
Fine-Grain Stacked Register Allocation for the Itanium Architecture

Alban Douillet José Nelson Amaral Guang R. Gao

Dept. of Computer Science Dept. of Computing Sciences Dept. of Electrical Engineering
University of Delaware University of Alberta University of Delaware
Newark, DE 19716 Edmonton, Alberta, T6G 2E8 Newark, DE 19716

U.S.A. Canada USA
douillet,ggao @capsl.udel.edu, amaral@cs.ualberta.ca

Abstract. The introduction of a hardware managed register stack in the Itanium Architecture creates an oppor-
tunity to optimize both the frequency in which a compiler requests allocation of registers from this stack and the
number of registers requested. The Itanium Architecture specifies the implementation of a Register Stack Engine
(RSE) that automatically performs register spills and fills. However, if the compiler requests too many registers,
through the alloc instruction, the RSE will be forced to execute unnecessary spill and fill operations. In this pa-
per we introduce the formulation of the fine-grain register stack frame sizing problem. The normal interaction
between the compiler and the RSE suggested by the Itanium Architecture designers is for the compiler to re-
quest the maximum number of registers required by a procedure at the procedure invocation. Our new problem
formulation allows for more conservative stack register allocation because it acknowledges that the number of
registers required in different control flow paths varies significantly. We introduce a basic algorithm to solve the
stack register allocation problem, and present our preliminary performance results from the implementation of our
algorithm in the Open64 compiler.

1 Introduction

The problem of minimizing data traffic between the
memory and the registers of a processor — known as the
register allocation problem — has occupied researchers
for many years. Whether selecting a set of values to be
promoted to registers [5], or minimizing the number of
values spilled from registers to memory [4, 3], the goal is
to minimize the number of loads and stores actually exe-
cuted at runtime to reducememory traffic and thus reduce
the execution time of the program.

Register allocation algorithms work with the con-
straint that a processor has a fixed — and often small
— register set. Besides the increased traffic with mem-
ory caused by the unavoidable spill operations, reusing
the same register to store multiple temporary values in-
troduces write after read (WAR), and write after write
(WAW) dependencies in the instruction stream. Such de-
pendences are not intrinsic to the program being exe-
cuted, but are a consequence of register reuse.

Another unintended consequence of the small fixed-
size register file is that the load and store instructions re-
quired for register spilling must be fetched from memory
and issued, thus these instructions compete with other in-
structions for space in the instruction and the data cache
and further increase the memory traffic.

In order to eliminate these avoidable dependences,
out-of-order issue processors often have extra non-
architected registers — or reservation stations — that
are not visible to the compiler. This extra storage can
be used at runtime to rename the registers selected by
the compiler, eliminating the extra dependences and al-
lowing more instruction level parallelism. Unfortunately
loads and stores inserted by the compiler to spill values to
memory cannot be eliminated from the instruction stream
at runtime. Therefore these spill instructions increase the
memory traffic even when some of the non-architected
storage could be used to save the value been spilled[9,
10].

An alternative design that eliminates many of these
problems is adopted in the Intel Itanium Architecture [6–
8]. In the Itanium a portion of the register file is imple-
mented as a very deep stack. In the first processor in the
Itanium family, the top 96 positions of this register stack
are implemented as physical registers, while the remain-
der of the stack is mapped to memory. An instruction,
called alloc , is provided to enable the compiler to spec-
ify how many registers will be used by each procedure.
This instruction allows for up to 96 registers to be al-
located at once. The architecture also provides a register
stack engine (RSE), a hardwaremechanism that automat-
ically copies to and from memory the bottom portion of

the stack that does not fit in the 96 physical registers. To
the best of our knowledge, the Itanium architecture is the
only architecture that uses such a mechanism.

Whenever the accumulated allocations in a program
exceed 96 registers, the RSE transfers values between the
memory and the registers to make room for the new allo-
cation. Therefore the compiler still has to solve the reg-
ister allocation problem in a similar fashion as it does
for architectures without a register stack. However it is
now possible to make new tradeoffs between serialization
caused by the creation of WAR and WAW dependences
and the allocation of more registers. Moreover the allo-
cation instruction itself has a cost that needs to be taken
into consideration when multiple allocation instructions
are used in a procedure to reduce the accumulated regis-
ter allocation.

