to town. Consider a music star in a worldwide tour carrying along a huge
crew and sophisticated equipment: the singer will visit many different locations

in each continent; the cost of flying back and forth between continents is much
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higher than movements within a continent and depends on the locations of de-
parture and arrival. Other situations involving sophisticated traveling require-
ments include the planning of airline routes and national political campaigns
in large countries such as USA, Brazil and India. Applications in which data
locality allows the creation of clusters include: insurance database management,
banking industry, a national health care information network, and a national

criminal offense information network?!.

4.1.1 A Production System Solution for CTSP

The formulation presented above for the CTSP is generic enough to allow its
application in many fields: there is no restriction in what the words continent,
country, city, and distance might represent. To facilitate the construction of a
Production System solution that is useful for testing new PS architectures, we

used a simpler version of CTSP with the following restrictions:

o The problem is symmetric, i.e., d(¢ck, ¢ ;) = d(erj,cx;) for any 4, 7, k,

and /.

e A continent is a two-dimensional Euclidian space.

A country is a contiguous, rectangular shape within this space.

e The number of cities in each country follows a normal distribution with

average . and standard deviation o..

e The city locations are uniformly distributed within each country.

'In the 1994 “Brady Bill”, Congress mandated the construction of such a network for
background verification for the purchase of fire weapons.
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e There is a common boundary between two countries that are consecutive

in the ordering O.

Our PS solution for CTSP has a set of productions for each country and
a set of productions for each country boundary. The data set is constructed
in such a way that the distances among cities located within each country are
stored in WMEs with different types. Given a country C;, the country that
precedes C; in the order O is denominated P(C}); the country that succeeds C;
in the order O is denominated S(C;). It is not necessary to store in the data
base the distance between every two cities in the continent. For a city ¢;; in a
country 5, the only relevant distances are the distance to the cities within C},
to the cities in P(C;), and to the cities in 5(C;). The following list illustrates
WMEs typically used in our solution to CTSP:

(GERMANY_city “name GERMANY_O1 “status not_in_trip)
(FRANCE_city “name FRANCE_10 “status in_trip)

(GERMANY_dist “from GERMANY_O4 ~“to GERMANY_07 “value 135)
(FRANCE_GERMANY_dist “from FRANCE_14 ~“to GERMANY_03 “value 357)

(GERMANY_POLAND_dist “from GERMANY_O1 “to POLAND_O5 ~“value 55)

Our solution has seventeen local productions per country and twelve produc-
tions per country boundary. This organization allows the researcher to vary the
number of productions by creating continents with different number of coun-
tries. The size of the data base is determined by the number of countries and
the average number of cities per country. The variance between the amount of

data processed by each cluster of production is given by o..

The heuristic used in the PS solution of the problem involves the compu-

tation of two extra locations for each country C;: the geometric center of the
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borders with P(C;) and with S(C;). Because we impose the restriction that
countries have rectangular shapes in a two-dimensional Fuclidian space, the
border between two subsequent countries in the tour is always a segment of a
straight line. The border center b(C;, C';) between countries C; and C is the cen-
ter of the line segment that forms the boundary. The heuristic used to construct

the internal tour in a country C; is described below:

o The first city ¢; in the internal tour of a country C; is the city with

minimum distance d(b(C;, P(C})), ¢ k).

e While the internal tour of country C; is not complete, select a city ¢; ;I € C;
such that d(c; k. ¢; 1) — d(¢;,0(Cy, S(C;))) is minimum, where ¢;j is the

latest city inserted in the tour.

e Whenever the internal tours of two adjacent countries C’; and C; are com-
pleted, the last city visited in C; is connected to the first city visited in
;.

o Whenever there is a segment of tour formed by four cities (¢, ¢j, ¢k, ¢p)
such that d(c¢;, ¢;) + d(cg, ¢;) > d(¢;, cx) + d(cj, ¢;), change this segment of

2
tour to (¢;, ¢, €5, ¢1)°.

This rationale of the heuristic is to add to the internal tour the cities that are
close to the latest city included in the tour and far from the border in which the
internal tour shall end. There is a limited local optimization of the constructed
tour. We developed a C program that allows researchers to specify continent

maps and to experiment with different numbers of countries, u., and o..

2The first subscript in the notation c¢; ; is ommited here because these local optimization
might occur either within a country or accross country’s borders.



52

Two production system solutions were constructed for CTSP. In the first
one, identified as tsp in Table 4.1, a single set of productions performs the
optimization in all country borders. In the second solution, identified as tsp2
in Table 4.1, an specilized set of productions is used in the optimization of each
country border. Table 4.1 presents static measures for instantiations of CTSP
considering problems with C' countries, with each country having an average of

e cities.

Measure tsp tsp2
# of productions 200 + 1 30C+1
# WME types 8C +8 15C+1
# WMEs in initial database | C(2pu? +2u.+3) | C(2u2 +2pu. +3)

Table 4.1: Static measures for the CTSP benchmark according to C' and g,

Figure 4.1 plots the number of WMEs in the knowledge base during the
execution of the benchmark moun2, which is a CTSP with ten states and p. =
15. The number of WMEs grows steadily from its initial value as the tour is
constructed and the distance among cities are not removed. However, there is
not much variation overall in the amount of data stored in the knowledge base

during the execution of the benchmark.

This simplified CTSP offers many advantages for production system bench-
marking: the number of productions in the program can be varied by changing
the number of countries; the ratio of global to local data is controlled by the aver-
age number of cities in each country; the balance in the size of local data clusters
is specified by o.; and the specification of the continent “map” is very simple
making it easy for a researcher to generate new instantiations of the bench-

mark. Observe from table 4.1 that the relation between the number of WME
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Figure 4.1: Variation in the knowledge base size during the execution of
moun2.

types and the number of productions is constant (= 2.5). The CTSP bench-
marking facility is available through anonymous ftp to: pine.ece.utexas.edu
in /fa/pine/home/pine/ftp/pub/parprosys. In the measurements presented in

section 6.1, instances of the CSTP appear as south, south2, moun and moun?2.

4.2 Confusion of Patents Problem

We constructed a solution for the formulation of the Confusion of Patents
Problem presented in [19, 40] The problem presents five patents, five inventors,
five cities, and ten constraints. Using these constraints we must decide who
invented what and where. In our solution, all 125 possible combinations and 10
constraints are present in the initial database; 67 productions use the constraints
to eliminate combinations that are not possible; 19 productions select the right

combinations and print the solution. 1

Because this solution has only four different types of WMEs, most of the pro-
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ductions either change or test the same kinds of WME. As a consequence, pro-
ductions have strong interdependency, resulting in a production system poorly
suited for clustering. Even in a machine with a moderate number of processors,
most of the actions need to be broadcast on the network. The main source of
parallelism is the concurrent execution of different portions of the Rete network.
Performance measures to this solution of the confusion of patents problem are

reported under the name patents.

4.3 The Hotel Operation Problem

Originally written by Steve Kuo at the University of Southern California,
hotel is a production system that models the operation of a hotel. It is a
relatively large and varied production system (80 productions, 65 WME types)
with 17 non-exclusive contexts. Because each production in hotel is related
with the activities that actually take place in a hotel, the amount of speedup
obtained depends on the balance of work among each one of these activities. For
example, if a hotel is specified with a large number of tables in the restaurant
and very few rooms, the productions that take care of the restaurant tables will
have a much larger load than the productions that cleanup the rooms. This work
unbalance is transferred to parallel architectures that partition the program at

the production level.

4.4 The Game of Life

This is an implementation for Conway’s game of life, as constructed by
Anurag Acharya. After our modifications, 1ife has forty productions. Twenty

five of these productions are in the context that computes the value of each
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cell for the next generation and potentially can be fired in parallel. The other
fifteen productions are used for sequencing and printing and can be only slightly

accelerated by Rete network parallelism.

4.5 The Line Labeling Problem

Different versions of the line labeling problem (Waltz and Toru-Waltz) have
being used for performance evaluation [49, 51, 63, 70]. Our version was originally
written by Toru Ishida (Columbia Univ.), and successively modified by Dan
Neiman (Univ. of Massachusetts), Anurag Acharya (Carnegie-Mellon Univ.)
and José Amaral (Univ. of Texas). The current version has two non-overlapping
stages of execution, each one with four productions. Because the system is
partitioned at the production level, the amount of parallelism is limited to four
fold. Such a low limit in speedup occurs because this is a simple “toy” problem
with only ten productions, not adequate for the architecture proposed. The line

labeling problem is identified as waltz2 in our set of benchmark.

4.6 Benchmark Static Measures

Table 4.2 shows static measures — number of productions, number of dis-
tinct WME types, average number of antecedents per production, average num-
ber of consequents per productions, and number of WMEs® — for the bench-
marks used to estimate performance in the multiple functional unit Rete net-

work. south and south2 are CTSPs with four countries and ten cities per

*The number of WMEs changes during program execution. The number reported in Table
4.2 1s the number of WMEs in the initial knowledge base.
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Bench. | # Prod | Ant./prod | Cons./prod | # WME types | # WMEs
life 40 6.1 1.3 5 104
hotel 80 4.1 2.0 62 484
patents 86 5.2 1.2 4 136
south 91 4.7 2.8 40 774
south?2 121 4.7 2.7 61 774
moun 211 4.7 2.8 88 3970
moun2 301 4.7 2.7 151 3970
waltz2 10 2.7 8.0 7 60

Table 4.2: Static measures for benchmarks used.

country; moun and moun2 are CTSPs with ten countries and 15 cities per coun-
try; 1life, patents, waltz2, and hotel are the benchmarks discussed in sections

4.2 to 4.5.



Chapter 5

Production Partitioning Algorithms

The problem of partitioning a Production System into disjoint sets of pro-
ductions which are then mapped onto distinct processors has been studied by a
number of researchers. Most partitioning algorithms are designed with the goal
of minimizing or reducing enabling, disabling, and output dependencies among
productions allocated to different processors [70]. Oflazer formulates partition-
ing as a minimization problem and concludes that the best suited architecture
for Production Systems has a small number of powerful processors [64]. Oflazer
also indicates that a limited amount of improvement in Production System ma-
chine speed can be obtained by an adequate assignment of productions to pro-
cessors. Moldovan presents a detailed description of production dependencies
and expresses the potential parallelism in a “parallelism matrix” and the cost
of communication among productions in a “communication matrix” [59]. Xu
and Hwang use a similar scheme with matrices of cost to construct a simulated

annealing optimization of the production partition problem [92].

Although certain basic principles are maintained in all partitioning schemes,
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partition algorithms are tailored to specific architectures. We are concerned
with two kinds of relationships among productions: productions that share an-
tecedents, and productions that have conflicting actions. In the architecture
described in chapter 3, assigning productions with common antecedents to the
same processor reduces memory duplication, while assigning productions with

conflicting actions to the same processor prevents traffic in the bus.

Previous partition algorithms were greatly influenced by enabling and dis-
abling dependencies among productions [59, 64, 92]. Our experience with pro-
duction systems indicates that grouping productions with common antecedents
is much more effective to reduce the communication cost. Moreover, in the
production system programs that we examined, a production seldom creates a
WME that was not tested by its antecedents. Therefore, productions that have
more common antecedents are also most likely to have a greater number of en-
abling and disabling dependencies among them. Thus, our partition algorithm
does not directly consider these dependencies, but only shared antecedents and

conflicting outputs.

5.1 Production Relationship Graph

To represent the relationships among productions we define an undirected,
fully connected graph PRG = (R, F) called Production Relationship Graph.
Each vertex in R represents one of the productions in the system, and each
weighted edge in F is a combined measure of the relationships of the two pro-
ductions represented by its vertices. PRG has a weight function w : £ — Z7T,

defined by equation 5.1.
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w(Eij)=w(Ep) = (1=6;) Y > g +
(=0 k=0
p—1qg—1
(1= 65) Vii ki (5.1)
=0 k=0

where n and m are the number of antecedents and p and ¢ are the number
of consequents in productions R; and R;, respectively, ¢;; is 1 if + = j and 0

otherwise, and

" 1 if antecedents W of R; and W), of R; are of the same type.
lik; =

0 otherwise

1 if consequent W, of R; conflicts with W}, of R;
Yiik; =
0 otherwise

The first term of equation 5.1 computes the number of common antecedents
between productions R; and R;. The second term computes the number of out-
put conflicts between the productions. If two productions connected in PRG
by an arc with heavy weight are allocated to distinct processors, the commu-
nication cost increases because these productions will most likely be remote or
dependent on network transactions (DNT). Therefore to reduce traffic in the
bus, it is necessary to partition the productions among processors by cutting

edges with lighter weights in PRG. A cut in a graph is defined as follows [13].

Definition 5.1 A partition of R in the graph PRG = (R, F) is acut (5, R-295).
An edge (u,v) € E crosses the cut (S, R —9) if and only if one of its endpoints
s in S and the other is in R — 5.
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5.2 The Minimum Cut Problem

The optimal partitioning of productions into disjoint sets can be modeled as a
minimum cut problem. The minimum cut problem is the problem of generating
a cut in a full connected graph in such a way that the sum of the weights of the
edges that cross the cut is minimum. When there is a limit for the number of
vertices in each set, the problem is called minimum cut into bounded sets [21].
This problem was proven to be NP-Complete by means of reducing the simple

mazx cut problem, by Gary, Johnson and Stockmeyer in 1976 [22].

