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Abstract

The matching phase is believed to require as much as 90 percent of the execution time of a
production system. The Rete Network is the most well known and broadly used matching algo-
rithm for production system. This paper proposes a new concurrent organization with multiple
functional units for execution of Rete Networks. We address the lack of theoretical studies of
matching performance in production systems by presenting an analytical model to predict the
Rete Network performance. This model is based on infinite Markov chain and queueing theory
and successfully estimates the average number of tokens in a system with m functional units.
Little’s result allows the use of this estimate to predict the performance improvement when more
functional units are added to the system. Finally, we report the predictions of the model for the

Rete Network used in a parallel architecture proposed in a related work [1].

1 Introduction

Production systems provide an efficient paradigm to construct knowledge base systems. However,
they are haunted by the combinatorial complexity of matching of rule conditions with the set of
facts stored in the knowledge base. The matching phase is the portion of production system exe-
cution whose optimization can yield the most performance improvement. Research efforts towards
improving the speed of production system machines are surveyed by Kuo and Moldovan [11] and

by Amaral and Ghosh [3].

In a typical production system the memory is divided into a set of productions or rules stored

in a Production Memory, and a set of facts stored in a Working Memory. A production consists of
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a set of conditions and a set of actions. A production is said to be fireable if the facts stored in the
Working Memory! satisfy all its conditions. At each cycle during its execution the production system
selects some of the fireable productions and execute the specified actions. The device responsible

for verifying whether the production conditions are satisfied is called a matching engine.

The amount of work performed by the matching engine is a combinatorial function of the
number of productions in the system and the number of facts in the knowledge base. However, two
characteristics of production systems allow an efficient solution to this problem: distinct productions
have identical condition elements and pieces of knowledge stored in the working memory change
slowly over time. The slow change in the knowledge base implies that if the results of the matching
in one cycle are saved for the next cycle, a substantial amount of work can be eliminated. The
existence of productions with identical antecedents allows the construction of an algorithm in which

the results of matching shared conditions are used by all productions that need them.

2 The Rete Network

The best-known state saving algorithm is the Rete Network created by Forgy [6]. Forgy reports
that Rete is inspired by the Pandemonium machine of Selfridge [14]. Pandemonium was one of the
earliest learning machines and consisted of multiple layers of demons. A demon in a given level
supervised an inferior level of demons. When it observed meaningful patterns, it sent messages to

a superior level. The top-level demons performed more telling actions.

The Rete Network is a data-flow graph that encodes the antecedents of productions. The inputs
to the Rete Network are changes to the working memory generated in the act phase of one cycle,
and the outputs of the network are changes to the conflict set used to choose a production to be
fired in the next cycle. The following discussion of Rete Networks is presented here after Gupta

and Forgy [7, 8], Lee and Schor [12], and Miranker [13].

Figure 2 presents a Rete Network with the set of production antecedents encoded in it. The
network is formed by four different kind of nodes: constant-test nodes, memory nodes, two-input
nodes and terminal nodes. The constant-test nodes appear in the first layer of the network. They
store attributes that have constants in the value field and perform intra-condition tests to determine
if a working memory element satisfies these constant fields of the condition element. In the original

Rete Network, the result of this test was stored in a local a-memory [8]. Some authors claim that

'Each one of these facts is called a Working Memory Element (WME).



root

constant-
test

\ . nodes

fly = color = swim= neck = legs =
false? black+white? true? long? long?

a-memories

p-memories

L Terminal

nodes

Pl P2
(P P1 (bird <b>) (P P2 (bird <b>)
(fly <b> false) (fly <b> false)
(color <b> black+white) (color <b> black+white
(swim <b> true) (neck <b> long)
-—> (legs <b> long)

(type <b> Penguin)) -

(type <b> Ostriches))

Figure 1: Section of a Rete Network

the a-memories can be eliminated because the constant test takes a negligible amount of time [12].

In this case the one-input nodes are called a-nodes and are memoryless.

Two-input nodes, also called and-nodes, join-nodes, or F-nodes, perform the matching between
distinct condition elements. A -node has one memory associated with each input. A token arriving
in a f-node come either from another g-node or from an a-node. Whenever a new token arrives
in one of a node’s inputs, it is compared with all tokens present in the other side memory. Good
hashing techniques are necessary to speed up the matching in the two-input nodes. Otherwise, it

might be necessary to process long lists of tokens. [7].