The alloc instruction was designed to be called once
at the beginning of every function. In this paper, we pro-
pose the fine-grain allocation of stacked registers, i.e.,we
propose to use more than one alloc instruction in each
procedure in order to reduce the number of unnecessary
register spills and fills. In Section 2, we describe the reg-
ister stack and the alloc instruction. In Section 3, we in-
troduce a motivating example and clearly formulate the
multi-alloc problem. In Section 4, we describe an algo-
rithm to solve the multi-alloc problem. The experimental
results are presented in Section 5 and show that a finer-
grain use of the alloc instruction can lead to improve-
ments at run-time.

2 Register Stack & Allocation Instruction
The Itanium architecture has 128 integer general purpose
registers. Of those, 32 are static registers accessed and al-
located by the compiler using conventional mechanisms.
A register stack is implemented in the remaining 96 reg-
isters. Because the architecture maintains a backing stor-
age where portions of the stack can be spilled, from the
point of view of the application, this stack can grow un-
bounded. Stacked registers are organized into frames, one
per function invocation. The size of the frames are set us-
ing the alloc instructions1. Each individual alloc instruc-
tion can resize the current register stack frame to up to 96
registers.

Whenever the total number of stacked registers al-
located surpasses 96, a hardware mechanism, called the
Register Stack Engine (RSE) automatically spills enough
values to the backing storage to make room for a new al-
location request. When physical registers become avail-
able (e.g. due to the completion of a function invocation,

the RSE fills these registers with values that had been pre-
viously spilled. The spill/fill operations are asynchronous
with the execution of the instructions of the running ap-
plication.

2.1 The Allocation Instruction

The alloc instruction has four parameters: the number of
inputs, , the number of locals, , the number of outputs,
, and the number of rotating registers, . The size of the
frame allocated is given by . The input registers are
a subset of the local registers. The output registers of a
caller procedure overlap with the input registers of the
callee to allow the passage of parameters via registers.
The rotating registers are a subset of the stacked reg-
isters allocated in the current frame with the restriction
that . Rotating registers are used to enable
the implementation of dynamic single assignment in soft-
ware pipelined loops. The execution of an alloc instruc-
tion may either grow or shrink the register frame of the
current procedure. The parameters of the alloc instruc-
tion specify the size of the current frame, and that this
new size is effective immediately upon completion of the
instruction.

For simplicity, in the remaining of this paper we con-
sider the alloc instruction to have a single parameter
that is the size of the frame. Unless otherwise stated,
henceforth, all references to number of registers, refer to
stacked registers. We say that a function requires reg-
isters for its execution if in at least one of its execution
paths stacked registers are accessed. Notice that not all
the executions of the function will need the allocation of
registers, as the function might not execute the path

that requires the maximumnumber of registers. Consider,
for instance, a function that requires registers and
that calls a function that also requires registers.
Figure 1 shows the register stack after the allocation
of registers for the function . Figure 1 illustrates
that when executes there is not enough registers to
allocate its 60 registers (see the shaded area). Therefore
some of the registers previously allocated to must
be saved to memory (spilled) to make room for the reg-
isters required by (Figure 1). The register frame
of wraps around to use the space emptied by spilling
the lower part of ’s frame. Now consider that we have
used our technique in and have provided multiple al-
loc instructions for different paths of . If the current
invocation of only requires registers, the pattern

1 The alloc instruction should actually be named resize instruction. Indeed it does not only allocate registers but also deallocate
them if needed. The effect of the instruction is only a change of size of the register stack frame

of allocation will be the one shown in Figure 1 , and
no register spilling by the RSE would be required.

96

80

60

40

20

0

(b)(a) (c)

bar(high)

foo (high)

bar (low)

foo

bar

alloc 10
bar

alloc 60

foofoo

alloc 60

(d)

Fig. 1. Example of the Effects of the alloc Instruction

In this paper we explore the use of multiple alloc in-
structions in a procedure in order to reduce the number
of unnecessary spills/fills performed by the RSE. Our in-
tuition is that if the compiler is forced to use a single
alloc instruction per procedure, this instruction must in-
serted early in the procedure and must request the allo-
cation of the maximum number of registers used in any
control path through the procedure. If the total number of
allocated registers over all the active functions exceeds
96, then the RSE must spilled values in all called proce-
dures. Meanwhile the actual register requirement in some
control paths may be considerably smaller than the max-
imum among all control paths.