In this chapter we present and evaluate the performance of four distinct
polynomial time algorithms that produce sub-optimal partitions of a production
set. Algorithms 1 and 3, based only on the compile-time information provided
in the PRG, partition the production into almost equal size subsets. Their goal
is to minimize the number of shared antecedents and conflicting outputs among
productions in different subsets. Algorithms 5 and 6! use run-time information
obtained from measurements in previous executions of the same program to
balance the workload on different processors, even though this might result in

subsets with different sizes.

5.3 Algorithm 1

This algorithm is inspired by the minimum cut problem. It recursively di-
vides the production set in half until the number of subsets is identical to the

number of processors in the machine. The algorithm constructs the partition

1The algorithm numbers were assigned as they were designed. Because we are not presenting
some of the algorithms here, some numbers are missing.
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in such a way that the subset with the most productions has at most one more
production then the subset with the least productions. The parameters for the
algorithm PARTITION-1(R, £, w,n, M,C') are the set of vertices P, the set of
edges F, the weight function w, the number of partitions needed n, the number
of productions to be allocated to one subset in the next cut M, and the set of
subsets C' that stores the partition. Initially, R includes all the productions, C
is empty, and n is equal the number of processors in the parallel machine. A
global variable, m = ||R|/n] denotes the minimum number of productions per

subset in the final partition.

PARTITION-1(R, E,w,n, M,C)

1 ifn=2

2 then S5 — TWO-PARTITIONS(R, F,w, [|R]|/2])
4 C—=Cus

5 C—CU(R-S)

6 return

7 ifn=3

8 then S5 — TWO-PARTITIONS(R, F,w, [|R]|/3])
9 C—=Cus

10 PARTITION-1(R- 5, E,w,2,m,C)

11 return

12 if [M/2] < m[n/2]

13 then A — M — m[n/2]

14 else A— |M/2]

15 § — TWO-PARTITIONS(R, E, w, A)
16 PARTITION-1(S, E, w, [n/2], M— A, C)
17 PARTITION-1(R— 8, E,w, |n/2], A,C)
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TWO-PARTITIONS uses the function cut cost cc : R — R to decide which

production it selects to transfer to a new subset.

Yo w(Eij) i

CC(Ri) 1+ Z;;é w(EU) (1 - ﬁijy

(5.2)

where r is the number of productions being considered, i.e., r = |R|, w(£;;)

was defined in eq. 5.1, and
1 if[R;€ Sand R; € (R—S5)]or [R; € (R—S)and R; € 5]

ij =
0 otherwise.

The function ce(R;) determines the quotient between the sum of the edges
that are connected to the vertex of R; and that cross the cut (5, R—.95), and the
sum of the edges that are connected to the vertex of R; and do not cross the cut
(S, R—15). A high value for cc(R;) indicates that the most strong connections of
the production R; are crossing the cut, and therefore R; should be transferred

to the other set.

TWO-PARTITIONS(R, £, w, M)

1S90

25 — SU{R;/ W(R;) is maximum }

Jfori—1to M—1

4 do S — SU{R;/ Ri € (R—5) and cc¢(R;) is maximum }

5 return S
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The parameter M in TWO-PARTITIONS indicates the number of produc-
tions to be transferred to the new set 5. The first production to be moved to 5
is the one that has the maximum cumulative weight. The production with max-
imum cumulative weight has strong connections in PRG with other productions
and will attract those productions to the new set. The cumulative weight of a

vertex is measured by the function W : R — Z by equation 5.3.

N-1
W(R;) = Z_: w(Eij), (5.3)

where N is the total number of productions in the production system program.

For the analysis of time complexity of the algorithms presented in this chap-
ter, the asymptotic upper bound O-notation is used. This notation was intro-
duced as early as 1892, and its use is advocated by Knuth [46], and Cormen et
al. [13].

PRG can be built in O(N (a*+¢?)) time complexity, where a is the maximum
number of antecedents, and ¢ is the maximum number of consequents in any
production. In step 2 of TWO-PARTITIONS, it is necessary to compute the
cumulative weight W(R;) of every production, which takes O(N?) time. The
selection of the maximum can be done as part of the computation, without
additional complexity; therefore, step 2 has complexity O(N?). For step 3, the
values of cc(R;) are stored in a vector that is initialized with zeros (.5 is empty
in the beginning). When a vertex is moved to S, this vector can be updated
in O(N) time and the new maximum can be selected also in O(N) time. Step
3 has to execute up to N/2 times, resulting in a time complexity of O(N?)
for step 3. Therefore, considering the construction of PRG, the complexity of
TWO-PARTITIONS is O(N (a* + ¢* + N)). Assuming that N > (a? + ¢?),
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this can be simplified to O(N?).

The running time T'(N,n) of PARTITION-1 is described by the recurrence
O(N?) if n =2,

T(N.n)=1{ T([2N/3],2)+ O(N?) ifn =3,
T(LN/2), [n/2]) + T(TN/2], [0/2]) + N ifn > 3,

where N is the number of productions to be partitioned, and n is the number

of partitions to be produced. After ¢ iterations, the recurrence becomes

T(N,n) ziT<N ")+N2§ !
? 22722 ]:0 2]

Replacing i by log n (the number of times PARTITION-1 actually iterates)
and computing the summation, we obtain

T(N,n) = nT(%,l) +oN? (1_ l)

n

that results in a time complexity of O(n+ N?). With the reasonable assumption
that the number of productions is much larger than the number of processors

in the machine, the time complexity of PARTITION-1 becames O(N?).

5.4  Algorithm 3

One drawback of algorithm 1 is that once a cut is made and two productions
are allocated to different subsets, there is no possibility of placing them into
the same subset later on. In other words, after the first cut, the optimization is
local to a subset of productions. To improve this aspect, we designed a recurrent

algorithm that was assigned the number 3. Algorithm 3 uses a fitness function
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F: R x5 — 7 to choose the next production to be assigned.
N-1
F(Ri, k) = Y w(Ei) e, (5.4)
=0

where S} is a subset of productions assigned to the k' processor. Initially all

productions are in R and all subsets 5} are empty, and

2 ifR]‘ESk
k=41 ifR;€R
-1 ifR]‘ESm#Sk

The value of the fitness function indicates how the production represented
by the vertex R; fits in the subset Sy. F(R;,5k) computes a weighted sum
of the connections between vertex R; and all other vertices in PRG. A strong
connection with a vertex that has been assigned to a set other than S% reduces
the fitness of R; to Sy, while a strong connection with a vertex already in 5}
increases the fitness. A strong connection with a vertex that has not been
assigned to any subset has an intermediate value because S may be able to

attract both vertices.

The arguments for algorithm 3 are the set of productions R, the arcs in PRG
FE, the weight function w, the fitness function F, and the number of processors

in the machine n.

Algorithm 3 starts by placing one production in each subset, and then pro-
ceeds to add one more production to each subset until all productions are as-
signed. The efficiency of the algorithm is highly dependent on the initial place-
ment. A pathological set of weights in PRG might cause this algorithm to

produce a poor partition.
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PARTITION-3(R, E, w, F, n)

lfor k—0ton—1

2 do S; — {R; / F(R;,Sk) is maximum }

3 R — R—{R;}

4 for k — 0to R=0 step 1 mod n

5 do S; — Sy U{R; / R; € R and F(R;,Sk) is maximum }
5 R — R—{R;}

Initially, all productions are in R, and all subsets S are empty. Therefore
the initial fitness is determined only by R; and is identical to W(R;) defined by
equation 5.1. The computation of W(R;) for all productions takes O(N?) time.
The fitness is stored in an array whose initialization takes O(n/N') time. Where
n is the number of processors in the architecture. Whenever a production is
removed from R and placed in a subset 5;, only a constant number of positions
in this array need to be modified and each modification can be done in time
O(1). If the maximum of a previous iteration is also stored, the new maximum
can be found in O(1) time. The for loop executes (N — n) times. Therefore
the time complexity is O(N? 4+ nN + N —n) = O((n + N)N). Assuming that
N > n, we obtain a time complexity of O(N?) for algorithm 3.

5.5 Algorithm 5

Initial studies with a parallel architecture simulator showed that the main
factor limiting further reduction in execution time is the time spent in the
matching phase in the Rete Network. Consequently, we designed an algorithm

that balances the load in each processor considering the firing frequency of each
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production. The objective is to obtain an equal amount of matching assigned
to each processor. We are assuming that productions fired more frequently also
produce more activity in the matching engine. The amount of work assigned to

each subset 5; of the partition is computed by the work load function £ : 5 — Z.

N-1
L(Si) = > A(R)) F(R)) v, (5.5)

where N is the total number of productions, A(R;) is the number of an-
tecedents in production R;, and F(R;) is the firing frequency of production R;

measured in a previous execution of the same program, and

1 if R; is assigned to 5;

0 otherwise.

PARTITION-5(R, F,w, F,n, L)
lfork—1ton
2 do S; — {R;/ F(R;,Sx)=max; F(R;,S;)}

3 R— R—{R)

4 while R # ()

5 do S; — Sy U{R; / R; € R and L(S;) = min; L(5;)
and F(R;,S;) = max; F(R;, )}

6 R— R—{R)

Algorithm 5 is similar to algorithm 3, except that instead of assigning one

production to each processor regardless of their work load, a new production
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is assigned to the processor with minimum work load. In the end the number
of productions assigned to each processor might be different, but the work load

will be evenly distributed among the processors.

Like in algorithm 3, an array with the initial values of the fitness can be
constructed in time O(N?+nN). The values for the work load can also be kept
in an array whose initialization takes time O(n). Both the fitness array and
the work load array can be updated in time O(1) after each assignment. The
while loop is repeated N —n times. Therefore algorithm 5 has the same time

complexity as algorithm 3: O(N?).

5.6 Algorithm 6

A more detailed analysis of matching in the Rete Network reveals that most
of the matching time in consumed in the execution of tests in S-nodes. Our
simulator allows for the measurement of the number of (-tests performed in
the antecedents. Algorithm 6 uses this measurement to estimate the work load
associated with each production. We define the function B : § — ZT, which
computes the number of G-tests that are expected to be performed by the pro-

ductions placed in set 5;.

k
B(S)) = > B(R)) i, (5.8)

J
where k is the number of productions in set 5;, v;; has tha same definition as
for algorithm 5, and B(R;) is the number of beta tests performed for production

R;. B(R;) is measured in previous runs of the same production system.

The strategy used in algorithm 6 consists of selecting the processor with the
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least number of beta tests, and then finding the production best fitted for this
processor. Productions strongly related to other productions in PRG are the
first ones to be assigned to processors. The algorithm ends when there are no

more productions in P.

PARTITION-6(R, E,w,n, F, B)
1 while S # ()
2 do Sy~ SpU{R;/R; € Rand
B(S)) = min; B(S5;) and
F(R;, Sx) = max; F(R;, Si)}
3 S —S—{R;}

The values for the function B(S%) can be stored in an array which initial-
ization takes O(n) time. The initialization of an array for the fitness function
F(R;, Sk) takes O(nN + N?) time. If the minimum and maximum are stored,
their values can be updated at every iteration of the loop in time O(1). There
is a constant number of positions in the arrays F' and B to be updated at each
interaction and their updating takes time O(1). The while loop is executed in

N times. Therefore the time complexity of algorithm 6 is also O(N?).

5.7 Simulation Results

Figure 5.2 shows speedup curves for the benchmarks south2 and patents
for machines with one up to twenty processors. Observe that algorithms 5 and
6, which use dynamic information about the amount of processing due to each

production in previous run, are generally superior to algorithms 1 and 3 that
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do not use such information. This superiority tends to appear more clearly in

machines with a larger number of processors.

As Oflazer indicated earlier, the gain in speedup due to choosing a good
partition algorithm is limited [64]. However, this gain is obtained without any
extra hardware cost. Furthermore, all algorithms presented in this chapter have
the same asymptotic time complexity and are straightforward to understand and
implement. Therefore we recommend the use of algorithm 6 for the architecture

model presented in Chapter 3.

The speed yielded by different partition algorithms is closely related to the
performance of individual components of the machine. When we consider a
multiple functional Rete Network in Chapter 7, the amount of time spent in
matching will be reduced, and so will the importance of balancing the matching
load. Consequently, the advantage of algorithms 5 or 6 over algorithms 1 or 3

will be diminished.
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Chapter 6

Performance Evaluation through

System Simulation

“Although, on the surface, rule-based systems appear
to have a lot of parallelism, in practice the true speed-
up achievable from parallelism is quite limited, less
than tenfold.”

(Anoop Gupta et al., 1989) [29].

To evaluate the performance of the architecture presented in Chapter 3,
we developed an event driven simulator. The input to the simulator consists
of production system programs written in OPSh syntax. These programs are
expected to be correct under the serializability criterion; the programmer must
not rely on any knowledge about conflict set resolution strategy to guarantee

correctness. For the syntax and lexical analysis, the tools yyacc and yylex were

72
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used?® [4].

The simulator performs the dependency analysis described in section 3.1 and
implements the partitioning of productions according to algorithm 6 presented
in Chapter 5. The representation of productions is augmented with the speci-
fication of its type — local DNT, local INT, or global; of the type of each one
of the antecedents — local, pseudo-local, or shared; and the type of each one
of the consequents — local or shared. This information is used by the IFE to
decide the actions to be taken upon firing each production. After finishing the
partitioning, the simulator creates the data structures necessary to represent
each processor and the broadcasting network, and sets up the initial states of

the Rete Networks using the initial database.

