Presented in II] Congresso Brasileiro de Redes Neurais, Florianpo-

lis, SC, Julho, 1997, pp. 7-11.

A New Training Algorithm to Reduce the Computational

Complexity of Principal Component Analysis by Hebbian

Learning™

Maria Cristina Felippetto De Castro

cristina@ee.pucrs.br

José Nelson Amaral
amaral@ee.pucrs.br

Fernando César C. De Castro
decastro@ee.pucrs.br

Paulo Roberto G. Franco

pfranco@ee.pucrs.br

Flectrical Engineering Department

Pontificia Universidade Catélica do Rio Grande do Sul
90619-900 - Porto Alegre - RS - Brazil

Abstract

In this work we propose a technique that reduces
the computational complexity of training an Ar-
tificial Neural Network (ANN) through Hebbian
Learning. We restrict the learning process to the
neurons that effectively are in the convergence
process. Our results indicate that the proposed
method can reduce the temporal complexity of
the ANN training without degrading the Princi-
pal Components obtained (PCs).

1 Introduction

In this work we focus in the Generalized Hebbian
Algorithm (GHA) proposed by Sanger in 1989,
which combines the Gram-Schimidt orthonormal-
ization [1] to the single linear neuron model intro-
duced by Oja in 1982 [7]. ANNs with one single
layer of linear neurons trained according to the
Hebbian learning rule perform Principal Compo-
nents Analysis (PCA) in an input data set [7, 8, 4]

*This work was in part supported by a grant from
Conselho Nacional de Desenvolvimento Cientifico
e Tecnolégico (CNPq), Fundagao Coordenacio de
Aperfeicoamento de Pessoal de Nivel Superior

(CAPES) and by Pontificia Universidade Catélica do

After the convergence of the GHA algorithm,
each neuron of the ANN yields:

(a) A set of synapse weights that are the
eigenvector components associated to the respec-
tive eigenvalue of the input data set covariance
matrix,

(b) An output value corresponding to the
PC which represents the vectorial projection of
the input data set over the associated eigenvector.

The PCA theory states that the set of the
covariance matrix eigenvectors constitutes an or-
thonormal basis of the input data set [1]. The
variance of the input data set projections are
maximum at the eigenvectors directions, and the
variance value is equal to the eigenvalue associ-
ated to that direction [7, 6].

During the convergence process the GHA
extracts the PCs one by one, in variance de-
scending order. In an ANN with m neurons Ny,
j=0,1,...,m — 1, the synapses of the neuron
Ny converges to the eigenvector associated to the
highest eigenvalue while the synapses of the neu-
ron Np,_1 converges to the eigenvector associated
to the lowest eigenvalue.

It is well known that when GHA is applied,
a neuron N; will not converge until all neurons
N < N; have converged. However the adapta-
tion of N; will start before the neurons that im-
meaditely precede it have converged. Also after

converged, it would be a waste of computational
resources to keep updating its weights. Moreover,
because only few neurons, which are immediately
subsequent to the converging neuron N., will be
near the convergence point, the updating of the
synapse weights of the whole set of neurons Ny,
¢ < s<m—1, also leads to unnecessary compu-
tations.

To avoid updating the synapses of all neu-
rons that are not ready for convergence yet,
we propose a new Training Window Algorithm
(TWA). The TWA goal is to reduce the compu-
tational cost of the GHA training. This goal is
achieved by applying the GHA only to a training
window of size W < m neurons. For instance,
if the neuron N, is the first neuron in the train-
ing window, the GHA is applied only to neurons
NeyNegty ..oy Negw,—1. When the neuron N, has
converged, the window is slided down by incre-
menting the value N.. This process is repeated
until all m neurons have converged. Experimen-
tal results indicate that the TWA introduces a
significant reduction of the GHA temporal com-
plexity.

2 The Training Window Al-
gorithm

In the experiments presented in this paper, we
apply the TWA-GHA to digital image compres-
sion via PCA. We use images of N x N pixels,
N = 128, quantized in 256 gray levels. The im-
ages are partitioned in n, = (N/8)? frames of
size [x [pixels, [= 8. This n, frames, after prop-
erly transformed, will form the ANN training set.
The pixels values of the n** frame are normal-
ized to the interval [0,1.0] and form frames M,
n=0,1,...,ns — 1 [5].

The ANN is made of p = 64 nodes in the
input layer and a single output layer with m = 16
linear neurons. The goal is to extract the 16 PCs
of the original image.