2.2 RSE Modes of Operation

An important factor in the optimization of the placement
of alloc instructions by the compiler is the policy used
to perform the spill and fill operations by the RSE. The
Itanium architecture proposes four spill/fill policies for
the RSE implemented as modes of operation. The four
modes of operations offer combinations of eager and
just-in-time loads and stores. A load/store is said to be
just-in-time when it is executed when an alloc instruction
triggers it or by the return of a procedure. A load/store is
said to be eager when the RSE speculatively loads/stores
registers from/to memory before an alloc instruction asks
for it or the procedure returns. Through the eager execu-
tion of load/stores, the RSE will hopefully make enough
space for the next alloc instruction and will not stall the

execution of the program waiting for the spills to be exe-
cuted.

Although the algorithm discussed in this paper is in-
dependent of the mode of operation of the RSE. the “ea-
ger loads/eager stores” mode of operation would be the
most efficient one for applications with many function
calls. However, the Itanium processor only implements
the “just-in-time loads/just-in-time stores”.

3 Problem Statement and Motivating
Example

In this section we introduce a simple example that we
will used throughout the paper to motivate and describe
the execution of our multi-alloc algorithm.

3.1 Motivating Example

We consider the problem of efficiently inserting alloc in-
structions in the code of a function in a program .
We explain what we mean by “efficient” through the fol-
lowing example. We are given the Control-Flow Graph
(CFG) of and the local register requirement () of
every basic block of , i.e.,the number of stacked reg-
isters that must be allocated for each basic block of .
For instance, means that basic block re-
quires that at least 10 registers be allocated from the reg-
ister stack to execute properly.We assume that the CFG is
acyclic— we will deal with loops later. Also, the val-
ues are known and our problem formulation takes place
after the register assignment phase2.

Figure 2 shows the CFG that we will use through-
out the paper. The big boxes represents the basic blocks
of while the number in the little boxes attached to the
basic blocks are the value of the corresponding basic
block. For instance, and .

2 Usually named register allocation phase, but we want to avoid any confusion with the traditional register allocation problem.

D 10 E 20 F 96

G 10

B 10 C 20

A 10

Fig. 2. the CFG of a routine where every basic block
is associated with its value.

The alloc instructions have not been inserted in the
code of yet. For instance, the basic block can only
be executed if there are at least registers
allocated on the stack. Thus, we must make sure that,

Criterion 1: For every control-flow path of
, there will be enough registers allocated to al-

low the execution of every basic block of .

Figure 3 presents an allocation instruction insertion
scheme that satisfies Criterion 1

Now, thanks to the alloc instruction in A, 96 registers
are allocated for every basic block in , the program is
correct and can be executed. The allocation value of the
alloc instructionwas chosen as equal to themaximum
value of all the basic blocks in . This is the normal us-
age of the alloc instruction described in the Intel Itanium
Architecture manuals[6–8]. Note that the alloc instruc-
tion must be executed before any other instruction that
uses a stacked register is executed.

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 96

Fig. 3. The alloc instruction allocates enough registers so
that every basic block in can execute properly

Unfortunately, depending on the control-flow path to
be executed, we may allocate more registers than actually
required and therefore trigger unnecessary memory traf-
fic. For instance, if the control-flow path is
executed at run-time, 96 registers are allocated but only
10 are used. It would be more efficient if,

Criterion 2: For every control-flow path of ,
we do not allocate more registers than actually
required.

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 10 alloc 20

alloc 10 alloc 20 alloc 96

alloc 10

Fig. 4. An alloc instruction is inserted in every basic
block of to allocate the exact number of registers re-
quired by any basic block.

Using this criterion, we could have the other extreme
for the insertion of the allocation instructions shown in
Figure 4.

Now, we have satisfied Criteria 1 and 2 but we, ob-
viously, used unnecessary alloc instructions that create a
non-negligible increase on the code size and will slow
down the program. For instance, the alloc instruction
in is redundant and could be removed because basic
block , the only parent of , already allocated enough
registers for to execute. Thus, we need another crite-
rion to generate an efficient alloc insertion,

Criterion 3: In any control-flow path in , only
“necessary” alloc instructions are inserted.