The simulator implements N + 1 independent processing units, namely the
N processors plus the network controller. In the simulated architecture, many
events might occur at the same time in different processors or even within a pro-
cessor. For example, the matching in the Rete Network is completely concurrent
with the snooping of the broadcasting network by the Snooping Directory and
with the selection of an instantiation by the Firing Engine. Another situation
is the broadcasting of a token in the network: the Snooping Directory of every
processor needs to perform, at the same time, a search to verify if the token
needs to be captured for local processing. To guarantee a timely and orderly
execution of events in a sequential computer, the simulator has a main routine
that does not reflect any specific structure in the machine but is necessary to
control the sequencing of events. This main routine keeps an event heap that

contains the earliest event in each unit. Each unit has a local event heap with

!The front-end conversion of the OPS5 syntax into internal data structure was built by
Anurag Acharya at Carnegie Mellon University for PPL [1, 3].
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all the events scheduled for that unit. The main routine selects the next event
(the earliest in time), and calls the routine corresponding to that unit. In the
process of executing the next event, this unit might generate one or more new
events that are inserted in the local heap. Upon finishing the event execution,
the unit returns to the main function the time of the new next event for that

unit. The simulation terminates when there are no more events to be executed.

6.1 Performance Measurements

The benchmarks described in Chapter 4 were used to evaluate the perfor-
mance of the proposed architecture. First we measured the amount of speed
improvement over an architecture with global synchronization and without over-
lapping between matching and selecting-acting within a processor. Then we
investigate the effectiveness of the use of associative memories. Finally we ob-
tain estimates for the size of associative memories needed for each one of the

benchmarks and for the level of activity in the bus.

6.1.1 Parallel Firing Speedup

To measure the advantages of parallel production firing and of the internal
parallelism in each processor, we define a globally synchronized architecture that
is very similar to the one proposed in this dissertation, except that it performs
global conflict set resolution to implement the OPS5 recency strategy. This
synchronized architecture is also very similar to the one suggested by Gupta,
Forgy, and Newell [29]. In this architecture, each processor reports the best lo-
cal instantiation to be fired to the bus controller. The bus controller selects the

instantiation whose time tag indicates it to be the latest one to become fireable.
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This added decision capability in the bus controller implements the recency
strategy to solve the conflict set. The processor selected to fire a production
broadcasts all changes in the bus. A processor only selects a new candidate to
fire when the matching in the Rete Network is complete. The bus controller
waits until all processors report a new candidate to fire. This mechanism repro-
duces the global synchronization and conflict set generation/resolution present
in many of the previously proposed architectures. In order to have a fair com-
parison, we considered that the synchronized architecture uses an associative
memory to store and solve the local conflict sets, and that the bus controller

chooses the “winner” in one time step.

Since the synchronized architecture also uses associative memory to store
and search the local conflict sets, the comparisons of Figures 6.1 and 6.2 do not
reflect the advantages of using such memories in our architecture. We delay this

analysis until Section 6.1.2.

Figure 6.1 plots the speed improvement for the benchmarks life, hotel,
patents, and waltz2. In this and the next section, we will observe a signifi-
cant difference in performance and memory requirements between this group of
benchmarks and the ones based on CTSP (south, south2, moun, and moun2).
This is due to a gap in complexity between the two groups of benchmarks:
the CTSP programs have higher data locality, larger number of productions,
and larger data sets. Due to these characteristics, CTSP programs reflect more
closely the characteristics encountered in production system applications in in-
dustry. The curve names starting with “s” indicate measures in the synchro-
nized architecture; the curve names starting with “a” indicate measures in the
architecture proposed in this paper. All measures compare a given configura-

tion with the speed of a single processor synchronized architecture. For the
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Figure 6.1: Speed improvement obtained by proposed architecture (prefix
a) and by a reference synchronizing architecture (prefix s).

benchmarks presented in Figure 6.1, there is not much distinction between the
two architectures when they have a single processor. This indicates that the
parallelism between the matching phase and the selecting/execution phase does
not result in much speed improvement for these benchmarks. Yet, even with
these “toy problems”, the parallel firing of productions and the elimination of

the global synchronization provides significant speed improvement.

Figure 6.2 shows the comparative performance for the CTSP benchmarks.
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Figure 6.2: Speed improvement obtained by proposed architecture (prefix
a) and by a reference synchronizing architecture (prefix s).

Here, significant speed improvement is observed over the synchronized archi-
tecture even for the single processor configuration. This measures the amount
of speed that is gained due to the parallelism between matching and select-
ing/firing. The apparent superlinear improvement in speed in the curves of
Figure 6.1 reflects the fact that these curves are showing the combined perfor-
mance gain due to two different factors: intra and interprocessor parallelism. To
obtain the speed improvement due exclusively to parallel production firing, the

reader should divide the values in the “a” curves by the values in the same curve
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for a single processor machine. These results confirm our initial conjecture that
the elimination of the global synchronization in a production system allows the

construction of machines with significant performance gain.

The number of computing cycles performed by each benchmark in the syn-
chronizing architecture with a single processor machine is presented in Table
6.1. This measurement consider an ideal conflict resolution in which the conflict
set is stored in an associative memory in each processor and the global conflict
resolution is performed in a single cycle in the bus controller. A benchmark

0'9 cycles to process in the syn-

that is not shown in the graphs (moun) took 1
chronizing architecture. Considering that the actual conflict resolution time is
something between 10% and 50% of the processing time [29, 55, 48], we esti-
mate that the same benchmark would take twice as many cycles in a sequential
computer. Therefore, this benchmark would be executed in about half an hour

in a sequential machine with a 100 MHz processor. A complete study of the

scalability of the CTSP benchmarks is presented in appendix B.

Benchmark Speed Improvement # of

mean | o, | max | min cycles
life 1.14 | 0.35| 1.28 | 1.02 | 5.4 x 108
hotel 1.89 | 1.56 | 2.50 | 1.14 | 2.8 x 10°
patents 1.02 | 0.12 | 1.26 | 0.87 | 2.1 x 107
south 5.84 |9.03 | 10.18 | 2.16 | 1.1 x 10%
south2 | 3.53 |3.95| 5.79 | 1.77 | 4.4 x 107
moun2 4.90 | 5.10 | 8.07 | 2.87 | 9.0 x 108
waltz2 1.40 | 0.62 | 1.56 | 1.14 | 8.2 x 107

Table 6.1: Speed improvement over synchronized architecture using the
same number of processors.
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Another way to compare the two architectures is to measure how much
performance gain the proposed architecture has over the synchronized one with
the same number of processors. Measurements were made for machines with
one through twenty processors. Table 6.1 shows the mean and the variance
for the speed improvement obtained with each configuration. It also shows
the maximum and minimum speed improvement obtained with any number
of processors. Because our architecture implements “eager” production firing
without generating a global conflict set, in rare cases, some extra production
execution might cause it to be slower than the synchronized architecture (see the
minimum speed improvement for patents). The gap in performance between
the CTSP and the other benchmarks in Table 6.1 indicates that the proposed
architecture is very effective in extracting parallelism from PS programs that

posses data locality.

6.1.2 Effectiveness of Associative Memories

An associative memory or content addressable memory (CAM) is an storage
device that retrieves data upon receiving a partial specification of its contents.
We adopt Wade’s terminology and call a traditional memory accessed by ad-
dresses a reference addressable memory (RAM) [88]. CAMs are most beneficial
for systems in which storage devices are often searched for a cell with a given
pattern. The most well known applications of the CAM mechanism are the
tag matching in a cache memory and the data checking in a snooping cache or
directory. When a CAM receives a request for a piece of data, it searches all
positions of the memory and reports the contents of the records that match the
specified pattern. Obvious advantages of a CAM over a RAM are the possibil-

ity of parallel matching when enough hardware is available to implement it, the
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liberation of the processor during memory searches, and reduced traffic between

processor and memory [82].

In Chapter 3 we stated that the design of the architecture is based on the
premise that the use of CAMs significantly improves the processing speed. In
this section we address questions that comes to the mind of an inquisitive com-
puter architect when analyzing the architecture. First, assume a machine config-
uration in which all memory components are CAM: what would be the impact
of replacing one of these CAMs for a RAM? Second, consider a machine in
which all memories are RAM: how much speedup would be gained if one of

these memory components were to be replaced for a CAM?

To evaluate the speedup obtained by the use of CAMs, we implemented op-
tions in the simulator that allow us to specify whether each one of the individual
memory components — AFIM, FIM, and PMM — is a CAM or a RAM. If a
component is specified as a RAM, the simulator counts the number of accesses
performed until the searched data item is found. This number is multiplied by
the RAM access time to find the time for that particular access. If a component

is specified as a CAM, every access takes the same amount of time.

The effectiveness of a CAM in the architecture depends on the amount of
data stored in the memory, the frequency of access, and whether its accesses are
in the critical path of execution. Thus, the amount of speedup obtained by a
given combination of CAM/RAM memories depends on the production system
program that the machine is executing. For a production system program that
maintains a large number of productions in the conflict set, the use of CAM
for AFIM and FIM might result in a considerable speed improvement. If the
conflict set is small, the use of CAM for these memories only improves the speed

slightly.
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To set up experiments to measure these speedups, we defined two quanti-
ties: Speedup(M, B) and Slowdown(M, B). Speedup(M, B) is the amount of
speedup that results when the memory component M is replaced for a CAM
in a machine that was originally formed only by RAMs. M designates one of
the memories component — PMM, AFIM, or FIM — and B is a benchmark

program. Fquation 6.1 shows how the speedup of PMM is measured.

Time(PMM,, FIM,, AFIM,, B)
Speedup(PMM, B) = 6.1
peedup( B) Time(PMM,, FIM,, AFIM,, B)’ (6.1)

where M, indicates that the memory component M is RAM and M. indicates
that the memory component M is CAM. Time(PMM,, FIM,, AFIM,, B) is the
amount of time taken to execute the benchmark B with the architecture con-

figuration specified.

Considering a machine that uses only CAMs, Slowdown(M, B) measures
the reduction in speed that would occur if the memory component M were to
be replaced for a RAM. Equation 6.2 shows the measurement of the slowdown

that results from the transformation of PMM from a CAM to a RAM.

Slowdown(PMM, B) Time(PMM,, FIM,, AFIM., B) (6.2)
owdaown = . .
’ Time(PMM,, FIM,, AFIM,, B)

For a given benchmark program the amount of speedup obtained by using
CAM memories varies with the number of processors used in the architecture.
Table 6.2 presents the average speedup for machines with one up to twenty
processors. In practical designs, CAMs might be slower than RAMs: either
because they are constructed with older technology, or because they need to use

more silicon area for the comparator circuits. To account for these factors we
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introduce a technology factor T that indicate how much slower a basic operation
such as the reading or writing of a single data element was considered in this
comparison. Table 6.2 shows measures for a machine with CAMs with the same
speed as the RAMs (7' = 1) and for a machine with CAMs that are four times
slower (1" = 4) than the RAMs. Observe that there is no significant difference
in speedup between the two measures, indicating the advantage of the use of

CAMs, even if they are slower than RAMs.

Benchmark | T PMM FIM AFIM All
Bench T | Speed | Slow | Speed | Slow | Speed | Slow | Speed
hotel 1 3.0 29.3 1.0 1.6 1.6 13.5 | 45.5
hotel 4 3.0 30.1 1.0 1.6 1.5 13.6 | 45.3

life 1 2.8 2.1 1.3 1.0 1.6 1.2 3.4
life 4 2.8 2.1 1.3 1.0 1.6 1.2 3.4
moun? 1 3.3 4.9 1.0 1.0 1.8 2.5 8.5
moun? 4 3.3 4.9 1.0 1.0 1.7 2.5 8.5
patents 1 1.9 1.6 1.0 1.0 1.4 1.2 2.3
patents 4 1.9 1.6 1.0 1.0 1.4 1.2 2.3
south2 1 3.4 10.0 1.0 1.1 1.4 4.3 14.8
south2 4 3.3 10.2 1.0 1.1 1.5 4.4 14.9
waltz2 1 1.8 1.4 1.0 1.0 1.9 1.6 3.0
waltz2 4 1.8 1.5 1.0 1.0 1.9 1.6 3.0

Table 6.2: Speedup due to use of CAMs?.

Table 6.2 shows the speedup and the slowdown due to each piece of asso-
ciative memory for each one of the benchmarks presented in Chapter 4. The
last column shows the speedup that compares a configuration with all three
memories associative against one in which all three memories are RAM. Table

6.2 shows that replacement of just one memory for a CAM results in quite low
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speedup. This limited speedup is result of the slow operation of the RAMs in
the machine. Only when all three memories are made CAMs, the processing
speed shows considerable improvement. The numbers in the slowdown columns
show that the use of RAM in PMM or AFIM alone might cause significant re-
duction in speed. Both experiments show that the use of CAM for FIM is not
very important. Overall, these results confirm our initial conjecture that the use

of CAMs can provide considerable speedup in production system architectures.

6.1.3 Associative Memory Size

The next question that the inquisitive computer architect must ask is: how
large do these associative memories need to be? The simulator has an option to
report the “crest”® of each memory component in any given run. Table 6.3 shows
the maximum and the average crest over machines with up to twenty processors.
The average crest is the average of the largest memory needed for each machine
configuration. The maximum crest indicates the minimum memory size needed
to run that specific benchmark. Observe that for some memory/benchmark
the average crest is several times smaller than the maximum crest (see AFIM
in moun2 and PMM in waltz2). If memory size becames a concern in the
construction of the machine, a RAM can be used to contain overflow. The
absence of a direct correlation between the size of the memory crest and the
speedup and slowdown shown in Table 6.2 reflects the fact that the processing
speed is not solely dependent on the amount of data stored in each memory: it

also depends on the frequency and time of access of these memories.

