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Abstract

We present a new training rule for a single-layered lin-
ear network with complexr valued weights and activa-
tion levels. This novel network can be used to extract
the principal components of a complexr valued data set.
We also introduce a new training method that reduces
the training time of the complex valued as well as of
the real valued network. The use of the new network
and training algorithm s illustrated with a problem of
compressing images represented in the spectral domain.

1 Introduction

In this work we develop a complex valued version of
the Generalized Hebbian Algorithm (GHA) proposed
by Sanger[14]. GHA combines the Gram-Schmidt
orthonormalization [1] with the single linear neuron
model introduced by Oja [11].

A complex valued GHA finds application in the ex-
traction of principal components of a complex data set,
such as those encountered in radar and sonar systems
or communication systems[6, 7].

We use a complex valued artificial neural network
with a single layer of linear neurons trained according
to a Hebbian learning rule to perform Principal Com-
ponents Analysis (PCA) [2, 3, 8, 10, 15]. The learning
rule has been extended to accommodate complex val-
ues. The data and the synapse weights are also complex
valued. After the convergence of the Complex Gen-

eralized Hebbian Algorithm (CGHA), each neuron of
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the network yields the following: i) A set of complex
synapse weights that corresponds to the components
of the eigenvector associated with an eigenvalue of the
input data set correlation matrix; and ii) An output
value that is the principal component which represents
the projection of the complex input vector over the as-
sociated complex eigenvector.

The set of eigenvectors of the correlation matrix
forms an orthonormal basis for the modes of variation
of the input data set [1, 10]. The eigenvalue associated
with each eigenvector is equal to the variance of the
projection of the data set in the direction of that eigen-
vector. Also, the variance of the data set projections
are local maxima in the directions of the eigenvectors
[13, 12].

Principal Component Analysis (PCA) in the com-
plex domain follows similar rules as those for PCA in
the real domain. Assume that we have a complex data
set X composed of a set of zero-mean, complex vectors.
The correlation matrix is Cx = (X X)), where (-} is
the expectation over the set operator and X denotes
the conjugate transpose of X. C'x represents the aver-
age energy over all possible combinations of two data
elements in X. Because the correlation matrix of any
complex data set 18 Hermitian, all its eigenvalues are
real [1].

2 The Complex Training Rule

Consider a complex data set composed of a set of zero-
mean, complex vectors. This data set constitutes the
neural network training set. The goal is to extract the
principal components of the data set.

Figure 1 shows our neural network composed of p
complex input nodes and a single output layer contain-
ing m complex linear neurons. TLet X(n) represents
the n-th vector of the training set. The presentation of



the vector X (n) to the network constitutes the itera-
tion n. The presentation of one complete training set
constitutes one epoch.

Figure 1: The Complex Valued Neural Network Archi-
tecture.

For the n-th complex vector X (n) presented to the
neural network, the complex output value Y;(n) of neu-
ron j is given by equation (1).

Yj(n) = Z Wii(n) Xi(n) (1)

j=0,1,....m—1
where Wj;(n) is the complex weight of the synapse that
connects the i-th input node to the j-th output neu-
ron at iteration n and * denotes the complex conjugate
operator.
The synapse weight vector W;(n), associated with
neuron N;, is updated according to

Wiji(n +1) = Wji(n) +

Y} (n)[Xi(n) = Wii(n)Yi(n)] (2)

After achieving convergence for all neurons, we have
the m eigenvectors represented by the synapse vec-
tors W; and the m neuron output values Y;(n) that
represents the principal components. Observe that
the weight update (equation 2) contains operations
that cannot be directly performed with the connections
shown in the network representation of Fig. 1.

3 Properties of the CGHA

To understand how the single layer linear neural net-
work trained by our complex valued version of the Gen-

eralized Hebbian Algorithm performs principal compo-
nent extraction, consider the architecture shown in Fig-
ure 1. For simplicity, assume that the neural network 1s
formed by a single neuron Ny. The pre-synaptic signal
X (n), the post-synaptic signal Yy(n) and the synapse
weight Wy(n) are complex valued. The neuron output
Yo(n) for the iteration n, due to the input vector X (n)
is given by

Yo(n) = XT(n)W5 (n) = W5 (n) X7 (n) (3)

As in the Hebbian rule, in the CGHA the synapse
weight Wy(n) is modified based on the correlation
between the pre-synaptic signal X(n) and the post-
synaptic signal Yp(n). From equation (2), and with
AWy(n) = Wo(n+1) — Wy(n), the synapse weight up-
date is given by

AWo(n) = n{¥5 () X(n) = Vo) Wo(m) b (4)

where the positive constant 7 determines the learning
rate. The term |Y,(n)|* Wo(n) is the complex equiva-
lent to the Oja deflation term proposed to stabilize the
algorithm [2, 11].

At convergence the expected change in the synapse
weights is zero, i.e., (AWy(n)) = 0. Thus, taking the
expected value of both sides of equation (4), and using
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Czdo = Aodqo (7)

From equation (7), qq is an eigenvector of the corre-
lation matrix C, and A 1s the associated eigenvalue. In
the case of several neurons, due to the deflation of the
input data X (second term of equation 2), the synapses
vector of each neuron will converge to the respective
eigenvector of C,. The synapse vector of the p-th neu-
ron converges to the eigenvector associated with the



p-th highest eigenvalue of C,. Thus, after the conver-
gence of the CGHA, the synapse weight vectors of the
neural network represent the complex eigenvectors of
the input data set correlation matrix C';.