To apply criterion 3, we try to use a simple algorithm
that eliminates the alloc instruction from a basic block
if all the paths that lead to have allocated enough

registers to satisfy the of . Unfortunately, as shown
in Figure 5, this algorithm fails to satisfy Criterion 3: for
the control-flow path , the alloc instruction
in basic block is not necessary. However our algorithm
failed to eliminate that instruction because the control-
flow path does not allocate enough registers
before reaching .

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 20

alloc 20 alloc 96

Fig. 5. The alloc instruction are all necessary except the
one in for the control path .

We want to move the alloc instruction that is in
in Figure 5 to another place, so that it is not executed in
the path . On the other hand, we do not want
to move the alloc from to , because in that case we
would allocate too many registers (instead of) for
the path and violate criterion 2. Thus, we
would like the alloc instruction to appear between and
. We insert an artificial basic block in the CFG when

we have no place for the alloc instruction that would sat-
isfy all three criteria. Because the allocation instruction
insertion phase occurs late in the code generation phase,

the insertion of an artificial basic block in the CFG can
be costly in term of updating hyperblocks, scheduling,
and live ranges. Therefore we need another criterion for
our definition of efficient allocation insertion in order to
ensure that this method is only used as a last resort,

Criterion 4: The number of artificial basic
blocks inserted in is minimum.

3.2 Problem Formulation

In practice we are concerned with the number of alloc
instructions executed at runtime, therefore when apply-
ing Criterion 3 we want to take into consideration the
frequency of execution of each control path. Thus we
now assume that we are also given a function that
specifies the frequency of execution of the control path
when the function is executed. To implement the

third condition we define , the number of alloc
instructions executed for the control flow graph under
the frequency of execution as:

where is the set of all control-flow paths of ,
indicates that the basic block is in part the con-

trol path , and the function returns 1 if the
basic block contains an alloc instruction and 0 other-
wise. Because the alloc instruction can have a long la-
tency (RSE spills/restores) and because the alloc instruc-
tion introduces new false dependencies with the instruc-
tions using the registers being allocated, the less alloc in-
structions executed at run-time, the better (Criterion 3).
We can now present our problem statement.

Multiple Alloc Problem Statement: Given an acyclic
control-flow graph for a procedure , a
register assignment for the variables of , and a
frequency of execution for each control-flow path
of , find an allocation instruction insertion scheme of
such that all the following conditions are satisfied:

(i) Correctness Criterion: for every control-flow path
of , enough registers are allocated to allow the

correct execution of each basic block in .
(ii) Fitness Criterion: for every control-flow path of

, the number of registers allocated does not exceed
the maximum local register requirement of any
basic block in .

(iii) Efficiency Criterion: the average number of alloc
instructions executed at run-time, , is
minimized.

(iv) Sparseness Criterion: the number of artificial basic
blocks inserted in the CFG is minimized

The criteria of the problem statement are sorted in
decreasing priority order. For instance, the efficiency cri-
terionmust be satisfied before trying to satisfy the sparse-
ness criterion.

alloc 20 0

D 10 E 20 F 96

G 10

B 10 C 20

A 10alloc 10

alloc 20

alloc 96

H

Fig. 6. A solution to our example

In Figure 6 we provide a solution that satisfies all the
requirements of our problem statement. A control-flow
path may include more than one alloc instruction, be-
cause a given basic block may belong to multiple con-
trol paths. The artificial basic block has been inserted
between and to allocate 20 registers for the exe-
cution of without the instruction interfering with the
control-flow path . Criteria 1-3 are satisfied
while the number of artificial basic blocks inserted is
minimized. In any control path, when the flow of exe-
cution reaches a basic block, either enough registers have
already been allocated or the basic block contains the ap-
propriate alloc instruction. Also, after any alloc instruc-
tion that allocates registers, at least registers are actu-
ally used later in the CFG. Finally, is minimized
and equal to when considering the
control-flow paths in the following order: ,

, and .

4 Solution Method
In this section we introduce an heuristic algorithm that
generates a multiple alloc instruction placement. Given

a CFG annotated with the for each basic block, this
algorithms finds a set of alloc instructions that satisfies
criteria 1-3. Although this algorithm does not minimize
the number of artificial basic blocks inserted, our obser-
vation indicates that few such blocks are actually inserted
in the code. In its current formulation, the algorithm as-
sumes that all control-flowpaths have the same frequency
of execution.

