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A Multilayer Perceptron Replaces a Feedback
Linearization Controller in a Nonlinear
Servomechanism
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Abstract— A Feedback Linearizing Controller (FLC) is
used to train a multilayer perceptron control a DC motor.
After training, the multilayer perceptron replaces the FLC
and yields significantly better performance in the presence
of state-measurement noise, load disturbances and param-
eter variations. Simulation results also indicate that the
neural network based controller is better able to cope with
input saturation resulting from an overly demanding refer-
ence model specification.
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I. INTRODUCTION

ONLINEAR systems whose dynamics are described

by smooth functions can be well controlled using in-
put/output feedback linearizing control techniques. These
techniques allow the cancelation of inherent nonlinearities,
resulting in a controlled system with a linear input/output
behavior that tracks a specified reference model. Apply-
ing feedback linearization usually requires an accurate dy-
namic model and full state measurement. Since these often
are not available in real systems, measurement errors and
parameter variations can degrade the performance of lin-
earizing controllers.

In this paper we propose to train a neural network to
mimic the behavior of a linearizing controller applied to
a nonlinear system. Using a mathematical model of the
nonlinear system to be controlled, we design a linearizing
controller. Applying an excitation to the linearized pro-
cess inputs, we generate the data necessary to train the
neural network. After the network is trained, we simulate
situations that could occur in the physical system such as
parameter variations, state measurement noise, and load
disturbances. We then compare the performance of the
original linearizing controller with the performance of the
neural network. A pleasant surprise is that when such
changes are present in the system the performance of the
neural network is better than the performance of the orig-
inal controller. Qur results demonstrate the usefulness of
some features of neural networks, such as their capability
to approximate nonlinear functions and their robustness in
presence of noise [3], [7].

We examine the problem of reference tracking and load
disturbance rejection in a permanent magnetic field DC
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motor. Simulation results indicate good control perfor-
mance using the neural network in the presence of noise
and parameter variations. Experimental results are pre-
sented in section V. The servomechanism model and the
Feedback Linearizing Controller are presented in section TI.
The neural network learning process is discussed in sec-
tion III. The Feedback Linearizing Controller with Neural

Network in section IV.

II. MoDEL AND FEEDBACK LINEARIZING CONTROLLER

The servomechanism studied in this research consists of a
permanent magnetic field DC motor connected to aload via
a gear train. The nonlinear load is a shaft with a mass. The
motor axis and the shaft form a 90 degree angle. Our sim-
ulation study considers that the speed reduction is ideal,
i.e., the gear train has no backlash, all connecting shafts
are rigid, and the load can be calculated considering a mass
m concentrated in a point at the end of a shaft of negligi-
ble mass of length [. The state variables that describe the
servosystem are motor position x1(t), motor speed z(t),
and armature current 23(¢). The system inputs are the ar-
mature voltage u(t) and the torque disturbance d(¢). Re-
maining variables are described in section V.
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A feedback linearizing controller with a reference model
and state feedback is used to control the system position.
This control is shown in Figure 1 and described in [5]. The
load disturbance is not considered in the controller design.

The relative degree of the nonlinear process to be con-
trolled is found by successively differentiating the plant out-
put y with relation to time. The successively differentia-
tion stops when the plant input u appears in the equation
of the derivative. For the system under study we obtain
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Fig. 1. Feedback Linearization
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and in which f(x) represents state-dependent system non-
linearities. Model parameters are listed in Table 1.

i From equation 2 we conclude that the servomechanism
model has relative degree three. To build a linearizing
controller based on a reference model, we must design a
third order stable linear reference model. The parameters
of the reference model, oy, a9, and agz, are determined
to obtain a desired time constant and to limit overshoot.
The time constant and maximum overshoot specified must
be compatible with the dynamics of the servomechanism.
The states of the reference model are position (21r,), speed
(zam), and acceleration (#3m). With this choice of states

Symbol  Variable Name Value Unit
R. armature resistance 0.83 Ohm
La armature inductance 0.63 mH
ki torque constant 0.0182 Nm/A
ky, back EMF constant 0.0182 V s/rad
J motor inertia 8.32 x 1076 kg m?
B damping constant 0.0009 N m s/rad
N gear ratio 5.9 None
E, armature voltage 12 A%

I, armature current A

TABLE 1T
MoDEL PARAMETERS

for the model, we obtain equations 4 to 7.