3 Rete Network with Multiple Functional Units

We propose a multiple functional unit architecture to implement the Rete Network algorithm in a

production system machine. In the organization presented in Figure 2, a single a-unit is responsible



for processing tokens in a-nodes. Fach incoming token is sequentially tested against all a-nodes
of the network. Whenever there is a match with an a-node, the a-unit replicates the token and
attach to each copy the identity of one of the 3-nodes that are successors of the a-node where the
match occurred. These new tokens are then forwarded to the g-units. Therefore the processing of a
single token in the a-unit may result in the generation of many tokens to be inserted in the exzternal

[B-queue. Note that S-units also share an internalinput queue for tokens generated by 3-nodes.
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Figure 2: Rete network with m 3-Units

To reduce the average time that tokens spend in the Rete network, a token placed in the external
queue is processed only when the internal queue is empty. A free F-unit will take the first token from
the queue, read the memory locations corresponding to the 3-node to which the token is destined,
execute all the 3-tests and then place the newly generated tokens at the end of the internal queue.
When a token destined for a P-node is produced by a S-unit it is forwarded to the production firing

unit.

4 Performance Evaluation

Analytical modeling is a powerful and underused tool in the study of production system machine
performance. Yukawa et al. [16, 10] construct an analytic model for the performance of Rete network
based on basic notions of probability, utilizing a “back of the envelope” method similar to the one
largely employed by Cragon [5] for the analysis of superpipelined and superscalar processors. Wang
et al. [15] constructed an analytical model to measure performance of parallel-rule firing production
systems based on a transaction model. In the following sections we present an analytical model to

predict the performance of the concurrent Rete network presented in Figure 2.



4.1 Simplifications for Analytic Modeling

The organization considered for the construction of an analytical model for the Rete network with
multiple S-units is shown in Figure 3. Whenever a token matches an a-node while being processed
in the a-unit, a number of tokens are produced to be delivered to the S-FIFO. This group of tokens
is called a bulk. The probability that a bulk has j tokens is measured by h;. The model does
not consider empty bulks, i.e., an arrival occurs when at least one token arrives in the 3-FIFO.

Therefore hg = 0.

Whenever free, a f-unit will take the first token from the queue, read the memory locations
corresponding to the S-node to which the token is destined, execute all the -tests and then place
the newly generated tokens at the end of the 3-FIFO. If the processing of a token in a given 3-node
produces a new tokens, and that #-node has b #-node successors, we consider that ab new tokens
were generated and placed at the end of the queue. The probability that ¢ new tokens are generated
when a token is processed in a $-node is given by g;. Also, any new instantiation at a terminal node

is sent to the production firing unit that will select one (or more) production to be fired.

For the construction of the analytical model, we consider that there is a “waiting station” at
the S-unit output that allows it to hold all the tokens generated until the end of the execution of
the current token, and then adds all of them at once to the queue. Although this assumption may

not reflect the actual behavior of a physical machine?, it simplifies the analytical model.
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Figure 3: System with m -Units

In this model, the arrival of a bulk of tokens in the 3-queue from an a-node is called an external
arrival. The arrival of a group of tokens from the waiting station into the 3-FIFO is an internal
arrival. The moment at which a S-unit finishes processing a token and places all the newly generated

tokens (if any) in the 3-FIFO is called departure. To develop the queueing theory model, we assume

2In an actual machine the S-unit would place tokens in the queue as they are produced.



that the 3-FIFO has infinite capacity; the overhead of placing tokens in the -FIFO is zero; the
external arrival of tokens is a Poisson process; and the processing time for tokens in the 8-nodes
follows a Poisson process. In fact events in the machine are depend on the specific production
system being executed and change as the execution of the system proceeds. However, the simplified
model obtained still produces a good estimate for the amount of time that a token spends in the
system, and thus for the reduction in the average time spent by a token in an m [(-unit system

compared with a single 8-unit system.

4.2 Multiple 5-Unit Model

The infinite Markov chain that represents the multiple F-unit system is presented as a state-
transition-rate diagram in Figure 4. The circles represent states and the arcs represent state
transitions. The value associated with each arc indicates the transition rate. In this represen-
tation, the system is in state k if there are k tokens to be processed in the system, including the
tokens currently being processed. Let g; be the probability that the processing of a token in a
B-unit produces ¢ new tokens, /; be the probability that an external arrival brings into the system

a bulk with j tokens, Ag be the external arrival rate into 3-nodes, and ug be the processing rate in

b-nodes.

For clarity, not all transitions are shown in Figure 4. Consider the transitions from and to state
k. Any state ¢ < k can reach state k in a single transition. The transition from state k to state k—1

indicates that the processing of a token produced no new tokens.

A transition out of state £ might occur due to an external arrival or due to the completion of
the processing of a token in the f-unit. Whenever ¢ > 1 tokens are generated by the G-unit, the
system changes from state k to state k+i—1 upon the completion of S-unit processing. If a bulk of

size j arrives from the a-unit while the system is at state &, the system moves to state k4.