2Each number is an average of 20 values, obtained for systems with 1 through 20 processors.

®The crest of a memory component is the maximum amount of data stored in that memory
component in any processor of the machine for a given benchmark and a specified number of
Processors.
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Bench- PMM FIM AFIM FIM(sync.)
mark Max Ave | Max | Ave | Max | Ave Max Ave

hotel 3200 | 1436 | 395 | 216 | 1030 | 699 3580 1178

life 2877 | 2643 | 690 | 584 | 3313 | 1472 || 23030 | 8787

moun2 | 27899 | 23303 | 2580 | 727 | 15634 | 3042 || 313400 | 46747

patents | 776 739 605 | 179 | 1549 | 449 1410 426

south2 | 4788 | 2822 | 350 | 95 1159 | 611 47205 | 8414

waltz2 | 3573 | 1109 | 1250 | 870 | 2797 | 1688 5785 3299

Table 6.3: Maximum and average “crest” for memory size (bytes).

The speed comparison with the synchronized architecture presented in sec-
tion 6.1.1 considered that both architectures used associative memory to store
and search the conflict set. The average and the maximum crests of the associa-
tive memories for the synchronized architecture are presented in the rightmost
columns of Table 6.3. Observe that for most of the significant benchmarks, the
synchronized architecture needs much larger memory. For the CSTPs bench-
marks (moun2 and south2) the maximum crest in the synchronized architecture
was ten times larger than in the architecture proposed in this paper. This evi-

dences that the “eager firing” mechanism also reduces the demand for memory.

6.1.4 Use of Bus

A legitimate concern about any bus-based parallel architecture is the limita-
tion of a bus as a broadcasting network. In Chapter 3 we conjectured that bus
bandwidth is not a limitation in the architecture proposed. Table 6.4 presents
the measurements for the percentage of time that the bus is busy assuming that

bus bandwidth is the same as that of local memory. These measures include the
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Benchmark Bus Utilization(%)

4 proc. | 8 proc. | 16 proc.

hotel 10.9 20.9 23.7
life 0.83 1.38 2.02
moun?2 2.25 3.83 4.71

patents 0.68 0.89 1.08

south2 4.97 8.31 9.72

waltz?2 1.36 1.79 1.76

Table 6.4: Percentage of time that the bus is busy.

arbitration time and the token broadcasting time. Observe that technological
limitations would have to render the bus much slower than the memories before

the bus speed becames a concern in this architecture.



Chapter 7

Rete Network with Multiple

Functional Units

The architectural model presented in chapter 3 and evaluated in chapter 6
assumed that the matching of the knowledge base with production antecedents
was performed by a single functional unit Rete Network. A closer look at
Production System execution on this model reveals that the bottleneck is in
the processing of tokens in the S-nodes of the Rete Network rather then at the
associative memories or in the communication bus. This motivates the use of
a multiple functional unit Rete Network within each processor. Because the
fraction of time spent in a-nodes is very small, this study concentrates on the
effect of parallelizing the execution of tokens at the f-node level while using a
single functional unit specialized for a-node matching. We refer to a functional
unit that executes tokens in #-nodes as a f-unit. An a-unit is a functional unit

that executes tokens in a-nodes.

The proof of correctness established in chapter 3 assumed that tokens were

86
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processed in the Rete Network exactly in the same order in which they arrived.
The use of multiple S-units adds complexity to the problem of synchronizing
the matching of tokens in the Rete Network with the firing of productions in the
Instantiation Firing Engine. To ensure a correct operation of the multiple /-
unit architecture, two synchronizing structures are added: an In-Order Buffer
and a Re-Order Buffer. This chapter presents the organization for this new
Rete Network scheme, the solution for the synchronization problem, and some
simulation results that indicate that a considerable improvement in the machine

performance is obtained with the use of a modest number of S-units.

7.1 Multiple 3-Unit Rete Network

In the organization presented in Figure 7.1, the a-unit is responsible for
processing tokens in a-nodes. FEach incoming token is sequentially tested against
all a-nodes of the network. Whenever there is a match with an a-node, the a-
unit replicates the token and attach to each copy the identity of one of the
[-nodes that are successors of the a-node where the match occurred. These
new tokens are then forwarded to the f-units. Therefore the processing of a
single token in the a-unit may result in the generation of many tokens to be
inserted in the external 5-queue. Note that G-units also share an internal input

queue for tokens generated by -nodes.

To reduce the average time that tokens spend in the Rete Network, a token
placed in the external queue is processed only when the internal queue is empty.
A free -unit will take the first token from the queue, read the memory locations
corresponding to the -node to which the token is destined, execute all the j3-

tests and then place the newly generated tokens at the end of the internal queue.
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External

Output

unit

Buffer | to Production

Firing Unit

Figure 7.1: Rete Network with m §-Units

When a token destined for a P-node is produced by a S-unit it is placed in the

Output Buffer to be forwarded to the production firing unit.

This study does not consider the use of multiple a-units. Therefore, the
amount of speedup in the Rete Network, Sge(m), according to Amdahl’s Law
[37], is limited by the amount of time spent in the non-parallelized portion of

the algorithm.

T, + Tp(1)

T. & Ta(m) To(m)’ (7.1)

SRete(m) =

where m is the number of S-units in the architecture, T, is the average amount
of time spent in a nodes, and T3(m) is the average amount of time spent in 3
nodes when m identical §-units are used. The maximum speedup that can be

obtained with such an architecture is given by

lim Spgete(m) = 1 + Tﬁ—(l) (7.2)

m—o0 Toz

7.2 Synchronization Issues

Because multiple tokens are simultaneously processed in the §-units, a care-

ful consideration of the order in which the results appear at the output is nec-
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essary to guarantee correct results. The organization presented in Figure 7.1
allows out-of-order execution of tokens in the G-units and might cause token
deletions to be processed before the corresponding additions. Mechanisms are
necessary to ensure that out of order processing of tokens do not lead to wrong
results. Simple solutions such as allowing only tokens originated from a sin-
gle external token to proceed to the [-units are too conservative and might
eliminate the advantages of a multiple beta unit organization. It is necessary
to create a synchronization mechanism that imposes minimum overhead and

guarantee correct results in every situation.

Qo In-Order
Re-Order

unit Buffer

Buffer

Figure 7.2: Synchronizing Buffers in Rete Network with m §-Units

The solution shown in Figure 7.2 uses an In-Order Buffer (I10B) and a
Re-Order Buffer (ROB). IOB prevents conflicting tokens from entering the -
unit queues simultaneously. ROB assures that changes to the conflict set are
delivered to the instantiation firing unit in the same order as the arrival of the
external tokens that caused these changes. The Output Buffer of Figure 7.1
is included in the representation of the Re-Order Buffer in Figure 7.2. The
idea of using buffers to overcome synchronization problems is borrowed from

superscalar and superpipelined architectures [15, 75, 77].
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7.3 In-Order Buffer

The purpose of the In-Order Buffer is to prevent two conflicting tokens from
proceeding to the S-units while allowing non-conflicting tokens to be processed
without delay. Two tokens are conflicting if one of them enables and the other
disables the same production. To decide whether two tokens are conflicting,
TOB uses the type of action specified by the tokens and the identification of the

[-node to which they are destined.

Before the organization of IOB is presented, it is necessary to discuss the
internal organization of the Rete Network. By convention, the children of a
Rete Network node are labeled as “left” and “right” children. All a-nodes are
left children of the root node. The root node is the only parent of each a-node.
Each S-node is associated with an antecedent of a production. A sign associated
with the 3-node indicates whether this antecedent is negated. We will notate
the sign of the i B-node with S(3;). A S-node has two inputs (or parents).
The left parent of a S-node is always the a-node that performs the a testing in

the antecedent associated with the g-node. If the antecedent associated with a

node j; is negated, S(f;) = —1, otherwise S(8;) = +1.

The right parent of a S-node might be another 3-node or an a-node. If it is
an a-node, it must be the first antecedent of a production and therefore cannot
be negated. If the right parent is a S-node, it is the result of a join operation
of at least two independent antecedents of a production and cannot be negated

either.

Each production R, has a corresponding P-node in the Rete Network. A
production that has a single antecedent has no need for join operations and no

[-nodes. In this case the left son of an a-node is a P-node.
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We say that a F-node 3; belongs to a production R,, notated by 5; € R,
if there is a line of successors (or a path of F-nodes) in the Rete Network that
connects f3; to the P-node of R,. In other words, if any token produced by j3;
can eventually lead to the addition or removal of an instantiation of R,, then
B; € R,. Because parts of the Rete Network might be shared among distinct

productions, a #-node might belong to more than one production.

At compile time, an analysis of the Rete Network is performed by transvers-
ing the network from the a-nodes to the P-nodes following the left son links.
This results in the construction of a two dimensional array with information
about the relationship among the beta nodes. This array has two bits in each
position and stores the function C : B x B — {0,4+1,—1}, where B is the set of
all §-nodes in the Rete Network.

0 if AR, € Pi/B; € R, and j3; € R,
C(Bi, B;) =< +1 if IR, € Pr/B; € R, and B; € R, and S(8;) = S(B;)
-1 if 3R, € P;/pB; € R, and B; € R, and S(ﬁz) + S(ﬁ]‘)

The array formed with the values of C(f3;, 3;) is used to identify pairs of
tokens that enable and disable the same production. The function of IOB is to

prevent such tokens from being executed concurrently in the F-units.

Tokens arriving at the Rete Network are classified according to the action
that they produce in the specified working memory element: add, delete, or
modify. Because a modify token is pre-processed in the a-unit producing an
add and a delete token, these are the only types of actions to be processed in
B-nodes. We define the function A : 7 — {41,—1}, where 7 is the set of all

possible tokens to be processed in any f-node.
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—1 if T; is a delete token
AT =

+1 if T; is an add token
After the processing in the a-nodes, a token is identified by a pair (7}, 3;)
that contains the token identification 7T; and the identification of the F-node
that will process the token. The decision of whether two tokens are conflicting
takes into account both values. Suppose that a token (77, 3;) is already in IOB
when a second token (7}, ;) arrives. The I0B decision to hold the second token

until the processing of the first one is completed or to forward the new token

immediately is based on the function Con flict(z,J).

Conflict(i,j) = .A(TZ) .A(T]‘) C(ﬁi, ﬁ]) (7.3)

If Conflict(i,j) is positive or equal to zero, there is no conflict between the
two tokens and the second token to arrive in IOB can proceed to the external
queue even if the processing of the first one has not been completed. Observe
that if the tokens are destined to -nodes that are not part of the same pro-
duction, the value of Conflict(i,j) is zero, independent of the types of action
in the tokens. Two tokens destined to the same f3-node are conflicting if their

actions are different. Therefore, by definition C(3;, 5;) = +1 for any node j;.

The In-Order Buffer is an associative memory with the organization shown
in Figure 7.3. It works as a queue with some additional decision logic. When
a token arrives in the buffer, a single associative search identifies whether there
is another token already in the buffer with which the new token conflicts. If no
conflicting tokens are found in the buffer, the token is placed at the end of the

buffer with NULL value in its conflicts_with field. Simultaneously, the token is
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Presence T; B; A(T;)  has_conflict conflicts_with

Figure 7.3: Organization of In-Order Buffer (IOB)

placed in the external queue to be processed by the S-units. If more than one
conflicting token is found, lets assume that the one closer to the end of the buffer
is stored in position k of the buffer. The newly arrived token is stored in the
end of the buffer with the value k stored in its conflicts_with field. The single
bit field has_conflict of the position k of the buffer is set to 1 indicating that
the completion of the processing of the token in this position is been awaited by
another token. Because there are no tokens waiting for the completion of the

newly arrived token, its has_conflict field is initially reset.

IOB_Arrival(7}, §;,tail)
1 10B(tail).T; — T
IOB(tail).8; — 6
10 B(tail).presence — 1
k — max;{j / (T;,5;) € I0B and Conflict(k,j) < 0}
if k=-1
then 10B(tail).conflicts_with «— NULL
forward (7}, 3;) to S-units
else 10B(tail).conflict_with — k
10B(k).has_conflict — 1

NollNe R N = B ) N
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In the algorithm that represents the sequence of steps for the arrival of a
token in TOB, the argument tail is the first empty position at the end of the
buffer. Step 4 is the associative search for possible conflicting tokens already in

the buffer.

The processing of a token that is recorded in IOB is completed when the to-
ken and all its successors have been processed. This completion is signaled by the
Re-Order Buffer. When a token has been completely processed, if its has_conflict
field is reset, the token is removed from IOB just by reseting the presence field.
If the has_conflict field is set, an associative search in the conflicts_with field of
the buffer identifies all tokens that were waiting for this completion. Suppose
that one of these tokens is found at position p of the buffer. The token at p
might still conflict with some other token that arrived before the token now
completed, but that has not been processed yet. Therefore, it is necessary to
perform another associative search in the buffer to identify whether any other
token ahead of p conflicts with p. If one such token is found at position ¢, the
value of the conflicts_with field of p is changed to ¢, the field has_conflict of p is
set, and the token in p remains waiting. If the token in p does not conflict with
any other token ahead of itself, its conflicts_with field is set to NULL and the

token is placed in the external queue.