Ym = T1m
Ym = T1m = L2m
Ym = T2m = T3m

Ym = Zsm = —Q3T1m — Q28om — Q183m + Q3Yref

in which yper 18 the reference position.

The linearizing control law is defined in equation 8. The
inherent nonlinearities of the system, expressed by f(z)
in equation 3, are completely canceled by the linearizing
control. The dynamical behavior of the controlled system

will be given considering ¥ = 4, where ¢ is defined in
equation 9.
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Substituting equations 4 to 7 in equation 9, the output
of the nonlinear system y is governed by the following dif-
ferential equation:

Ym = —a1y — aay — a3y + @3Yrer

The equations used to describe the process do not take into
consideration the magnetic flux saturation or the limitation
in the electronic amplifier used to drive the DC motor;
however, the performance of the linearizing control will be
degraded when these limitations are violated. To account
for these constraints in the simulation studies, we introduce
the saturation function in the linearizing controller shown
in Figure 2. The parameters of the reference model must
be chosen to maintain the control voltage away from the
saturation region.

III. NEURAL NETWORK TRAINING

The scheme used to train the multilayer perceptron is
shown in Figure 2. Random probing signals are generated
and presented to the servosystem. A set of data, describing
the system input/output relationship, is collected and used
in the multilayer perceptron learning process.



For the generation of the training data, the control volt-
age must be kept out of the saturation region. To cover the
whole operation range, a noisy signal 1s added to the con-
trol signal to generate a persistently exciting signal [4], [6].
A more detailed description of the multilayer perceptron
learning process is found in [1], [3].
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Fig. 2. Neural Network Training

The multilayer perceptron has 6 inputs, one hidden layer
with 25 neurons and one output. It i1s trained with the
Levenberg Marquardt algorithm from the MATLAB Neu-
ral Network Toolbox. To generate the training data, we
apply a pseudo-sinusoidal signal to the input of the refer-
ence model as well as to the feedback linearizing controller
(see Figure 2). This signal reaches zero at a constant fre-
quency. Every time the signal reaches zero a random coin
is flipped to determined whether the signal phase is ad-
vanced 180 degrees. Also at this point a new amplitude
for the signal is randomly selected. Thirty seconds of this
signal were generated. Gaussian noise was added to the
control voltage as shown in Figure 2.

IV. FEEDBACK LINEARIZATION CONTROLLER WITH
NEURAL NETWORK

The multilayer perceptron is trained with a data set com-
posed of the output of the plant and the output of the
model. The inputs of the multilayer perceptron are y, y, ¥,
Ym, Ym, and Y. The single output of the MLP is u. The
network 1s trained until the output error 1s below an estab-
lished threshold. After training, the network yields a good
approximation of the control law and system dynamics.

This strategy requires that position, speed, and acceler-
ation of the motor be available. The position and speed are
easily measured from the system through encoders. Both
the acceleration y and the armature current of the DC mo-
tor z3 might be difficult or costly to obtain in practice.
Low et al. proposed that the acceleration be computed us-
ing equation 10 [3]. Observe that this computation involves

only position, speed and acceraltion of the motor shaft and
the position, speed and acceleration of the reference model.
Ye = Ym + K1 (ym - y) + [(Z(ym - y) (10)

Figure 3 shows a block diagram in which the neural network
has replaced the feedback linearizing controller.
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Fig. 3. Feedback Linearization with Neural Network

V. RESULTS

The simulation results were obtained with Matlab’s
SIMULINK using a sample period of 1 ms. The charac-
teristics of the motor were taken from the Pittman catalog
(reference number GM9234).

The load applied to the motor axis 1s a shaft of length [ =
0.2 m, mass m = 0.2 kg, and we used a gravity acceleration
g = 9.8 m/s%. The parameters for our third order reference
model are a; = 124.70, ay = 2304, and az = 14965. The
gains Ky = 1000 and K5 = 8000 were used in equation 10.
To take into account the effect of magnetic saturation, the
armature voltage was limited to 4+ 20 V. The reference
input yrer 18 a square wave with frequency of 1 rad/s and
amplitude of + 1.5.

In the discussion and graphs presented in this section the
term “linearizing controller” is used to refer to the origi-
nal feedback linearizing controller strategy, while the term
“neural network” represents the situation in which the con-
troller has been replaced by the trained multilayer percep-
tron as described in section TV.