The n'? vector z(n) of the ANN training
set 1s extracted from a frame M, according to
equation (1).

zi(n) = My(a,b) — % (1)

where z;(n) refers to the i'" element of the vector
z(n) and

ng—1
B
7= ;Mn(a,b) (2)
t=a-+1b (3)

To train the ANN, first we initialize the
synapse weights randomly with uniform proba-
bility density. The learning rate 7 is initially set
to a value around 1 x 1073. The presentation
of one complete training set to the ANN consti-
tutes one epoch. The ANN training is performed
by presenting the training set for several epochs
until the neuron synapses of the first neuron in
the training window converge to its associated
eigenvector. For each vector of the training set
presented to the ANN the synapse weights of the
neurons inside the training window are updated
according to equation (4) and the neuron output
values are given by equation (5). Remember that
a neuron j is inside the training window if and
only if N, < j < N, + W;.

Awji(n) = ny;(n){zi(n

Z wii(n b4
w =3 wsin)eito 5)

In order to shuffle the training set, at the
end of each epoch, we randomly select a pair of
vectors in the set and permute their positions.
This operation is performed ng times using a ran-
dom number generator with uniform probability
density.

In order to adequate the training process to
the converging neuron requirements, the learning
rate applied to the neurons of the training window
is changed at the end of each epoch according to
equation (6).

_ 1A

[0

(6)

where A is the eigenvalue associated to neuron N,
and « 1s an arbitrary constant that usually lies in
the interval [500, 2000] [2].

One iteration consists of presenting one
vector of the training set to the ANN. Lets de-

fine W as the vector that has its components de-
fined by the weight of the neuron synapses. In
this work the first neuron of the training win-
dow is considered to have converged at iteration

n if the norm of W remains approximately con-
stant and unitary over the last 3 iterations. This
convergence condition is achieved if the condition
expressed in (7) holds true.

{Z” (”_“_1)||¥—1<1><10—4 (7)

IIT7/ N |

09

0B

o7

0.6

0.5

0.4

0z

0z

Figure 1: TWA comparative complexity performance for m = 16 and p = 64. ~ 1s the TWA-GHA to
single GHA complexity ratio and W is the training window size.

3 Reconstructing the Esti-

mated Image

After the convergence of all the neurons in the
output layer, the set of synaptic weight of vectors

WZ' is stored along with the output vectors ?Z
generated by applying each one of the ng vectors
z; of the original image to the input of the ANN.

To reconstruct the image from the stored
information, we must build the aproximations for
the original frames M, (a, b). This reconstruction
is yielded by equations (8) and (9),

7i(n) = Z_: yi(n)qji + T (8)

M, (a,b) = 255 x &;(n) (9)
where

i=a+1b (10)

a=0,1,....01—1

and 255 1s the pixel denormalization factor.
In the equations refered above, Z;(n) rep-
resents the reconstruction of the n** input vector

b=0,1,....0—1 n=0,1,...,

is the output of the j** neuron to the n'’ in-

put vector and ¢;; is the eigenvector associated

to synapse vector W of the j** converged neuron.
The index ¢ = 0,1,...,p — 1 represents the i'”
element of the vectors Z(n) , T, and g¢;.

The estimated original image 1s then re-
assembled from the estimated frame set. The [x
[frames My, (a,b), 1 =8 n=0,1,...,n, — 1, is
assigned to the n'? respective frame in the 128 x
128 estimated original image.

4 The TWA Computational
Complexity

In this section we study the GHA-TWA compu-
tational complexity compared to the complexity
of the original GHA [7]. Given two ANNs with
identical training sets, both ANNs with m neu-
rons and p synapses per neuron. Lets train one of
the ANNs with GHA and the other with TWA-
GHA with a training window of size Wj.

In order to simplify the mathematics in-
volved, we will compare the two methods based

n;)Il tlwﬁ ffsumptions:

a. The difference between the number of epochs
necessary to the convergence of neurons N,
and N.+1 is a constant number ¢, where N,

1 —
We=1l6 [T
0o —
08
0.7
=
0.6 — Wl » —
)) We=g| -
Mormalized Time | - |-]
. =
to Conwergence . |
04 =
- L We=d| -]
03 —— =
// R /‘f
03 —F —
L —] -7 | iffg=2
0.l == ="
|~ [S -7 [
P Rl R S, gy
0
0 1 2 3 4 5 7 3 o 10 1 12 13 ¥1s
Meuron

Figure 2: Convergence elapsed time normalized to the maximum value. W; is the training window size.
Training set obtained from Figure 4(a) with [= 8 and n, = 256. ANN: m = 16, p = 64, o = 1000 and

initial n = 1 x 1073,

window. This condition results from equa-
tion (6).

b. The training window size Wy does not affect
significantly the number of epochs necessary
to the neurons convergence.

As we will see in Section 5, these are not unreal-
istic assumptions.

The most significant computational cost of
the training is incurred in floating point opera-
tions. Therefore we will estimate the number of
elementary floating point operations O, i.e., the
number of sums and products, necessary to the
convergence of all neurons [3].

