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Abstract

Frequency domain representation of two dimensional gray-level images is used to develop a pattern
recognition method that is invariant to rotation, translation and scaling. Frequency domain representa-
tion is a natural feature detector that allows the use of only few directions of highest energy as training
data for a set of Artificial Neural Networks (ANNs). We developed a new algorithm that uses the spec-
tral information stored in these ANNs to compare a given image with a known pattern, determining the
relative translation between them and yielding a measure of their similarity. The representation and
method we adopted has the advantage of leaving only the rotation of the object as a free parameter to
be determined by the algorithm. We minimize the spectral resolution noise using Spectral Directional
Filtering. Our experimental results indicate that the proposed method has excelent discriminating power.

1 Introduction

In an earlier work [3] the authors introduced a frequency-domain method for pattern recognition in two
dimensional gray-level images. That method uses the image magnitude spectrum as a feature space, yield-
ing translation invariance. Scaling invariance is attained by storing scale information in an ANN set and
rotational invariance is achieved using the ANN set in a template matching procedure. Translation values
are obtained from the Cross Power Spectral Density between the images. Our preliminary results [3] have
shown good discrimination of patterns and an insensitivity to the effects of finite resolution. This article
presents a detailed derivation for the procedure.

Our algorithm addresses the problem of evaluating the similarity between objects in two-dimensional
images [9]. Given a gray-level reference image and a gray-level input image, the algorithm aims to identify if
an object in the input image corresponds to the pattern object in the reference image, regardless of scaling
factor, rotation angle, and translation.

We can divide image recognition techniques into spatial-domain algorithms and frequency-domain algo-
rithms. A spatial-domain algorithm processes the image pixel values and their respective z-y coordinates.
As a consequence, invariance to translation can be achieved only through costly computations. Algorithms
that use spatial-domain representation include Template Matching [8], Moment Invariants [1], and Artificial
Neural Networks (ANNs) [5].

A frequency-domain algorithm computes the image spectrum by applying a two dimensional Fast Fourier
Transform (FFT) [7]. The magnitude spectrum of an image contains information about the object shape and
the phase spectrum contains information about the object translation; therefore, the shape information in
the magnitude spectrum is naturally translation-invariant. The Fourier-Mellin transform is a powerful tool
for image recognition techniques that use this spectral property [12, 9]. This method represents rotation and
scaling as single translations on the parameter space, and allows the use of the Phase Correlation Technique
[10] to determine translation, scaling and rotation. Thus, there are four free parameters. To represent
scaling and rotation as translations, the Fourier-Mellin method uses logarithmic mapping, which introduces
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distortion in the radial spectral polar coordinate. This distortion results in a non-uniform precision for the
scale estimation and an accuracy loss that is specially severe for images of 128 x 128 pixels [9].

In the present article, we use spectral differential relations to determine directly the translation parameters
without the need for the Phase Correlation Technique. Because scaling information is stored in ANNS,
there is no need of logarithmic mapping for scale estimation. Therefore, our method does not suffer from
the logarithmic distortion problem pointed by Chen [9]. Also, due to the intrinsic ANNs generalization
capability, it is not necessary to use any interpolating scheme, even for images of 128 x 128 pixels. Our
approach to the pattern recognition problem is naturally invariant for translation and scaling. Thus, the
only free parameter is rotation.

2 General Description

In this work we use a Feedforward Multilayer Perceptron (FMP) trained with the backpropagation algorithm
[11] to store the magnitude of a Fast Fourier Transform (FFT)[6, 7] applied to the reference image. The
FMP architecture is 65-7-1, i.e., it has 65 input nodes, 7 hidden neurons and 1 output neuron. The use of
one hidden layer of 7 neurons was determined empirically as a compromise to minimize the mean square
error of the trained ANN and to maximize the learning speed [11]. The 65 input nodes are necessary because
we are working with an image of 128 x 128 pixels. We need only one output neuron because each ANN is
dedicated to estimate a single scaling factor value.