The only possible transitions out of state 0 are due to the external arrival of a bulk of tokens.
The processing rate at state 0 is equal to zero. This reflects the fact that no token can be processed

when there are no tokens in the system.

The transition rate out of states 1 through m —1 due to the processing of tokens in G-units
is proportional to the number of tokens in the system. This occurs because if ¢+ < m tokens are
present, all tokens are being processed, and m —¢ F-units are idle. Therefore, the processing rate
is proportional to the number of tokens in the system. If, however, j > m tokens are present in

the system, m tokens are being processed and j—m tokens are waiting in the queue; therefore, the



processing rate is proportional to the number of S-units. Every state (except for state 0) has a self

transition. If 7 <m, the self transition rate for state 7 is 7 ug g1. Otherwise the self transition rate

is m p15 91.
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Figure 4: State Diagram for System with m 3-Units

We are interested in the steady state behavior of the system. At steady state, the input flow must
equal the output flow in each state. Therefore, we can write difference equations for the system.
The m—1 boundary conditions of this system are expressed by equation 1. The flow conservation

equation for state k > m is given by equation 2.

For &k < m:
k—1 k
(As + kpug)pw = (K + Dppgoprsr + Ag D pihi + 15 ipigr-is1- (1)
7=0 =1
For &k > m:
k—1
(As + mug)pe = mpsgoprsr + Ag Yy prhi +
=0
m—1 k
1 > ipige—it1 T Hp Y MDj Ghoj1- (2)
=1 7=m

where py, is the probability of k tokens being in the system, including the token being processed.

To compute the generating function P(z), we have to sum equation 1 from 0 to m—1, and sum

equation 2 from m to infinity, and then combine both results and simplify [1]. This results in
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where P(z), G(z), and H(z) are defined as

P(z) = i PR 2", G(z) = i gr =¥, H(z) = i hy, 2. (4)
k=0 k=0 k=0

Computing the limit of P(z) as z goes to 1, and making the result equal to 1 (series sum
property), we obtain relation 5. Equation 1 provides m equations and m + 1 unknowns. The
relation expressed in 5 is the last equation we need to solve this linear system and obtain the values

for the boundary probabilities pg, p1, ..vr Pin-

S m—tpe = m(l-pn) (5)
k=0
_ g H
" (-0 “

To guarantee stability, the utilization factor p,, for the system with m S-units must be less than

unity. Therefore the distributions of g; and h; must have the following property:

% < m/\—Zﬁ' (7)
T = lim GOz = ig (s)
7= i 1) = S )
From the definition of P(z) it follows that
lim PO(z) = gnkim ot ém - N(m), (10)

where P(1)(z) represents the first derivative of P(2) with respect to 2z, and N(m) is the average

number of tokens in the m B-unit system including the tokens currently being processed.

For ¢; we verify that

ii(i—l)gi =

=1
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where G(?)(2) is the second derivative of G(2) with respect to z, G is the first moment of G(z), and
G? is the second moment of G(z). In a similar fashion, we can establish that

lim H®(z) = H? - H. (12)

z—1

According to equation 10, the average number of tokens in the system with m S-units, including
the tokens that are currently being processed, is obtained by computing the limit of the first
derivative of P(z) as z goes to 1 [1].

oy Pm (H2+H)  (GP-C)| | s k(m—k)py
Nm = sa ool 7 tTiza | T km(l—pm) ' (13)

The first and second moments of G(z) and H (2) can be obtained from measures of g; and h; from
a simulator[1]. The boundary probabilities are obtained by solving the system of linear equations
mentioned previously. Little’s result N(m) can be used to estimate the average time that a token

spends in the system.

N(m)(1- @)

T(m) = N (14)

where T(m) represents the average total time that a token spends in a m S-unit system, including
the time the token is waiting in the queue and the processing time. Observe that we have to consider
the total arrival rate in the 8-FIFO, i.e., external tokens originated in the a-nodes as well as tokens
generated in the 3-nodes. In equation 14, the external arrival rate is A H and the arrival rate due

to generation of tokens in B-units is (1 — G)7.

4.3 Rete Processing Improvement

Using Little’s result, the ratio between the average time spent in the single S-unit system and the
average time spent in the system with m 3-units can be obtained from the average number of tokens

in each one of these systems. We define the improvement in system time according to equation 15.

T(1) N(
Lim) = 21 _ N (15)
T(m)  N(m)
I;(m) indicates how much faster a token goes through the 3-node portion of the Rete network when
m [-units are used instead of one. Notice that the definition of I;(m) assumes that the effective

arrival rate of the system does not change with the number of g-units.