4.1 The Algorithm

Before inserting the alloc instructions, the following in-
termediate values need to be computed.

: Local Register Requirement of basic block .
As defined earlier, it is the maximum number of live
registers at any point in basic block . To be exe-
cuted, requires that registers be allocated
on the stack.

: Outgoing Register Requirement of basic block
. It is the minimum number of stacked registers re-

quired by any control-flow path in the CFG that orig-
inates in , included, and ends at the exit node.
The can be defined recursively by:

where
the are the direct successors of in the
CFG.

Given a register assignment, the and the
are intrinsic properties of . The following two

values are determined by the placement of alloc instruc-
tions:

: Number of registers allocated by the alloc in-
struction in . If there is no alloc instruction in ,
then .

: Minimum Actually Allocated. The value rep-
resents the minimum number of registers actually al-
located in any control-flow path that originates in the
start node of the CFG and ends in , included. The

can be defined recursively by:

where are the direct predecessors of in
the CFG.

For performance, multiple alloc instructions should
not be placed inside loop nests. Therefore, for the multi-
alloc algorithm, each loop nest is represented as an ag-
gregate node in the CFG, i.e.,a single virtual basic block
with a single set of values (, ,...). The of a loop
nest is the maximum register requirement of all the basic

// Computation of the values
1: for every BB in the CFG in reverse topological order
2:

// The main algorithm
3: for every BB in the CFG in topological order

// if has no predecessor, we automatically insert an
// alloc instruction.

4: if has no predecessor in the CFG
5: insert in ;
6: ;
7: next BB;

// We analyze the and its predecessors.
8: all paths need alloc TRUE;
9: no-path need alloc TRUE;
10: must insert locally FALSE;
11: for all the predecessors of
12: if
13: candidate() TRUE;
14: no path needs alloc FALSE;
15: else
16: candidate() FALSE;
17: all paths need alloc FALSE;
18: if candidate() AND has at least 2 successors
19: AND
20: must insert locally TRUE;
21:

// When enough registers are allocated in all incoming path
// we do not need to insert any alloc instruction.

22: if no path needs alloc
23: ;
24: next BB;

// When none of the predecessors has enough registers allocated,
// or when there exists one predecessor with not enough register
// allocated where , then we must insert an alloc
// instruction in .

25: if all paths need alloc OR must insert locally
26: insert in ;
27: ;
28: next BB;

// Otherwise we insert an alloc instruction in every predecessor
// that requires it.

29: for all the predecessors of such that candidate()=TRUE
30: insert in ;
31: ;
32: ;
33:

Fig. 7. The multi-alloc placement algorithm

blocks in the loop nest. This is a conservative approach
to loop nests, but effective in practice.

Before applying our algorithm,we inserted empty ba-
sic blocks on the entrance edges of loops to make sure the
algorithm is able to insert alloc instructions in the prede-
cessors of loop entry basic blocks if necessary. The in-
serted basic blocks have only one successor and therefore
the insertion of an alloc instruction is compatible with the
fitness criterion.

Our multi-alloc placement algorithm is shown in Fig-
ure 4.1. First (lines 1-2), a bottom-up topological traver-
sal is performed to compute the values using the
values.

Then each basic block is considered in topological
order (line 3). If the basic block has no predecessor in
the CFG, we insert an alloc instruction in the block (lines
4-6). If the basic block requires zero stacked registers,
insert is converted into a no-operation.

Given a node , we check all the immediate prede-
cessors of to identify which ones are candidates for the
placement of an alloc instruction (lines 11-16). A prede-
cessor of is a candidate for an alloc placement if its

is smaller than .
If all the incoming paths of need an alloc instruc-

tion, then the alloc instruction is placed in itself (lines
19 and 25). The number of registers allocated is equal the
maximumnumber of registers that will be required in any
path leaving , . By allocating instead of

, we prevent the need for the insertion of another
alloc instruction in at least one path leaving .

If there exists at least one incoming path that does not
need the alloc instruction, the algorithm inserts one al-
loc instruction in each of the incoming paths that need it
(lines 27-29). Finally we update the value (line
30).