Figure 4 provides a comparison between the linearizing
controller and the neural network when noise is added to
each state. The additive noise has zero mean. The vari-
ances of the noise begin added to the measurement of po-
sition, speed and armature current are 0'12, = 0.15 rad?,
02 = 30 (rad/s)? and o7 = 0.5 A?, respectively. The re-
sponses of both control strategies are very similar.
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Fig. 4. Response with noise in the measured states: (a) Feedback

Linearizing Controller. (b) Neural Network.

In Figure 5, system responses using the linearizing con-
troller and the neural network are compared in a simula-
tion incorporating variations in the electrical parameters
of the motor (R, and L,). During this simulation the ar-
mature resistance R, and the armature inductance L, are
changed linearly for a period of 20s. At the end of 20s, the
R, has doubled and I, has changed by 10% of its nominal
value. These ranges of variation reflect the actual variation
of these parameters in practice. Figure 5 shows that the lin-
earizing controller is unable to track the reference signal in
the presence of parametric variations without offset. This
result is consistent with discussion found in textbooks [2],
[6]. The neural network was able to accurately follow the
reference signal in spite of the parametric variations, with
much less offset.

Figure 6 compares both controllers with a load distur-
bance of 0.05 Nm'. Because the disturbance was not taken
into account in the design of the linearizing controller, it is
not able to track the reference signal when load disturbance
is present. In spite of the load disturbance not being in-
cluded in the generation of the data for the neural network
training, Figure 6 shows that the trained neural network
was able to accurately follow the reference even when such
a disturbance is present. This result showcases the advan-
tage of the generalization capability of the neural network
in this application.

If a linearizing controller 1s designed with a model that is
too fast for the controlled servomechanism, the controller
will try to follow the model by increasing the control volt-
age. Because of the limitation in the DC motor driver along
with the magnetic flux saturation, the performance of the
controlled system might be degraded. This effect is shown
in the upper chart of Figure 7. For the simulation shown in

I The load disturbance of 0.05 Nm was chosen so that the resulting
load does not exceed the maximum torque specified for the motor.
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Fig. 5. Response with continuous variation of R, (100%) and L,
(10%): (a) Feedback Linearizing Controller. (b) Neural Network.
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Fig. 6. Response with load disturbance: (a) Feedback Linearizing
Controller. (b) Neural Network. Observe the introduction of the
load disturbance at time ¢t = 5s.

this figure, the reference model was made ten times faster
than the model used in the simulations of Figures 4, 5,
and 6. The neural network was trained to yield a con-
trol voltage within an acceptable interval. Consequently,
when the same (faster) model is used in the neural network
controller, the armature voltage will remain below the sat-
uration limits. Thus the controller will delay, but will not
degrade significantly, the response to the reference signal.

Finally we consider a situation in which the neural
network controller is subjected to a load disturbance
(0,05 Nm) and variation in the motor parameters 2. The

2Tn this experiment the variation in the parameters is the same used
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Fig. 7. Response with a 10 times faster Reference Model (a) Feedback
Linearizing Controller. (b) Neural Network.

neural network response is presented on the top graph of
Figure 8. The bottom graph of this figure presents the ac-
tual control output of the neural network controller. Notice
that this control signal increases with the variation in the
parameters, especially in the armature resistance R,.

VI. CONCLUSIONS

The replacement of the feedback linearizing controller
with a multilayer perceptron trained with data extracted
from the controller operation in a nonlinear servomecha-
nism proved to be advantageous. The multilayer percep-
tron was better able to cope with variations in the plant pa-
rameters, load disturbance, and state measurement noise.
It is interesting to notice that these measurement noise, pa-
rameter variations, and load disturbances were not present
when the data to train the network was generated.

The modeling of the nonlinear system assumed a num-
ber of simplifications: the gear train has no backlash, the
shafts are rigid, and the load is concentrated at a point.
In practice, such simplifications might result in parameter
variations of the process and unmodeled dynamics affect-
ing the performance of a linearizing controller. Our results
suggest that such effects would be mitigated with our neu-
ral network approach.
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in the simulation showed in Figure 5.
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Fig. 8. Neural Network response with variation in plant parameters
and load disturbance: (a) Position reference signal and Neural
Network output. (b) Neural Network control signal. Observe in
the control signal the introduction of the load disturbance at the
time ¢ = 5s.
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