Observe that the value stored in the field conflicts_with of a token that has
many conflicting tokens in the IOB is always the one closest to the end of the
buffer. It is likely that all other conflicting tokens will have left when this token
leaves. Therefore the second search for further conflicting tokens will find none
in most of the cases. Also, the presence of the single bit field has_conflict in the
TIOB prevents the execution of an associative search for tokens that do not have

any conflicting token waiting for them.
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IOB_Departure(7;, 5;)
1k < position of (77, 5;) in IOB
2 if I0B(k).has_conflict = 1
3 then foreach p € {r / 10B(r).conflicts_with = k}
4 do ¢ — max;{j / (1},5;) € I0B and
Conflict(p,j)< 0 and j < ¢}
if g = -1
then 10B(p).conflicts_with — NULL
forward (7}, 3,) to $-units
else 10B(q).has_conflict — 1

O 00 =~ O Ut

10B(p).conflicts_with — q

In the algorithmic presentation of the procedure for departure from 10B,
steps 1, 3, and 4 involve an associative search. The relationship j < ¢ indicates

that the token at position 7 precedes the token at position ¢ in the buffer.

7.4 Re-Order Buffer

The Re-Order Buffer has the function of identifying the departure of a token
from the system and guaranteeing that changes to the conflict set are delivered
to the instantiation execution unit in the same order in which tokens arrived at
the a-units. The ROB is actually comprised of two buffers, one for “a-tokens”
and one for “#-tokens”. In this context, an a-token is a token that arrived at the
a-unit. The processing of an a-token might produce a number of g-tokens to
be placed in the external queue. Once a token arrives at the Rete Network, it is

assigned a unique identification. Every token generated internally also receives
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a unique identification. The a-tokens are stored in the a-buffer according to its
arrival order. Whenever a 3 token is generated from an a-token, it is placed in

the g-buffer and the counter in the a-buffer is increased.

Presence Counter «_id

aid PAd Counter Presence

a-Buffer

G-Buffer

Figure 7.4: Organization of Re-Order Buffer (ROB)

The execution of a f-token might produce further tokens. We call these
tokens generated at the S-units internal tokens. For all practical purposes there
is no distinction between a (-token and an internal token other than that the
former is produced in an a-unit while the later is produced in a G-unit. The
identification of a 3-token is carried along by all its successors. Whenever a new
internal token is produced, the counter corresponding to its original 3-token is
incremented in the g-buffer. When an internal token is processed, this counter is
decremented. Whenever a 3-buffer counter reaches zero, the g-token is removed
from the buffer, the IOB is notified of the token departing, and the respective

counter in the a-buffer is decremented.

When an a-buffer counter reaches zero, the last 3-token generated by that
a-token is leaving the system. The token is removed from the a-buffer. Any
subsequent token that has a counter equal to zero can also leave. The memory

that stores changes to the conflict set is searched for changes that are associated
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with these tokens. After these changes are delivered to the instantiation firing

unit, the token is removed from the a-buffer.

7.5 Experimental Results

Tables 7.1 and 7.2 present the speedups obtained by increasing the num-
ber of processors and the number of beta units in the architecture of Figure
3.2. All measures presented represent architectures with a separate unit for
a-node processing. On the top of each column is the number of F-units in the

architecture.

The results clearly show the advantages of using multiple S-units. In general,
given limited resources, it is preferable to use fewer, more powerful processors
than a larger number of less powerful ones. For example, a 2 processor system
with five g-units per processor performs better than a five processor system

with two F-units per processor.

There are few situations in which increasing the number of beta units or the
number of processors (or both) results in a reduction of speedup. This happens
because: (1) the architecture utilizes a partially informed selection mechanism
that might result in the firing of extra productions; (2) for a given configuration
in an specific benchmark, the firing engine might select productions and wait
for the possession of the bus just to find out that the selected production is no
longer fireable and needs to be aborted. Therefore, Tables 7.1 and 7.2 should
be examined for the trends with the increasing of the number of processors and

beta units, and not for any specific value.

The higher speedup delivered by a faster, multiple functional unit Rete Net-

work confirms some early observations in production system research that the
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# of Beta Units

Bench. | # Proc 1 2 3 5 7 8 10
1 1.00 | 1.98 | 2.88 | 4.64 | 6.32 | 6.93 | 8.44
2 1.54 ] 3.02 | 450 | 7.30 | 9.78 | 10.62 | 13.09
5 2.70 | 5.28 | 8.03 | 13.45 | 18.71 | 20.83 | 23.48
7 4.02 | 7.90 | 11.41 | 19.71 | 22.13 | 22.83 | 23.68
10 5.34 | 10.56 | 14.79 | 21.28 | 23.63 | 24.07 | 24.55
15 6.20 | 12.82 | 18.55 | 22.07 | 23.40 | 23.79 | 24.49
20 7.05 | 14.23 | 19.45 | 22.22 | 23.49 | 23.98 | 24.61
1 1.00 | 1.99 | 2.87 | 4.03 | 4.80 | 5.05 | 5.42
2 1.73 | 3.17 | 4.05 | 5.07 | 5.61 | 5.78 | 6.03
waltz2 5 3.46 | 464 | 533 | 5.99 | 6.33 | 6.44 | 6.55
7 3.46 | 464 | 5.33 | 6.00 | 6.35 | 6.43 | 6.57
10 3.46 | 464 | 531 | 5.99 | 6.35 | 6.43 | 6.55
1 1.00 | 1.32 | 1.36 | 1.36 | 1.36 | 1.36 | 1.36
2 1.73 | 1.78 | 1.79 | 1.80 | 1.80 | 1.80 | 1.81
5 3.70 | 3.77 | 3.75 | 3.77 | 3.79 | 3.79 | 3.79
hotel 7 5.17 | 5.59 | 6.07 | 6.15 | 5.69 | 6.08 | 6.25
10 587 ] 6.96 | 6.64 | 6.96 | 6.76 | 6.90 | 6.83
15 595 | 7.7 | 7.6 | 7.22 | 7.25 | 7.30 | 7.28
20 5951 9.15 | 8.95 | 9.00 | 882 | 9.08 | 8.87

patents

Table 7.1: Speedups of a concurrent production system with multiple -
functional units.

matching phase of the execution constitutes a bottleneck. However, for some
benchmark, the improvement obtained by a faster Rete Network saturates with
a rather small number of functional units, evidencing the need for multiple

processors.



# of Beta Units
Bench. | # Proc 1 2 3 5 7 8 10
1 1.00 | 1.97 | 2.89 | 4.63 | 6.00 | 6.80 | 7.99
2 1.70 | 3.26 | 4.76 | 7.25 | 9.20 | 10.24 | 11.65
5 3.07 | 6.06 | 994 | 11.88 | 15.91 | 16.05 | 18.38
south 7 4.07 | 6.25 | 9.08 | 12.86 | 17.80 | 19.15 | 20.22
10 3.41 ] 6.71 | 10.05 | 15.63 | 18.42 | 19.58 | 20.73
15 4.22 | 8.03 | 11.29 | 16.07 | 18.77 | 20.54 | 21.21
20 4.38 | 8.50 | 10.32 | 15.12 | 20.80 | 21.60 | 22.27
1 1.00 | 1.96 | 2.86 | 4.34 | 5.62 | 6.20 | 7.12
2 1.75 | 3.43 | 4.84 | 6.69 | 8.08 | 8.66 | 9.94
5 3.06 | 5.59 | 7.73 | 10.85 | 12.70 | 13.03 | 13.75
south?2 7 3.61 | 6.86 | 9.45 | 12.98 | 15.50 | 16.26 | 16.95
10 4.21 | 7.60 | 10.22 | 12.87 | 14.75 | 15.06 | 15.03
15 4.45 | 8.33 | 11.07 | 14.94 | 17.12 | 16.49 | 18.05
20 4.58 | 8.44 | 11.48 | 15.27 | 17.14 | 17.43 | 17.93
1 1.00 | 1.94 | 2.81 | 4.40 | 5.82 | 6.44 | 7.58
2 1.85 | 3.41 | 4.97 | 7.31 | 9.11 | 9.87 | 10.90
5 3.43 | 6.53 | 893 | 12.67 | 15.03 | 15.88 | 16.29
moun2 7 3.98 | 7.30 | 9.74 | 13.29 | 14.77 | 14.99 | 15.18
10 5.02 | 9.13 | 12.30 | 16.42 | 19.13 | 19.89 | 20.23
20 7.24 | 12.98 | 18.18 | 25.84 | 30.43 | 32.09 | 33.91

Table 7.2: Speedups of a concurrent Production System with multiple -

functional units.
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Chapter 8

Analytical Model

Have you ever encountered a queue,
In which Poisson arrivals accrue?
In Statistics, I'm told

This assumption can hold...

... But it sure sounds more fishy than true!

(Ben W. Lutek) as quoted in [5].

Performance evaluation can be accomplished through measurement, simu-
lation, and analytic modeling [41]. Measurement consists of observing actual
values for specified parameters in an existing system. Simulation consists in
creating a model for the behavior of a system, writing a computer program
that reproduces this behavior, feeding the program with an appropriate sample
of the workload of the actual system, and computing selected parameters of
interest. In analytic modeling a mathematical model of the system is created

and its solution provides the performance evaluation. The problem with ana-
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lytic modeling is that few detailed mathematical models can actually be solved.
The good news is that even simplified models often deliver remarkably good

approximations for performance estimates [41].

Analytical modeling is a powerful and underused tool in the study of produc-
tion system machine performance. Yukawa et al. [93, 44] construct an analytic
model for the performance of Rete Network based on basic notions of probability,
utilizing a “back of the envelope” method similar to the one largely employed
by Cragon [15] for the analysis of superpipelined and superscalar processors.
Wang et al. [89] constructed an analytical model to measure performance of

parallel-rule firing production systems based on a transaction model.

In this research we use what Kant [41] describes as an “hybrid modeling”
method. We use the simulator described in Chapter 6 to obtain the parameters
necessary to evaluate the performance of the Rete Network with multiple g-units
described in Chapter 7. Based on these parameters, we construct an analytic
model for the processing of tokens in the Rete network. This model allows the
estimation of the improvement in the speed of the Rete Network when m g-units

are used.

This chapter presents an analytical model based on queueing theory to esti-
mate the speedup obtained by the use of multiple S-units in the implementation
of the Rete Network. For clarity, we start with a single S-unit system, introduc-
ing the generating function technique that is used to solve the analytic model
[90, 45, 41]. In section 8.3.2 we develop a model for a system with m servers,

and verify that it reduces to the single server model when m = 1.
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8.1 Single 3-Unit Architecture

In this section we consider an organization with a single S-unit and a single
a-unit. In section 8.2 the model is extended to represent an organization with
multiple G-units. A number of simplifications were necessary to construct the
analytical model for the Rete Network with multiple functional units. Delays
due to the synchronizing In-Order Buffer and Re-Order Buffer are not consid-
ered in the analytical model. Also we consider an organization with a single
queue for both external and internal tokens. Figure 8.1 shows the single S-unit

organization considered for the analytical model.

hj B-FIFO 5 Waiting

unit unit Station

to Production

Firing Unit

9i

Figure 8.1: Single 5-Unit System

Whenever a token matches an a-node while being processed in the a-unit,
a number of tokens are produced to be delivered to the 5-FIFO. This group of
tokens is called a bulk. The probability that a bulk has j tokens is measured by
h;. The model does not consider empty bulks, i.e., an arrival occurs when at

least one token arrives in the S-FIFO. Therefore hg = 0.

Whenever free, the g-unit will take the first token from the queue, read the
memory locations corresponding to the §-node to which the token is destined,
execute all the 3-tests and then place the newly generated tokens at the end
of the B-FIFO. If the processing of a token in a given f-node produces a new

tokens, and that f-node has b G-node successors, we consider that ab new tokens
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were generated and placed at the end of the queue. The probability that ¢ new
tokens are generated when a token is processed in a 3-node is given by g;. Also,
any new instantiation at a terminal node is sent to the production firing unit

that will select one (or more) production to be fired.

For the construction of the analytical model, we consider that there is a
“waiting station” at the f-unit output that allows it to hold all the tokens
generated until the end of the execution of the current token, and then adds all
of them at once to the queue. Although this assumption may not reflect the

actual behavior of a physical machine', it simplifies the analytical model.

8.2 Multiple 5-Unit Architecture

The organization considered for the construction of an analytical model for
the Rete Network with multiple S-units is shown in Figure 8.2. The only differ-
ence with the single S-unit architecture is the number of S-units used to process

tokens in G-nodes.

[B-units

Waiting

unit Station | to Production

Firing Unit

Figure 8.2: System with m §-Units

In an actual machine the B-unit would place tokens in the queue as they are produced.
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8.3 Analytical Model

In this model, the arrival of a bulk of tokens in the #-queue from an a-node
is called an external arrival. The arrival of a group of tokens from the waiting
station into the f-FIFO is an internal arrival. The moment at which a f-unit
finishes processing a token and places all the newly generated tokens (if any)
in the 3-FIFO is called departure. To develop the queueing theory model, we

make the following assumptions:

e The 3-FIFO has infinite capacity.

The overhead of placing tokens in the S-FIFO is zero.

The external arrival of tokens is a Poisson process.