We purposely avoid calling this performance improvement speedup because of the loaded mean-
ing of that word. Speedup is a system level concept that is applied to different settings, e.g.
fixed-time speedup, fixed-load speedup, memory-bound speedup, etc [9]. Also, except for very rare
cases, the speedup of a computer system is always a sublinear function of the number of processors
in the system. In our system, because of the nature of the incoming flow of tokens, the amount
of improvement in the time spent in the F-network can be superlinear. This happens because the
existence of occasional bursts of traffic in the incoming flow of tokens can cause tokens to spend
considerable amount of time waiting in the S-unit input queue. Of course, if the incoming flow of

token were to be steady, the improvement in the time spent in the system would be at most linear.

4.4 Analytical Model Predictions

The analytical model presented in this paper assumes a steady state in the flow of tokens through the
Rete network. An approximation of such a situation is only encountered in fairly large production
system programs. The multiple functional unit Rete Network presented in this paper was used
as the matching engine for a parallel production system architecture that we proposed [1, 2, 4].
Using a comprehensive system level simulator we obtained parameter measurements for a fairly
large benchmark program (moun2. Table 1 present measurements for the first and second moment

of g; and h;, for the service rate g and the average number of tokens in the single 3-node system

N(1).

#Proc| G | G2 | T | H? Ha N(1)
1 0.78 | 3.35 | 5.45 | 40.22 | 0.00096 | 644.8
2 0.80 | 3.10 | 2.89 | 11.58 | 0.00093 | 244.4
4 0.79 1 4.17 | 2.15 | 6.15 | 0.00096 | 160.2
6 0.80 | 4.20 | 1.59 | 3.51 | 0.00094 | 89.6
10 0.80 | 5.06 | 1.41 | 2.48 | 0.00102 | 47.8

Table 1: Parameter Measurements for moun?2.

In the architecture simulated in [1], a production set is divided among the processors in the
machine. Therefore, a machine with a larger number of processors has smaller Rete networks in
each processor. Moreover, the amount of tokens processed in each Rete network is smaller. Note
that the first and second moments of ¢; do not change significantly when the Rete network is divided
into a larger number of networks, but rather seems to be a characteristic of the benchmark program.

On the other hand, the moments of &; do change substantially when each processor has smaller



Rete networks because in such networks each a-node has fewer successors. The value of g is also
independent of the size of the Rete network. The measures presented in Table 1 were obtained
by forcing the simulator to implement a single S-FIFO to replicate the simplification used in the

analytical model.
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Figure 5: Average Number of Tokens in the System versus Ag for moun2 in a Single Processor

Architecture

Figure 5 shows the variation in the average number of tokens in the system with the value of
the arrival rate A\g for Rete network of moun2, in a single processor architecture with one up to ten
B-units. Notice that there is a dramatic increase in the number of tokens in the system when the
utilization rate tends to one. For systems operating close to such an asymptote, the addition of a
single S-unit can improve the performance significantly. This improvement is due to the reduction

in the amount of time spent waiting in the queues.

A difficulty in the utilization of this analytical model to estimate performance improvements is
the correct estimation of arrival rate Ag. This rate does not remain constant when the number of
[B-units is increased. The outputs of the Rete network described in this paper are used to select
productions that are fired and generate more changes to the Working Memory. A Rete network
with a larger number of S-units produces changes to the conflict set at a faster pace resulting in a

higher arrival rate. The predictions of speed improvement in Figure 6 were obtained using a value
1
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Figure 6: Prediction of the Rete network speed improvement for moun2 considering that Ag changes

when more G-units are used.

measured in the simulator for the arrival rate when the number of beta units is increased. Future
research with experimental measurements of a larger set of benchmarks might determine a general

rule to estimate the variation of the arrival rate with the number of G-units.

Figure 7 presents the actual speed improvement obtained from measures in the simulator when
multiple G-units are used in the architecture. To measure only the speed improvement due to the
addition of S-units, each curve in Figure 7 is has an architecture with the same number of processors
and a single -unit as base of comparison. Because Figure 6 plots the predicted speed improvement
only in the Rete network while Figure 7 plots the actual speed improvement for the whole machine,
the absolute values are quite different. However, comparing the plots of Figures 6 and 7 we verify
that the analytical model was successful in anticipating the trend of these curves. A computer
architect could estimate the number of F-units to use in a design only from the analytical model

predictions.
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Figure 7: Actual speed improvement due to increased number of 3-units for moun?2.

5 Conclusion

This paper proposed a new concurrent organization for execution of the classic Rete network algo-
rithm. The performance improvement predicted by the analytical model developed indicates that
a modest number of extra S-units might eliminate wasted waiting time, producing significant im-
provement in the average time taken for a token to be processed in the Rete network. Further
studies along this line of research must include the construction of an analytical model for the pri-
ority system with an external and an internal §-queue and further experimental studies with this

model to determine how the arrival rate changes when the number of S-units is increased.
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