Let r(z,y) be the spatial representation of a reference image with a given pattern object. We want to
compare the pattern object in »(z, y) with a target object in an input image s(z,y). In this work we assume
that both r(z,y) and s(z,y) have a black (zero) background and a size of N x N pixels, with N being an
integer power of two. Let R(u,v) be the spectrum of r(x,y) defined by R(u,v) = FFT{r(z,y)} [7]. Let
R(w, ¥) be the spectrum R(u,v) in a polar coordinate system with center at w = 0, such that u = wcos ¥
and v = wsin ¥. The reference image spectral energy in direction ¥ is defined by equation (1).
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A highest spectral energy direction (HSED) of an image is a value of ¥ in which E(¥) is a local maximum.
The ji* HSED of an image is the spectral direction ¥; such that F(¥;) is the j** local maximum of E(¥),
ordered such that E(¥;) > E(¥;11) . For instance, consider the spectral magnitude of a generic image as
shown inside the square in Figure 1. The bright regions represent high values of spectral magnitude while
the dark regions represent low values. This image has m = 6 HSEDs respectively at 168", 140°, 117°, 90°,
37% and 0°, indicated by the white lines originating at the center.

To achieve scaling invariance, the spectral magnitude variations due to spatial scaling in the reference
image are used to train a set of m ANNs. We select the m HSEDs directions that concentrate most energy
and train m ANNs with the spectral magnitude samples along these HSEDs.

We use P reference images to train the set of m ANNs. Typically, for a 128 x 128 pixels image P
is between 10 and 20 [3]. The k' generated image 7 (z,y) is the original reference image scaled by ay,
k=0,...,P—1. Let Rg(w,¥) be the polar coordinate spectrum of ry(z,y) with center at w = 0. The
input vector of an ANN is the set of samples at the ANN input nodes [11]. The input vector for the j”
ANN are the values of |Ry(w, ¥;)|, where ¥, is the j* HSED. For each training input vector of the j'*

training set, we assign to the j» ANN desired output the scaling factor ay. In this way, each ANN learns
the pattern object scaling variations. The ANN generalization capability enables the algorithm to recognize
scaling factors that are different from those used to train the ANNs.

To solve the rotation invariance problem, we use the fact that an image rotation in the spatial domain
implies the same rotation in the spectral domain [7]. Figure 1 depicts a functional block of the proposed
algorithm which we call Spectral Angular Discriminator (SAD). Each triangle in the figure represents a
trained ANN. The SAD is used to determine the rotation angle @y between the objects in r(z,y) and in
s(z,y). The SAD input is a set of m ANN input vectors beginning at w = 0 and having the same angular
spacing as the HSEDs. In Figure 1 the SAD input is rotated by ¥ = 0°, therefore the m input vectors are
aligned with the respective HSEDs. If the SAD input were rotated by ¥ = [ each ANN input vector would
be spaced of an angle 3 from their respective HSED, where 0 < 8 < 180°. The SAD output H(¥) is a linear
combination of the m ANN outputs to a given rotation angle ¥ of the SAD input on the image magnitude
spectrum. This linear combination is averaged as shown in Figure 1.

Let Hs(U) be the SAD output to s(z,y). In the results of a previous work, De Castro et al. [3] indicated
that the global maximum of H, (W) yields g, the first approximation to the scaling factor of the object
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Figure 1: The SAD diagram for m = 6 and N = 128.

in s(z,y). Defining H, ., (¥) as the SAD output to the reference image scaled by o, and R,;(f) as the
circular cross-correlation function between H, ., (¥) and H,(¥) , that results also indicated that the global
maximum of R,;(6) is @ = fy and the square root of this maximum value defines the scaling factor aq of the
target object [3].