The processing time for tokens in the g-nodes follows a Poisson process.

The main problem with the above assumptions is that events that occur in
the machine are not independent of each other. In fact they not only depend on
the specific production system being executed, but also change as the execution
of it proceeds. However, the simplified model obtained still produces a good
estimate for the amount of time that a token spends in the system, and thus
for the reduction in the average time spent by a token in an m F-unit system

compared with a single S-unit system.

In the next section we present the analytical model for the organization with
a single f-unit. In section 8.3.2 we introduce the model for the multi S-unit

architecture. Appendix C presents a detailed derivation for both models.



105

8.3.1 Single 3-Unit Model

The infinite Markov chain that represents the single S-unit system is pre-
sented as a state-transition-rate diagram in Figure 8.3. The circles represent
states and the arcs represent state transitions. The value associated with each
arc indicates the transition rate. In this representation, the system is in state &
if there are k tokens to be processed in the system, including the token currently
being processed. Let g; be the probability that the processing of a token in the
B-unit produces i new tokens, h; be the probability that an external arrival
brings into the system a bulk with j tokens, Ag be the external arrival rate into

B-nodes, and pg be the processing rate in S-nodes.

For clarity, not all transitions are shown in Figure 8.3. Consider the tran-
sitions from and to state k. Any state ¢« < k can reach state k in a single
transition. Except for state 0, every state has a self-transition with transition
rate pg g; indicating that upon finishing processing a token, the S-unit gener-
ated one token, therefore the number of tokens in the system remains the same.
The transition from state k£ to state k—1 indicates that the processing of the

current token produced no new tokens.

A transition out of state £ might occur due to an external arrival or due to
the completion of the processing of a token in the G-unit. Whenever ¢ > 1 tokens
are generated by the f-unit, the system changes from state k to state k4+:—1
upon the completion of B-unit processing. If a bulk of size j arrives from the

a-unit while the system is at state k, the system moves to state k+7.

The only possible transitions out of state 0 are due to the external arrival
of a bulk of tokens. The processing rate at state 0 is equal to zero. This reflects

the fact that no token can be processed when there are no tokens in the system.



Figure 8.3: State Diagram for a Single #-Unit System

We are interested in the steady state behavior of the system. At steady
state, the input flow must equal the output flow in each state. Therefore, we

can write difference equations for the system.
[ k-1 k
(s + ws D 9) Pk = Hpgopker + Ag D pihe—j + 1Y Pi ghoit1s (8.1)

=0 7=0 =1
where py, is the probability of k& tokens being in the system, including the token

being processed.

By definition, the sum of all probabilities ¢; is equal to unity. Using

> 2 gi =:;1, equation 8.1 can be written as follows:
k—1 k
(Mg + pa) bk = ppgoprar + Ag Y Pl + ps ) pige—iy1-  (82)

Examining the transitions into and out of state 0, we can write the boundary

equation 8.3.

Ao > hipo = pggom (8.3)

=0
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But the sum of all probabilities h; is also equal to unity. Therefore the

boundary equation can be simplified to equation 8.4
AgPo = g go P (8.4)

From equations 8.2 and 8.4, using Z-transforms (see Appendix C), we obtain

the generating function for the system with a single S-unit:

S m(l =) = G()
PO = 30— HO) 1 ol - GG (8:5)

where P(z), G(z), H(z), and py are defined as

o0

P(z) = kz_% pr 2", (8.6)

G(z) = ]i g 2", (8.7)

H(z) = ; hy, 25 (8.8)
p”Wﬁi%:wﬁ?@’ (59)
G = lim GW(z) = Z;igi (8.10)

H = lim HW(z) = i_o:m (8.11)

The utilization factor pg is a ratio between the external arrival rate Ag and
the [-unit processing rate pg; po represents the utilization rate in an M/M/1
system, i.e., a system with no bulk external arrivals and where new tokens are
not generated at the f-units. The value py is the utilization rate of a single
B-unit system with bulk arrivals and “feedback”, i.e., a system in which the
[(-units generate new tokens. This rate must be positive, therefore the first

moment of g;, G must be less than one. Also, for stability, we must have p; < 1
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what implies that

— < (8.12)
15 H
From the definition in equation 8.6 it follows that
ll—{% PM(z) = lﬂ;kpkz kak = N(1 (8.13)

where PU)(z) represents the first derivative of P(z) with respect to z, and N (1)
is the average number of tokens in the single §-unit system including the token

currently being processed.

For ¢; we verify that

hmG hmz (i—1)g; = 2:Zi(i—1)gi:
: =1
Zz gi — Zng =G? - @G, (8.14)
=1

where G(?)(2) is the second derivative of Gi(2) with respect to z, and G2 is called
the second moment of G(z). This indicates that the limit as z goes to 1 of the
second derivative of G/(z) is equal the difference between the second and the

first moments of G(z).

In a similar fashion, we can establish that

lim H®(z) = H? — H. (8.15)

z—1

Calculating the derivative of expression 8.5, taking the limit as z goes to
1 (see Appendix C), and using the results 8.10, 8.11, 8.13, 8.14, and 8.15, we
obtain the following expression for N(1) in terms of the moments of G(z) and

H(z).
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- T+ ((P-T
Ny = (U H (R G (8.16)
T 1-G

Since the values that appear on the right hand side of equation 8.16 can be
measured in the simulator described in Chapter 6, we can use this equation to
estimate the average number of tokens in the single S-unit Rete Network. We
use Little’s result to obtain the average time that a token spends in the system

[54, 45].

— N)(1-G)

T(1) = T (8.17)

where T(1) represents the average total time that a token spends in a single
[B-unit system, including the time the token is waiting in the queue and the
processing time. Observe that we have to consider the total arrival rate in
the 3-FIFO, i.e., external tokens originated in the a-nodes as well as tokens
generated in the S-nodes. In equation 8.17, the external arrival rate is Ag H

and the arrival rate due to generation of tokens in S-units is (1 — G)™'.

8.3.2 Multiple -Unit Model

In this section we are interested in estimating the average time that a token

spends in the m S-units organization shown in Figure 8.2.

Figure 8.4 presents the state-transition-rate diagram for the system with m
[B-units. The main difference from the single S-unit model is that the transition
rate out of states 1 through m —1 due to the processing of tokens in F-units
is proportional to the number of tokens in the system. This occurs because

if ¢ < m tokens are present, all tokens are being processed, and m—1¢ G-units



Figure 8.4: State Diagram for System with m §-Units

The m—1 boundary conditions of this system are expressed by equation 8.18.

The flow conservation equation for state k > m is given by equation 8.19.

For k < m:
k-1
(A + kpg)pr = (b + Dpggovess + Ag Y pihy +
7=0
k
Ro Y Ui Ghigr- (8.18)

=1
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For k > m:
k-1
(Mg + mupg)pr = mpuggoprrt1 + Ap Z Pl +
=0
m—1
Uy Z EPi Gh—it1 T
=1
k
B D D) Ghoji- (8.19)
i=m

To compute the generating function P(z), we have to sum equation 8.18
from 0 to m—1, and sum equation 8.19 from m to infinity, and then combine

both results and simplify (see appendix C). This results in

oy elz =GR YRS (m = k) pe 2t
PO = N T= 1 + musle = GG

(8.20)

Computing the limit of P(z) as z goes to 1, and making the result equal
to 1 (series sum property), we obtain relation 8.21. Equation 8.18 provides m
equations and m 4+ 1 unknowns. The relation expressed in 8.21 is the last equa-
tion we need to solve this linear system and obtain the values for the boundary

probabilities pg, p1, -y Pm-

mz_:(m—k)pk = m(l-pn) (8.21)
k=0
_ Ag
P S (10 (522)

To guarantee stability, the utilization factor p,, for the system with m -
units must be less than unity. Therefore the distributions of ¢; and h; must

have the following property:

H A
< 05 (8.23)
1-G mpg
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The average number of tokens in the system with m F-units, including the
tokens that are currently being processed, is obtained by computing the limit

of the first derivative of P(z) as z goes to 1 (see appendix C).

— m m+ i G?-G ek (m—k
N(m) = —" U+ ) | (G- | Lizo k(m )pk.(8.24)
2(1—py) o 1-G m (1= pn)
Note that expression 8.24 is identical to expression 8.16 when m = 1, as

expected. The first and second moments of G(z) and H(z) are obtained from
measures of g; and /; in the simulator. The boundary probabilities are obtained

by solving the system of linear equations mentioned previously.

8.3.3 Rete Processing Improvement

Using Little’s result, the ratio between the average time spent in the single
[F-unit system and the average time spent in the system with m (-units can be
obtained from the average number of tokens in each one of these systems. We

define the improvement in system time according to equation 8.25.

_ T _ N1
Lm) = 05 = oy (8.25)

assuming that the effective arrival rate of the system does not change with the
number of S-units. [;(m) indicates how much faster a token goes through the

[-node portion of the Rete Network when m S-units are used instead of one.

We purposely avoid calling this performance improvement speedup because
of the loaded meaning of that word. Speedup is a system level concept that
is applied to different settings, e.g. fixed-time speedup, fixed-load speedup,
memory-bound speedup, etc [37]. Also, except for very rare cases, the speedup

of a computer system is always a sublinear function of the number of processors



113

in the system. In our system, because of the nature of the incoming flow of
tokens, the amount of improvement in the time spent in the S-network can be
superlinear. This happens because the existence of occasional bursts of traffic
in the incoming flow of tokens can cause tokens to spend considerable amount
of time waiting in the S-unit input queue. Of course, if the incoming flow of
token were to be steady, the improvement in the time spent in the system would

be at most linear.

8.4 Experimental Results

The analytical model presented in this chapter assumes a steady state in
the flow of tokens through the Rete Network. An approximation of such a
situation is only encountered in fairly large production system programs. We will
present measurements for the benchmark moun2, which is the largest benchmark
presented in Chapter 4. Table 8.1 present measurements for the first and second
moment of g; and h;, for the service rate ug and the average number of tokens
in the single 3-node system N(1) as measured in the event driven simulator

described in Chapter 6.

# Proc | G | G | H H? Ua N(1)
1 0.78 | 3.35 | 5.45 | 40.22 | 0.00096 | 644.8
2 0.80 | 3.10 | 2.89 | 11.58 | 0.00093 | 244 .4
4 0.79 | 4.17 | 2.15 | 6.15 | 0.00096 | 160.2
6 0.80 | 4.20 | 1.59 | 3.51 | 0.00094 | 89.6
10 0.80 |1 5.06 | 1.41 | 2.48 | 0.00102 | 47.8

Table 8.1: Parameter Measurements for moun2.
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Figure 8.5: Average Number of Tokens in the System versus As for moun2
in a Single Processor Architecture

In the architecture presented in Chapter 3, the production set is divided
among the processors in the machine. Therefore, a machine with a larger num-
ber of processors has smaller Rete Networks in each processor. Moreover, the
amount of tokens processed in each Rete Network is smaller. Note that the first
and second moments of ¢g; do not change significantly when the Rete Network is
divided into a larger number of networks, but rather seems to be a characteristic
of the benchmark program. On the other hand, the moments of h; do change
substantially when each processor has smaller Rete Networks because in such
networks each a-node has fewer successors. The value of 115 is also independent
of the size of the Rete Network. The measures presented in Table 8.1 were

obtained by forcing the simulator to implement a single 3-FIFO to replicate the
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simplification used in the analytical model.

Figure 8.5 shows the variation in the average number of tokens in the system
with the value of the arrival rate Ag for Rete Network of moun2, in a single
processor architecture with one up to ten G-units. Notice that there is a dramatic
increase in the number of tokens in the system when the utilization rate tends
to one. For systems operating close to such an asymptote, the addition of a
single f-unit can improve the performance significantly. This improvement is

due to the reduction in the amount of time spent waiting in the system.

180
I(m) 160
140
120
100 =
80 |

20

Figure 8.6: Speed improvement prediction for moun2 considering Ag constant
for all values for m.

A difficulty in the utilization of this analytical model to estimate performance
improvements is the correct estimation of arrival rate Ag. We can obtain the

arrival rate for a single S-unit system from direct measurement in the simulator.
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However, this rate does not remains constant when the number of §-units is
increased. The Instantiation Firig Engine works as an outer loop that receives
new instantiations from the output of the Rete Network and generates new
actions that are placed in the Rete Network input. A Rete Network with a larger
number of f-units produces changes to the conflict set at a faster pace resulting
in a higher arrival rate. Figure 8.6 presents the estimated speed improvement
for machines with various numbers of processors considering that the arrival

rate remains constant when the number of S-units is changed.

T T T T T
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0.0001 |- _
0
0

Figure 8.7: Variation of Ag with m for moun2 (P indicates the number of
processors in the architecture).

Because the simulator described in Chapter 6 has the capacity to simulate
multiple g-units Rete Network, we can measure the amount of change in the

arrival rate Ag when the number of B-units is increased. The variation of Ag
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with the number of S-units in the Rete Network is shown in Figure 8.7. The
curves in this graph indicate that the increasing in the arrival rate Ag might be

approximated by linear functions.
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Figure 8.8: Speed improvement prediction for moun2 considering that Ag
changes when more S-units are used.