The total number of operations Opw nec-
essary to train the ANN with the GHA-TWA,
from equations (4) and (5), is giving by:

-1 1
Orw = G[YWsS—(P-I-?WsZ]

+eWs [mz +2(p+1)m+ g —I-}(]]Q)

The total number of operations Qg 4 nec-
essary to train the ANN with the single GHA is
obtained from (12) with W, = m:

2 3 5
Ocgra =€ gm?’ +(p+ 5)7”2 + (6 +P)m] (13)

Equation (14) defines the complexity re-

duction 4 as the ratio of the GHA-TWA com-

_ Orw

= 14
Ocra (14)
Figure 1 shows the complexity reduction 5

for m = 16 and p = 64.

5 Experimental Results

In this section we present some experimental re-
sults to assess the TWA performance. The train-
ing set is obtained from the image in Figure 4(a)
with [= 8 and n; = 256. Figures 4(b) and 4(c)
show the decompressed image using W, = 2 and
W, = 16 (without TWA). The Peak Signal to
Noise Ratio (PSNR) between two images f(z,y)

o~

and f(z,y) is defined by equation (15).

2552

where the Mean Square Error (MSE is defined as

N-1N-1

MSE = % > (f(x,y) —f(ae,y))2 (16)

=0 y=0

The PSNR is a similarity measure between
images. Notice that the PSNR of images in Fig-
ure 4(b) and Figure 4(c) with respect to the orig-

350

300

250

200

7’13 1
Epuchstu Nt e=4
nnvergence e
g e
150 —
|
v
100 P
*]
50 #;_,.m
0
0 1 2 3 4 5 7 g g w1 1@ 13 1 s
Meurarn

Figure 3: Number of epochs to convergence. Wj is the training window size. Training set obtained from
Figure 4(a) with | = 8 and n; = 256. ANN: m = 16, p = 64, o = 1000 and initial n = 1 x 1073

that the TWA does not affect the precision of the
obtained PCs.

Figure 2 shows the convergence time to
each neuron normalized to the maximum value
(without TWA). We can verify that the normal-
ized convergence time to neuron 15 for W, = 2,
Ws = 4 and W, = 8 are quite close to the respec-
tive theoretical 4 values in Figure 1.

With W, = 2, we can see from Figure 1
that the theoretical complexity reduction 1s ap-
proximately 0.22 and from Figure 2 we can verify
that the experimental complexity reduction is ap-
proximately 0.27. Thus the GHA complexity was
reduced approximately by a factor of 4 with no
degradation of the reconstructed image PSNR.

Because the learning rate is adjusted by
equation (6) at the end of each epoch and due
to the random synapses initialization values, the
use of W, = 1 1s not feasible. With W, = 1,
after the convergence of the neuron N, the ini-
tial learning rate imposed to the next neuron N,
depends on an eigenvalue obtained from random
synapses values. Depending on these synapses
values there will be floating point overflow due to
a high learning rate. That does not happen with
Ws > 1 because all neurons subsequent to N,
in the training window have their synapse values
already updated. Therefore, the set of synapses

value.

Figure 3 shows the number of epochs to the
convergence of each neuron for W, = 2, W, =4 |
W, = 8 and W, = 16. Notice that, as assumed in
Section 2, the TWA does not affect significantly
this parameter and that the number of epochs per
neuron is nearly constant.

6 Conclusion

In this work we presented the Training Win-
dow Algorithm as a proposal to reduce the com-
putational complexity of the General Hebbian
Algorithm. This training method reduces the
GHA global computational complexity without
any degradation of the extracted PCs. Future
work will include an attempt to store the sam-
ples of the deflation term in equation (4) in an
auxiliary matrix, in order to avoid its repeated
recomputation.

References

[1] R. Bronson. Matriz Methods: An Introduc-

(b)

Figure 4: 128 x 128 pixels 256 gray levels images. Figure 4(b) is the re-expanded original image of
Figure 4(a) previously compressed with 16 PCs and with W, = 2. Figure 4(c) is the re-expanded
original image of Figure 4(a) previously compressed with 16 PCs and without TWA. Both images present
PSNR =31.5dB.

[2] L. H. Chen and S. Chang. An adaptive learn-
ing algorithm for principal component analy-
sis. IEEE Trans. Neural Net., 6(5), 1995.

[3] T. H. Cormen, C. E. Leiserson, and R. L.
Rivest. Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1991.

[4] S. Bannour e M. R. Azimi-Sadjadi. Princi-
pal component extraction using recursive least

squares learning. IEFEE Trans. Neural Net.,
6(2), 1995.

[6] R. Gonzalez and R. E. Woods. Digital Image
Processing. Addison Wesley, 1993.

[6] M. H. Hassoun. Fudamentals of Artificial
Neural Networks. MIT Press, 1995.

[7] S. Haykin. Neural Networks. Macmillan Col-
lege, New York, NY, 1994.

[8] L. Xu and A. L. Yulle. Robust principal com-
ponent analysis by self-organizing rules based
on statistical physics approach. IEEE Trans.
Neural Net., 6(6), 1995.