4 The Training Window

When the complex valued algorithm presented in sec-
tion 2 is applied to the network of Figure 1 to perform
principal component analysis, a neuron N; enters into
the final stage of the convergence process towards the
associated eigenvector only after the convergence of the
neuron N;_; [2, 10]. After the synapses of a particular
neuron have converged to the respective eigenvector,
the algorithm should not perform any further synapse
updates on that neuron. Because only few neurons,
those immediately adjacent to the converging neuron
N¢, will be near the convergence point, the updating
of the synapse weights of the whole set of m neurons
leads to unnecessary computations.

To avoid updating the synapses of all neurons that
are not ready for convergence yet, we propose a new al-
gorithm that we call Training Window Algorithm. The
goal of this algorithm is to reduce the computational
cost of the CGHA training!. This goal is achieved by
applying the CGHA training only to W, < m neu-
rons, where W 1s the training window size. For in-
stance, if neuron N, is the first neuron in the train-
ing window, the CGHA is applied only to neurons
NeyNegty ooy Negw,—1. Once the neuron N, has con-
verged, the window is slid down by incrementing the
value N.. This process goes on until all m neurons
have converged.

In [4] we give an expression for the reduction of
the computational complexity of the training when the
Training Window Algorithm (TWA) is used. This re-
duction of complexity ~ is defined as the ratio of the
CGHA complexity using TWA to the CGHA complex-
ity without TWA. v is a function of the window size
W, the number of neurons m and the number of in-
puts p. Table 1 shows the complexity reduction ~ for
different window sizes used to train a neural network
with 32 neurons and 64 input nodes.

W, | 32 16 8 4
y 110726 | 0.414 | 0.219

Table 1: Training Window Algorithm Complexity Re-
duction Factor 4 as a function of W, p = 64 and
m = 32.

INotice that this training method is also suited to the real

valued GHA

When the weight vector W; of neuron N; have con-
verged to the eigenvector q;, additional training will
not change the norm [|W;|| [10]. In our experiments
we assume that the weight vector of a given neuron
N; has converged if the change in [|IV;|| averaged over
three epochs is less than 0.1 %.

5 Experimental Results

In this section we present experimental results from the
application of our complex learning rule to image com-
pression [2, 3]. The training set is obtained from the
spectrum of the image “Lenna”, without the redundant
conjugate spectral components. Discarding the prin-
cipal components and complex eigenvectors associated
to the smallest eigenvalues and storing those associated
with the largest eigenvalues we can achieve data com-
pression with reduced information loss [2, 13, 12, 10].

We start with a 128 x 128 pixel image with 256 lev-
els of grey. First the pixel values are normalized to the
interval [0, 1.0], and then the image is converted to the
spectral domain through a two-dimensional Discrete
Fourier Transform. We discard the conjugate spectral
components and divide the remaining half spectrum
into 128 small 8 x 8 frames. Each frame is read from
left to right and top to bottom, resulting in one 1 x 64
training vector. The complex data set mean vector X
is subtracted from each training set vector before the
training process.

We use a neural network with p = 64 input nodes
and m = 32 neurons. Both the real and imaginary
parts of the synapse weights of the neural network are
initialized with random numbers generated uniformly
in the interval [—1.0,1.0]. The initial learning rate 5 is
set to 1 x 1072, At the end of each epoch we update
7n according to the inverse of the largest eigenvalue [2,
3, 5]. The neural network training is performed by
presenting the training set for several epochs until the
synapses converge to the eigenvector. It is important
to note that the training set is shuffled at the end of
each epoch.

After achieving convergence for all 32 neurons, we
store the compressed image spectrum defined by the
64 x 32 matrix ) formed by the complex eigenvectors,
the 1 x 64 complex mean vector X and the 128 x 32
matrix Y formed by the neural network output to each
training vector. The compression ratio obtained is 0.76
with no additional techniques, such as entropy coding.
To decompress the image we obtain the estimated half
spectrum X = YQH, add X to each 1 x 64 vector of
X, restore the conjugate spectral components and ap-
ply the inverse two dimensional Discrete Fourier Trans-
form.



is the re-
complex
> eigenval-
(identified
ex valued
lued Gen-
1e original
e that the
> complex

Flgure 2

i

algorithm (
eralized He
image repre
eigenvalue
valued algg ne, which
implies that for the 1mage in Figure 2, the complex
valued algorithm concentrates more energy in the first
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that the new algorithm will retain more information
than the original Generalized Hebbian Algorithm for
the same number of principal components stored.

For images with small details and high contrast re-
gions the new complex valued algorithm yields a higher
Peak Signal to Noise Rate than the original real valued
algorithm. Such images have a broad and smooth spec-
trum [9], which implies in a high correlation between
the frames in the spectral representation of the image.
In images with less contrast, such as “Lenna,” both al-
gorithms yield similar Peak Signal to Noise Rates. An-
other advantage of the complex valued algorithm pro-
posed for image compression is that the use of frames
in the frequency domain prevents the blocking effect,
often present in decompressed images[9, 10].
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Figure 2: Original image Lenna.

6 Conclusion

Our Complex Valued Generalized Hebbian Algorithm
can be used to extract the principal components of a
complex valued data set. Although we demonstrated
our method with an image compression application,
complex PCA can be applied to other classes of sig-

Figure 3: GHA and CGHA eigenvalues distribution of
the image in Fig. 2

Figure 4: De CGHA
(32 eigenvect 18 37.8dB.
The PSNR o re is 37.3dB.
nal processing is, radar

tems. We also present a new training method for the
single layer linear network that can be used in both the
complex valued and the real valued Hebbian Learning

Algorithm.
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