Using this measurements, we obtain the speedup curves shown in Figure 8.8.
Observe the significant reduction in speedup when these curves are compared
with the curves in Figure 8.6. Future research with experimental measurements
of a larger set of benchmarks might determine a general rule to estimate the

variation of the arrival rate with the number of S-units.
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8.5 Final Remarks

This chapter presented a complete analytical model to study the perfor-
mance of multifunctional unit Rete Networks. The results show that in certain
configurations, a modest number of extra f-units might eliminate wasted wait-
ing time, producing significant improvement in the average time taken for a
token to be processed in the Rete Network. Further studies along this line of
research include the following: construction of an analytical model for the pri-
ority system with an external and an internal 3-queue; an analytical model for
the outer loop formed by the instantiation firing engine and the broadcasting
network, which takes into consideration the interactions between all the Rete
Networks located in the different processors in the machine; and further experi-
mental studies with this model to determine how the arrival rate changes when

the number of F-units is increased.



Chapter 9

Conclusion

This dissertation presented a new architecture for parallel production sys-
tems. The development of a comprehensive event-driven simulator allowed var-
ious performance measurement for this architecture. The results demonstrate
that the adoption of serializability as a correctness criterion might lead to signif-
icant performance improvements. Such improvements are obtained through the
elimination of global synchronization and through the overlapping between dif-
ferent phases of the production system execution. The use of modern associative

storage techniques was key in the design of the architecture.

The development of the Contemporaneous Traveling Salesperson Problem
was not only useful for our measurements, but may also be useful for many

researchers looking for versatile benchmarking facilities in the future.

The history of research in production systems indicates that architectures
with thousands of processors tend to deliver poor price/performance ratios.

The proposed multiple functional unit Rete Network utilizes a modest number

119
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of functional units and produces considerable speedup over a single processor

architecture.

In spite of being a powerful tool, analytic modeling has not been used much
in the study of performance of Production Systems. This shortcoming was
addressed through the development of an analytical model for the study of

performance of the multiple functional unit Rete Network.

Future research might be conducted on a number of issues. The architecture
proposed in this dissertation executes a compiled Production System. Therefore,
compiling optimization techniques such as the ones proposed by Kuo, Miranker

and Browne [49] can be incorporated in the compiler.

Acharya and Tambe [2] have reported considerable speedup in the processing
of Production Systems that manipulate collection of WMEs instead of one WME
at a time. An interesting area of research would be the study of the execution
of collection-oriented Production Systems in the architecture proposed. One
problem still to be overcome in such systems is a proper handling of self disabling
productions. A smaller step that would deliver only limited speedup would be
to change the architecture to allow propagation of modify tokens through the
Rete Network.

The use of serializability as a correctness criterion imposes a heavier burden
on the programmer to assure that a program is correct. Our experience with PS
benchmarks indicates that programmers often rely on knowledge about conflict
set resolution strategies when writing PS programs. This is mostly evidenced
by the omission of important antecedents in productions that are enabled but
never selected to fire by an specific strategy. For problems like CTSP, writing
a serializable correct PS was fairly straightforward. Now that our study has

indicated that serializable systems offer great speed improvements, it is desirable
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to develop programming aid tools to help in the specification and verification of

a wider range of serializable PS programs.

Improvements to the analytical model include the development of a model
for the operation of the Instantiation Firing Engine and the interaction among
processors through the Broadcast Interconnection Network. An alternative to
this would be the conduction of an empirical study to determine the relationship
between the number of functional units in the Rete Network and the ratio of
external arrivals in the a-nodes. Another improvement to the analytical model
would be the extension of the model developed to consider a priority system

with the external and internal -queues.



Appendix A

Performance Measurements

This appendix presents the results of an extensive empirical study with the
simulator for most of the benchmarks described in Chapter 4. The architec-
ture simulated is the one described in Chapter 3 with the multiple S-unit Rete
Network organization introduced in Chapter 7. The plots presented in the fol-
lowing pages were interpolated to better show the behavior of the machine as

it is augmented with more processors and F-functional units.
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Appendix B

Study of CTSP Benchmark

This appendix presents an extensive study of the architecture performance
with the CSTP benchmark presented in chapter 4. All experiments were per-

formed using an instantiation of CTSP with seven “states”!.

The map with the states is shown in Figure B.1. We performed two set of
experiments. First, we maintain the standard deviation o, constant and change
the average number of cities in each state in order to study the effect of problem
size on performance. Then we maintain the average number of cities in each
state constant and change the standard deviation. This allows us to study the
effect of load inbalance among the processors. Because the number of states
is small, the actual mean and standard deviation might not be exactly what
was specified in the benchmark generator. Table B.1 presents the specified and

the measured mean and standard deviation for each benchmark studied. It also

'In the description of CTSP in Chapter 4 a group of cities form a “country” and a group
of countries form a “continent”. In the implementation used for the experiments presented in
this appendix, cities form states and states form countries.
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North Dakota Minn
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South Dakota

Wyoming Towa
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Figure B.1: Country map.

shows the total number of cities in each instantiation.

Benchmark | Specified | Measured | Total #

te | O e o. | of Cities
d_c06_v3 6 3 8.8 | 3.4 58
delOwv3 | 10| 3 | 11.1 |21 78
de20wv3 | 20| 3 |20.9]|28 122
de30v3 |30 3 |294 1.7 206
delbwv0 | 15| 0 | 15.0 | 0.0 105
delbwv3 | 15| 3 | 16.0 | 2.2 112
delbv6 | 15| 6 | 15.6 | 5.8 109
delbwv9 | 15| 9 | 146 | 7.8 102

Table B.1: Specified and actual values for y, and o, for the benchmarks
studied in this appendix.

Table B.2 shows the actual distribution of the number of cities for each state

in the map of Figure B.1.

Figures B.2 and B.3 plot results for the first experiment in which the mean
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Bench. | Mont. | N.Dak. | S.Dak. | Wyoming | Minnes | Nebr. | lowa
d_c06_v3 6 15 6 6 7 6 12
d_c10v3 14 10 8 14 10 12 10
d_c20.v3 22 21 20 20 20 20 19
d_c30v3 28 31 30 30 31 26 30
d_c15v0 15 15 15 15 15 15 15
d_c15.v3 20 16 15 13 14 16 18
d_c15v6 9 18 21 18 24 8 11
d_c15v9 21 21 16 8 9 2 25

Table B.2: Distribution of number of cities per state.

number of cities per state is changed while its variance remains constant. Figure
B.2 presents results for an architecture with a single 8-unit Rete Network. Fig-
ure B.3 shows the speed improvement as the number of processors is increased
in a machine with a 10 g-unit Rete Network. The base of comparison for the
curves of figure B.3 is a machine with a single processor and 10 S-units in the

Rete Network.

Figures B.4 and B.5 present the results for the experiment that changes
the standard deviation for the number of cities in each state while maintaining
its mean constant. Figure B.4 plots the curves for a single f-unit architecture
while Figure B.5 presents the results for a 10 g-unit architecture. The base of
comparison for the curves in Figure B.5 is a single processor architecture with

10 S-units.

Figure B.6 plots the amount of speedup obtained for an instantiation of
CTSP with seven states and . = 15 when the standard deviation for the

number of cities o, is changed. The amount of speedup obtained decreases
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when there is a higher variance in the number of cities in each state. This is an
expected effect because higher variance in the size of local clusters causes more

inbalance in the workload of different processors.

Figure B.7 plots the number of cycles performed to solve instantiations of
CTSP in function of the average number of cities per state u.. Figure B.7
shows curves for architectures with 1, 8, and 16 processors. Although the num-
ber of cycles still grows exponentially with the number of cities in the parallel
architecture, the processing time is significantly reduced allowing the parallel

architecture to tackle larger problems.



130

10 T T T T T T T._.T-—
9 -1 He = 6 —
e = 10 -—-
s | i
e = 30 e
7+ -
2
G
g
2 5
)
4
3
2
1
0 2 4 6 8 10 12 14 16 18 20
# of Processors
Figure B.2: Speedup Curves for single S-unit architecture (o, = 3).
6 T T T T T T T 1
5.5 e =6 —
s T -
5 HeF 20 -
T e 300 e
45 | L a
o 4 ,,,’/ —
3 3.5 |
=8
) 3 -
2.5 -
2
1.5 — ',;"’"I
. ;

0 2 4 6 & 10 12 14 16 18 20
# of Processors

Figure B.3: Speedup Curves for 10 g-unit architecture (o, = 3).



Speedup
(523
|

0 2 4 6 & 10 12 14 16 18 20
# of Processors

Figure B.4: Speedup Curves for single S-unit architecture(y,. = 15).

5

4.5 -

Speedup
o
|

1""|||||||||

0 2 4 6 & 10 12 14 16 18 20
# of Processors

Figure B.5: Speedup Curves for 10 f-unit architecture (p. = 15).

131



132

6.5 I I I I I I I

AN P=16 ---

Speedup

Figure B.6: Speedup for single S-unit architecture versus the standard de-
viation in the number of cities o, (p. = 15).

3.5e+09 I I I I
3e4+09 -
2.5e+09 -
2¢+09 |

1.5e4+09

# of Cycles

le+09

He+08

Figure B.7: Number of computing cycles in the single S-unit architecture
versus average number of cities per state (o, = 3).



Appendix C

Derivation of Analytical Model

Expressions

C.1 Single 3-Unit Model

In this section we present a detailed derivation of equation 8.5 for the prob-
ability generating function P(z), and for equation 8.16 of chapter 8 that allows
the computation of the average number of tokens in the system from the first

and second moments of G(z) and H(z), for single -unit system.

C.1.1 Generating Function for Single 3-Unit System

We reproduce here the steady-state equations 8.1 and 8.4 obtained through
the conservation of flow principle.

k-1 k
16 Goprer + Ag D piheey + 1Y pigr-it1.(C.1)

AgPo = [ goP (C.2)

(As + pp) Pr
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where py, is the probability of k& tokens being in the system, including the token
currently being processed, h; is the probability that an external bulk arrival has
j tokens, g; is the probability that the processing of a token produces ¢ new
tokens, Ag is the external arrival rate into the 3-queue, and 45 is the processing

rate on f-nodes.

We are interested in the generating function for the number of tokens in the
system P(z), expressed in terms of Ag, ug, H(z), and G(z). First we multiply
both sides of equation C.1 by 2* and then sum both sides from 1 to infinity,

obtaining
00 00 oo k-1
(As + pp) Zpkzk = Mg Z Dk+1 2F Ag Z ijhk—j 2F +
k=1 k=1 k=1 j=0
oo k
16> > i groiy1 2 (C.3)

k=1 =1

The order of the indexes in the second double sum can be reversed as follows:

oo k 0o 00
Z Z Pi Gk—it1 o= Z Z Pi Gk—it1 2
k=1 =1 =1 k=z
1 & i .
= - Z p; 2 ng—i-l-l SRt (C.4)
=1 k=1

Making the change of indexes j = k£ — ¢+ 1 in the last sum, we obtain

S gh—ig1 2T = N g2 = G(2) - go,

k=1 7=1
Z Z pigr-iv1 2 = —[P(2) = pollG(2) = go]- (C.5)
k=1 =1 z

Similarly, for the first double sum, we obtain

oo k—1

Do D pihig 2t = P(2)H(z) (C.6)

k=1 7=0



135

We also observe that

dopet = P(z) = po (C.7)

k=1
ZPHI +o= = Zpk—l—l A= ij =
k=1 o k=1 o 7=2

1
= S[P() = po — 2pil (C.8)

Zpk—l F o= 2 Zpk—l 1 = 4 ij 2 = z P(z) (C.9)
k=1 k=1 j:O

Substituting C.5, C.6, C.7, C.8, and C.9 into C.3, we obtain

(s + 1) [P() = sl = msg02lPG) = po = 2mi] +
ps 2 [P(2) — o] [G(2) — go] +
Ag P(2) H(z) (C.10)

Using the boundary condition giving by equation C.2 into equation C.10 and

simplifying, we obtain

o wml = G
PO =S = AGT T wl — G0 (€11)

In order to obtain the value of pg, we use the series sum property of the Z
transform. From the definition of P(z), we conclude that the limit of P(z) as
z goes to 1 is equal the sum of all probabilities py, and therefore must be equal

to the unity.

lim P(z) = ll—{% Zpkzk = Zpk =1 (C.12)
k=0 k=0

z—1

In a similar fashion, both the limit of G(z) and the limit of H(z) as z goes
to 1 must be equal to 1 because they represent the sum of all probabilities g;

and h; respectively.
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lLIIiG hm Zgz Zgi =1 (C.13)
E_{%H hm Zh 2 = Zhj =1 (C.14)

A first attempt to compute the limit of equation C.11 produces an indefinite

result. By L’Hospital’s rule,

_ 1 (1)
lim P() = K poll lim,_1 G'W(2)]

z—1 B Hp [1 — lim,_q G(l)(z)] — Aﬁhmz_q H(l)(z)v (015)

where G'(1)(2) is the first derivative of G(z) and H(1)(z) is the first derivative
of H(z). We observe that

lim GW(z) = ;igi =G (C.16)
;ﬂﬂ Z] h; = H (C.17)

; (C.18)

where GG and H are the first moments of /() and H(z), respectively. Replacing

G and H in equation C.15 and using the result of equation C.12 we obtain

po =1 —p1, (C.19)
g H
pr = —2——. (C.20)
T

Substituting C.19 in C.11 results

(= e GG
PO = o - BO)) + ol - GO (C21)

Equation C.21 is the desired probability generating function for the number
of tokens in the system(Eq. 8.5).
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To verify expression C.21 we might consider special cases. If there is no
“feedback” from the S-units to the 3-FIFO, go = 1 and ¢g; = 0 for ¢ # 0. In this

case G(z) = 1 and expression C.21 becomes

(= 1)
PO - HG + me - 1) (€-22)

that is exactly the generating probability function for an M/M/1 system with

bulk arrival [45].