4.2 Application to our Motivating Example

The application of the algorithm to our motivating ex-
ample is shown on Figure 8. In this figure each basic
block is annotated with its , , and values. Fig-
ure 8(a) shows the CFG after the computation of the
values(lines 1-2). Then the CFG is traversed in topologi-
cal order (line 3). The first basic block, , has no prede-
cessor therefore we insert an alloc instruction (line 4-6)
with (Figure 8(b)). Next basic block
is visited. Because is equal to (an im-

mediate predecessor of) no alloc instruction is needed
in (lines 11,14-15). Assume that the algorithm visits
next. is the only predecessors of , and is

smaller than the . Therefore an alloc instruction

must be inserted in . Because , the only predeces-
sor of , has a lower value, the insertion must be
in (lines 17-19, Figure 8(c)). When the algorithm vis-
its , its only predecessor has enough registers allo-
cated () (lines 11,15-16), thus does
not need an alloc . As for we do not insert an alloc
instruction in . has two predecessors and only one
incoming path, from , requires the insertion of an al-
loc instruction. Because , the insertion
must be local (lines 17-19, Figure 8(d)). Then the algo-
rithm continues and an alloc instruction is inserted in
but not in (Figure 8(e)).

4.3 Algorithm Analysis

Time Complexity
Theorem 1. The algorithm is linear in the number of ba-
sic blocks in the CFG.

Proof. The algorithm traverses the CFG in topological
order and only visits the predecessors of every basic
block. Visiting a predecessor is equivalent to following
an edge backwards. In a CFG each node can have at most
2 immediate successors. Thus the number of edges in a
CFG is proportional to the number of nodes. Therefore
the entire loop can be executed in linear time in the num-
ber of nodes.

For the same reason, the insertion of artificial basic
blocks does not change anything to the time complexity.

Criteria Satisfaction First we prove that the two first
criteria of our problem statement are satisfied.

Theorem 2. The algorithm proposed returns an alloca-
tion instruction insertion scheme that satisfies the cor-
rectness criterion.

Proof. The algorithm traverses the graph in top-down
topological order. For each basic block, the algorithm
tests if enough registers have been allocated for every in-
coming path to the basic block (line 11). If an alloc in-
struction is required to satisfy the local register require-
ment of the basic block, the algorithm inserts one either
directly in the basic block (lines 4-6 or 24-26), either ear-
lier in the faulty paths (lines 27-30). Therefore the cor-
rectness criterion is satisfied.

The fitness criterion is not satisfied as our example
shows for the basic block in Figure 8(e). If the control-
flow paths comes from , then we repeat the alloc in-
struction.

Because the algorithm does not take into account the
frequency of execution of any given control-flow paths of

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

lrr
orr
maa

(a)

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

alloc 10

10

(b)

D 10 E 20 F 96

G 10

B 10 C 20

A 10
10

10

10

10

20

20 96

alloc 10

10

10

10

alloc 20

20

(c)

20
20
20

D 10 E 20 F 96

G 10

B 10 C

A 10
10

10

10

10

20 96

alloc 10

10

10

10

alloc 20

H

(d)

alloc 20

10

20
20
20

D 10 E 20 F 96

G 10

B 10 C

A 10
10

10

10

10

20 96

alloc 10

10

10

10

alloc 20

20 96

alloc 96

10

H

(e)

alloc 20

Fig. 8. Application of the algorithm on our motivating example.

, the algorithm cannot return an allocation instruction
insertion scheme that satisfies efficiency criterion. How-
ever, if each control-flow path has the same frequency of
execution, then we believe that the algorithm satisfies the
criterion in most of the cases.

Since we do not insert new basic blocks in the CFG
at all, the number of inserted basic blocks is obviously
optimal.

5 Experiments and Results

5.1 Experimental Framework

We implemented the multi-alloc algorithm with the two
optimizations in the industry-strong Open64 compiler
([1, 2]. The alloc instructions are inserted right after the
register allocation phase but before the last instruction
scheduling phase of the compiler. Our experiments were

performed in an HP workstation i2000 equipped with a
single 733MHz Itanium processor and 1GB of memory
and running Debian Linux 2.4.7.