3 The Relative Translation and the Decision Criterion

Let 7o(2,y) be the reference image scaled by aq and rotated by 6y. S(u,v) and Ro(u,v) are the spectra of
s(z,y) and of ro(x, y). If the shape of the target object matches the shape of the reference object, the only
difference between s(z,y) and ro(z,y) is a translation (2, yo). In this situation their spectra are related by
equation (2) [7]. .

RQ(U, U) — S(U, v)e—z 2 (uzo+vyo) (2)

Equation (2) can be expressed as

ei(éRD(u,v)—éS(u,v)) — e—i%’(uxu-l-vyu) (3)

S(u, v)

Using the phase information in equation (3) we can write

S{D} 2m
/D = arctan = —i—(uxo + vyo) (4)
where <%{D}) N !
D = D(u,v) = Ro(u,v)S™(u, ) (5)

is the cross power spectral density between ro(x,y) and s(z,y) [2]. S*(u,v) is the complex conjugate of
S(u,v). R{D} is the real part of D and I{D} is the imaginary part of D.

As long as (2) holds, the differentiation of equation (4) with relation to u and v yields
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If the relationship between ro(z,y) and s(z,y) is a spatial translation, equation (2) holds, resulting in
zo(u,v) and yo(u,v) constant for u = 0,...,N — 1 and v = 0,..., N — 1. If equation (2) does not hold,
then we can express the relationship between Rg(u,v) and S(u,v) by equation (8). In equation (8) we made



explicit the dependence of zg and yg on u and v. This suggests that the variances of zg(u,v) and yg(u,v)
indicate the degree of shape mismatch between the objects in the reference and in the input images.

Ro(u,v) = S(u’v)e—i%’(u@‘u(u,v)-l—vyu(uyv)) @

In order to minimize the spectral resolution noise resulting from the image finite resolution in the fre-
quency domain, we apply Spectral Directional Filtering to zo(u, v) and yo(u,v) [7, 3]. Let 2o(w, ¥), yo(w, ¥)
and Ro(w, ¥) represent xzq(u,v) , yo(u,v) and Rg(u,v) in a polar coordinate system with center at w = 0,
such that u = wcos ¥ and v = wsin ¥. Let ¥; + 0y be the j** HSED of Ro(w,¥), j =0,...,m — 1. Since
2o(w, ¥) and yo(w, ¥) are translations along orthogonal directions, the inverse of the vector sum of their
variances computed along the HSEDs can be used as a measure of the shape similarity between the objects

in s(z,y) and in r(z,y). Thus, we define a similarity ratio A according to equation (9),

~ 1
A =10log [dB] (9)
L+4/(32)" + (52)
1 wi; m-—1
312; = 5 (l‘o(w, \If] + 90) - 20) (10)
w=wq j=0
1 wy; m-—1
35 =Q (yo(w, ¥, + 6o) — Yo) (11)
W=Wwp j=0
1 w1 m—1
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o= D 2 uolw, W +0) (13)

where © = m(w; —wg + 1) and wg and w; define the radii of the filter annular bandpass region in the spectral
domain which define the filter cutoff freqliencies.

The algorithm compares the value of A obtained from equation (9) with an empirical threshold value to
decide whether s(z,y) and r(x,y) contain the same pattern. Notice that if the images s(x, y) and r(z,y) are
not correlated!, the use of equations (6) and (7) to estimate the translation between them will produce a

large value for &2 and 35 and a low value for A. Hence the algorithm will correctly conclude that the object

in s(z,y) is not the same as the reference object in r(2,y). Notice also that if the shape of the objects are a
perfect match then A =0 dB.

I I a) ag = 0.40 and 0y = 58.37 I b) ag = 0.32 and 6y = 61.1° |
I [A=—41x10*dB| N =-061dB || X=-056dB | X=-019dB |
Z 40.5 pixels 48.7 pixels 36.2 pixels 41.8 pixels
Yo 29.7 pixels 32.0 pixels 26.4 pixels 26.9 pixels

Table 1: Algorithm estimates when the input and reference images are respectively a) Fig. 2b and Fig. 2a
and b) Fig. 2c and Fig. 2a.