If all the bulks arriving from a-units have a single token, i.e., hy = 1 and

h;=0fori# 1, H(z) = z, expression C.22 becomes

L—p

which is the generating probability function for an M/M/1 system.

C.1.2 Average Number of Tokens in a Single 3-Unit System

In this section we present a detailed derivation of equation 8.16 that com-
putes the average number of tokens in a single S-unit N(1). According to

equation 8.13, N(1) is given by the limit of the first derivative of P(2) as z

approximates the unity.

To facilitate the computation of this limit, we rewrite equation C.21 as a

quotient of two polynomial functions in z.

_N(2)
Plz)= K+ (C.24)

For the single f-unit system that we are studying in this section, we have

K = ps(l— p) (C.25)
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N(z) = =z — G(z) (C.26)

D(z) = Asz[l = H(=)] + pslz — G(2)] (C.27)

From C.24 we obtain the derivative of P(z)

. N'(2)D(z) — N(z)D'(»)
Pl(z)=K . C.28
Observe that for the generating function P(z) expressed by equation C.21,
both the limit of the numerator and the limit of the denominator are equal to

Zero.

lim N(z) = lim D(z) = 0. (C.29)

z—1 z—1

The direct computation of the limit of equation C.28 produces an indefinite
result. Using L’Hospital’s rule, we obtain

P — 1t NCIDG) = NG D)
lim P(z) = K lim 2D Di(z)

(C.30)

Because of the condition expressed in C.29 the computation of the limit in
C.30 still results in an indefinite result. The application of L’Hospital’s rule a

second time, results in

e () D) £ N D)

li ') = K i S B i)
o N D) + N() D)
o) + by (A

But we know from equation C.29 that all the non-differentiated expressions

have limit equal to zero, therefore we can simplify C.31

i o) = i i NP = V) Do)
i Py = K TS

(C.32)
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When the expressions for the derivatives are complex, it might be easier to

rewrite equation C.32 as

. , KT N"(z) . N'(2)D"(z)
fm P = 5 M ope) ~ M Smooe (C.33)

It is important to observe that this result is independent of the generating
function and is true as long as P(z) can be expressed as a quotient of polynomial
functions and the conditions expressed by equation C.29 hold. We will use
expressions C.32 and C.33 on the derivation of the number of tokens in the m

[-unit system later in this appendix.

Recalling the expressions for the limit of the first and second derivatives of
G(z) and H(z) given in equations 8.10, 8.11, 8.14, and 8.15, we can compute
the limits of the derivatives of N(z) and D(z):

lim N'(z) = 1-G, (C.34)
lim N"(z) = —(G?2 - G), (C.35)
lim D'(2) = pg(1=G)(1=p1), (C.36)
lim D"(2) = =g (H?+ 1)~ s (G2 - @) (C.37)

Substituting equations C.25, C.34, C.35, C.36, and C.37 into equation C.33,

we obtain

Ms(TZ — ) + (@~ G)]
2p5(1 = G) (1= p1)

(C.38)

After some simplifications, equation C.38 yields
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p1 (H*+H) | (G*-G)
2(1—p1) bia TG (C.39)

Equation C.39 is the desired expression (equation 8.16) for the average num-

ber of customers in the single F-unit.

C.2 Multiple 3-Unit Model

The derivation of the generating function for the number of tokens in the
system with m S-units is a bit more involved than the one for the single func-
tional unit system. This is due to the existence of m boundary equations in this
system. These equations appear because whenever some [(-units are idle, the

processing rate is proportional to the number of tokens in the system.

C.2.1 Generating Function for Multiple 3-Unit System

In order to facilitate the manipulation of the equations, we introduce the

following notation due to Chang and Harn [11].

R = Xp PE=RGh P =X inE (CA0)

i=1

Gilz) = igﬂ% G(2) = Guz), Gl = Y jgs = (Cal)

i=1

Hi(z) = > h;j2?,  H(z)=Hu(z), Hl(z)=>_ jh;"(C.42)
7=0 7=1
We reproduce here equation 8.19 for flow conservation for k& > m
k-1

(g + mug)pe = mpsgoprsr + Ag > piha—i +
=0
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m—1
K Z LP; Gh—ig1 +
=1
2
G D TP k-4 (C.43)
j=m

We are interested in the generating function P(z). We start by multiplying

both sides of equation C.43 by z*, and then we sum the equation from m to

infinity.
Ag + mps) D mzt = mpsgo D pryr 2t +
k:m k:m
oo k-1
Mg D> T prheo 2+
k=m (=0
oo m—1
pe Y, D ipigh-iz1 2 +
k=m 1=1
00 k
pa m Z Z Pj Gk—j+1 o (C.44)

k=m j=m

Now we proceed to express each one of the terms in equation C.44 in terms

of the notation defined in C.40, C.41, and C.42.

0 0 m—1
okt = DY ok = > mA
k=m k=0 k=0

= P(z)— Pn-1(2) (C.45)
0 1 &
S pepr s o= =Y prgr 25
k=m o k=m
1 & 1 &
= = Pk - = Zpk 7
o k=0 o k=0
1
= Lpe)- pace (C.16)

oo k—1

Z sz hp_i 2% = w2 Z h—y 270+ Zpl 2! Z hy_y2F!

k=m [=0 k=m l=m k=i+1

3
L

N
Il
=]



oo m—1

S ipigroizr 2

k=m 1=1

00 k
Z Z Pj Gk—j+1 2

k=m j=m

—

m—
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oA [H(2) = Hymi=1(2)] + [P(2) = Proa(2)] H(2)

=

P(z)H(z)— mz_: 17 A Hy1-1(2)
=0

m—1 ) 0 )
ST ipiZ T Y groigr 2
m—1 ) 0 ] m—1 ]
dipi T D g = D g
=1 7=0 7=0
m—1 )
G(2) Pr_q(2) = > ipi 2™ Grsil2)
=1

ST gpojr 2

j=m k=j

1 0 ] m—1 ] 0

OIVEED SRV ER
7=0 7=0 (=0

LIPG) — P ()] [GL2) — g0]

(C.47)

(C.48)

(C.49)

Substituting equations C.45 through C.49 into equation C.44, isolating P(z),

and writing it in terms of N(z) and D(z) from section C.1.1, we obtain the

following expressions for N(z), D(z) and K:

m—1

N(z) = —mpggoPn(z) — Agz ZpiZiHm—i—l(Z) n

pezG(2) Pl _y(2) — ppz Y ipi2 Goi(z) —

1=0

m—1

=1

m 1 Puca(2)[G(2) = go] + 2 (Ag + mpg) Pua(2), (C.50)

D(z) = Apz[l— H()] + mpplz— G2,

K = 1

(C.51)
(C.52)
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Now we turn to the boundary probabilities equation 8.18:

k—1

(Mg + kpg)pr = (b + Dpggoprsr + Ag D prhe—r +
(=0

k
25D P Ghit (C.53)

=1
We are interested in an expression that can be used to simplify equation

C.50. We start by multiplying both sides of equation C.53 by z*, and then we

sum from 0 to m — 1.

m—1 m—1 m—1

Mo Do g S kst = psgo D (k+ 1) prpr 2+
k=0 k=0 k=0
m—1k-1

Mg D0 prheo 2+

k=0 [=0
m—1 k

pe D> ipigrmiv 2 (C.54)

k=0 =1
Again we examine separately each one of the sums in equation C.54 and

write them in terms of the expressions defined in C.40, C.41 and C.42.

m—1 m—1
> kpr & = 2 > kpk F = 2P (%) (C.55)
m—1 m ]
Skt Dpen 2 = Sipe = PA(2) (C.56)
k=0 7=1
m—1k—1 m—2 m—1
prhei2® = >t DT b2
k=0 (=0 (=0 k=Il+1
m—2
= Z o2 Hy_1(2) (C.57)
=0
m—1 k m—1 m—1

Z Zipi Grif1 2 ipi ! Z Gheiqq 2P

k=0 =1 =1 k=1
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m—1 m—1
. i—1 /
= YoipzTt Y g
=1 7=1
m—1

= Y ipia T [Grni(2) — 0]
=1
m—1

= —go Pl _1(2)+ Z ipi 2 Gsi(2)  (C.58)

=1
Substituting equations C.55 through C.58 into equation C.54, and isolating

the factors that involve sums, results

m—2 m—1
g Yo A Hpoisa(2) = pp Y ipi 2 T Gsi(z) =
(=0 =1
16 90 [Pry(2) = Pr_1(2)] — Ag Pu—1(2) — ppz Pr_yq(2). (C.59)

Now we can substitute equation C.59 into equation C.50.

m iy Puca()[G(2) — g0 + 2(Ag + mup) Puca(2),  (C.60)

After identical terms with opposite signs are canceled, and the remaining

terms are grouped properly, equation C.60 can be expressed as

N(z) = ppgolz Pr(z) —m Pn(z)] +
pp 2 [m Pro1(2) = 2 Pp_y(2)] +

Wl Pl y(2) = m Pu(DG() = 9o (C61)

From the definition of P,,(z) and P} (z) follows that

2P (2)=mPyn(2) = zP,_(2)+z2mp, """ -

(m Pr—1(2) + mpy 2™)

= 2P, _(2)—mPn_1(2). (C.62)
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Substituting this result in equation C.61 and canceling similar terms, results

N(z) = s [z = G()] [m Pra(2) = 2 Py (). (C.63)

Replacing , P,,—1(z) and P!

m—1

(2) by their definitions given in equation C.40,
we obtain

m—1

N(z)=pglz — G(2)] Z(m— k) pr 2" (C.64)
k=0

Substituting equations C.51, C.52, and C.64 in expression C.24, we obtain

the generating function for the number of tokens in the system with m S-units.

Py = 10 [z = G(2)] Ziy (m — k) pp 2

= N[ H) + mps e~ Gl (€.65)

Note that with m = 1, expression C.65 is identical to equation C.11, the

generating function for the single S-unit system.

The extra linear equation that we need to obtain the value of the boundary
probabilities is derived from the observation that the sum of all probabilities py
must be equal to one. Therefore the limit of P(z) as z goes to 1 must be equal
to 1. The direct extraction of this limit in equation C.65 results in an indefinite

result, requiring application of L’Hospital’s rule.

pell = Gl ¥y (m = k)p _

lim P = = — C.66
I P = = G) ATl (€00)
Isolating the sum of pg, results
m—1 -
m 1-G)—AsH
Y (m—k)py = p (1= G) — Ao (C.67)
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Using an adequate definition for p,,, we can write

mz_:(m_k)pk = m(l_pm)v (068)
k=0
_ g H
T (-0 €09

Equation C.69 is identical to equation 8.21 of Chapter 8.

C.2.2 Average Number of Tokens in the Multiple 3-Unit
System

To obtain the average number of tokens in the system, we must again com-
pute the limit of the first derivative of P(2) as z goes to 1. From equations C.51
and C.64 we observe that both the limit of the numerator and denominator of
P(z) are equal to 0, therefore with the condition of equation C.29 satisfied, we
can use expression C.33 to compute the limit. The necessary derivatives and

their limits are provided below:

D(s) = Asll= H(s)— = )] + mps[l— G(=)]  (C.70)
lim D'(2) = mpa (1= @)1= ) (c.11)
D"z) = =Xg2H'(2)+zH"(2)] — mugG"(2) (C.72)
lim D"(2) = -\ [H24+H) — mpus (G2 —G) (C.73)
N'G) = psll =G Y (m— By s* +
k=0
pplz — G(2)] S k(m —k)pp2"1 (C.74)
k=0
lim N'(z) = pp(l-G) S (m — k) p (C.75)

z—1

k=0
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Replacing equation C.67 into equation C.75, yields

liHiN’(z) = mpug(l—=G)(1—pn) (C.76)
m—1
NG) = G 3 (m— k)
k=0
m—1
2up[l - G'(2) ka Eypp 2571 +
k=0
m—1
Z (m—k)ypp2"=2  (C.77)
—1
lim N"(2) = —pus(G? Z m—k)pr +
z2—1 =0
m—1
2p5(1 — G Z (C.78)

Replacing equation C.67 into equation C.78, we obtain

lim N"(2) = —mps(@7 = @) (1= p)
m—1
2pp(1 = G) Y k(m— k) p (C.79)
k=0
Observing that
lirri D'(z) = lirri N'(z) (C.80)

We can rewrite equation C.33 as

Nim) = lim P(:) = 5 lim ]1V7(()) ) 11)7<(>)

(C.81)

Remembering that we chose the value of K’ = 1 when we defined N(z) and
D(z) for the multiple S-unit system, we can replace equations C.71, C.73, C.76

and C.79 into equation C.81 and canceling identical terms results in:
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L (@-0) Y k(m- k)
Nom = ot T wmioa
Ao (B2 + ) + (62 -G) (C.82)

Grouping identical terms in equation C.82, we obtain the final expression

for N(m):

L (@), TS k= k),

~ _ Pm (
N(m) = G- |7 ma—pm

2(1=pm)

H2+H
+H) L(C.83)
H

This is the expression for the average number of tokens in a system with m

f-units (eq. 8.24 of chapter 8). When m = 1 equation C.83 becomes identical

to equation C.39 as expected.
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