The filter computes the translation estimates o and gy using samples along the HSEDs that are inside
the bandpass ring defined by [wg,w1]. Choosing wg and wy such that the highest values of |Ro(w, ¥)| along its
HSEDs are kept inside the filter bandpass, we minimize the uncertainties in Zy and go. Because the length of
a circumferential arc is proportional to its radius for a given arc angle, the finite resolution noise of the SAD
is higher for the samples farther from the center of the spectrum . This led us to adopt wg = 0 and wy = we,
where w, is the radius of the circle in the spectral domain for which [Rg(w, ¥)| < 1 max{|Ro(w, ¥)|}. This
bandpass threshold was determined experimentally aiming to increase the precision of the estimators Zy and

Yo.

Remember that at this point, in spite of the estimates obtained for §; and ag, we have not decided whether the image
under analysis s(z,y) and the reference image r(z,y) have any similarity.
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Figure 2: All images are 128 x 128 pixels of size. The alphabetical characters are Times New Roman . Fig.

2b is the image of Fig. 2a scaled by 0.4, rotated by 60° and translated by (40,30) pixels. Fig. 2e is the image
of Fig. 2d scaled by 0.6, rotated by 45" and translated by (10,20) pixels.

|| || a) ag = 0.59 and 6y = 44.8° || b) ag = 0.81 and 65 = 0.00° ||
I [A=-23x102dB| N =-431dB || X=-319dB | X=-195dB |
T 9.8 pixels 21.3 pixels 6.5 pixels 6.5 pixels
Yo 19.9 pixels 31.6 pixels 0.9 pixels 25.8 pixels

Table 2: Algorithm estimates when the input and reference images are respectively a) Fig. 2e and Fig. 2d
and b) Fig. 2f and Fig. 2d.

Due to the spectrum symmetry [7], the estimated 6y belongs to the interval [0, 180°], whereas the actual
rotation angle may be either 6y or 6o + 180°. To solve this ambiguity we apply the spectral relation (14) to
equation (5) [4]: '

RRo(u,v) = R}(u, v)e " F (retvye) (14)

where RRo(u,v) is the spectrum of rrq (2, y), the image ro(z, y) rotated by 180°, and (z., y.) is the geometric
center of the object in ro(z,y). We apply both Rg(u,v) and RRo(u,v) to equation ( 5) to obtain D and D,.
Substituting these two values in the chain of equations (6), (7),(12), (13), (10), (11) we obtain from (9) two

likeness ratios A and Xr. f A < Xr the relative rotation angle is 6y + 180" and not 6.

4  Experimental Results

This section describes some experimental results of the algorithm applied to alphabetical character recogni-
tion and gray-scale object identification.

Figures 2a and 2b present the reference and the input images. Table 1a shows the algorithm estimate for
the scaling factor ap, the rotation angle g, and the translation (zg,yo). Since A > A,, the actual estimated
rotation angle is 6, = 58.30.

To demonstrate the discriminating power of this algorithm, consider the input image in Figure 2¢ and
the reference image in Figure 2a. Table 1b shows the algorithm performance. Although the character “V” i
quite 51m11ar to the character“A” both A and /\ resulted in much higher values than the X value in Table 1a

Note that \ < /\r, meaning that the algorithm interpreted the character “V” as a rough approximation of
the pattern “A” rotated by 180° +61.1% = 241.1°,



Tables 2a and 2b show the algorithm performance on aircraft identification. Notice the low value of A
when the objects are different, as shown in Table 2b.

5 Conclusion

A difficult problem in two-dimensional pattern recognition is to attain invariance to rotation, scaling and
translation. We use spectral features representation and the generalization capability of ANNs to develop
a method with such properties. We also use spectral properties to develop a direct procedure to determine
the translation and the degree of similarity between two images. Future research efforts will add noise to
the images to investigate the robustness of the method.
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