Currently we have tested the implementation on 7
SPEC CPU2000 benchmarks programs.3 We measured
the number of alloc instructions inserted and the number
of registers saved due to our algorithm. We compare our
results to the standard algorithm for the alloc instruction,
i.e.,an algorithm that inserts a single alloc in each pro-
cedure entrance. On average, we allocate 1.38 less reg-
isters per procedure with a maximum of 26.50 registers
saved. We use 1.91 alloc instructions on average with a
maximum of 32 instructions in a procedure. This average
is weighted by the frequency of execution of each basic
block.

3 We expect to include more benchmarks to this list by the camera ready submission deadline.

Benchmark Average number of Largest number of Absolute number of Relative number of Best number of Execution
alloc inserted alloc inserted registers saved registers saved registers saved time

164.gzip 1.92 11 1.31 14.50% 5.16
175.vpr 1.74 32 1.46 13.06% 15.78
181.mcf 1.26 4 1.50 14.93% 6.44
186.crafty 2.77 25 1.66 20.10% 19.95
254.gap 2.50 23 1.20 16.98% 3.61
256.bzip2 1.63 12 1.20 14.81% 3.01
300.twolf 1.53 17 1.33 15.54% 26.50
average 1.91 * 1.38 15.70% *

Fig. 9. Number of registers saved and alloc instructions inserted for each of the seven benchmarks tested.

5.2 Implementation Considerations

For simplicity, the algorithm presented in this paper as-
sumes that the alloc instruction has a single parameter,
i.e., the size of the current register stack frame. How-
ever, in the alloc instruction in the Itanium architecture
specifies the number of input, output, local, and rotating
registers. Thus an implementation of the algorithm has to
include different strategies for each type of register.

The rotating registers overlap with the local and out-
put registers. In our current implementation, the alloc in-
structions requests rotating registers only when the num-
ber of rotating registers required is less than the sum of
local and output registers. If this is not the case, then ob-
viously there can be no downstream loop that uses rotat-
ing registers. A downstream loop that requires rotating
registers would have been taken into account in the
values.

The input registers are easily handled because they
are part of the local section of the register stack frame.
Input registers are used to specify how many registers
in the new stack frame overlap with the previous stack
frame.

The local registers and the output registers were the
only types of registers that require modifications to the
simplified algorithm. Each basic block needs the full set
of values (, , and) for each of the two
types of registers. Thus, an alloc instruction is inserted
in a basic block if either local or output registers are re-
quired (OR statement).

A alloc 10,3

C 10,3

10,3 20,3B alloc 20,3

alloc 10,3

Fig. 10. Necessary extra alloc instruction for function
calls

In some cases the introduction of a second parameter
forces us to insert more alloc instructions to preserve the
correctness of the program. This situation happens when
two different control flows reach a function call and the
number of local registers allocated in each incoming path
is distinct. Consider, for instance, the example shown in
Figure 10. Each alloc instruction is annotated with two
numbers: the number of local registers to the left, and the
number of output registers to the right. Because of auto-
matic register renaming, r32 is always the first register in
a stack frame. If we consider only the number of regis-
ters required in each basic block, the alloc instruction in
basic block is not necessary because there are enough
registers allocated in either incoming path. However, if
block has a function call that expects three output reg-
isters, there is a problem: the boundary between local and
output register depends on the incoming path: if we reach
block from block , then is the first output regis-
ter. Whereas, if the flow comes from , the first output
register is . Therefore, at the function call site, there
is no way to tell at compile time which register is the first
output register. We must insert an alloc instruction be-
fore the function call to ensure that the output registers
start at regardless of the incoming path as shown in
our example.

5.3 Results

Table 9 shows our results for the seven benchmarks
tested. These numbers are weighted by the frequency of
execution of each basic block in the routine. Thus the ba-
sic blocks and alloc instructions in a control-flow path
that is executed 1 out of 10 times that the routine is ex-
ecuted is weighted by . Then we take the average for
all the routines in the benchmark.

The number of registers saved can be significant
with a maximum of 26.50 registers for one routine of
300.twolf. The number of registers not allocated thanks
to our optimization is low: 1.38 on average. Nonethe-
less, the algorithm reduces the register stack frame size
of a routine by 15.50%, on average. These results are
explained by the relatively low register pressure in the
SPEC2000 benchmarks.

Although the algorithm does not try to limit the
number of alloc instructions inserted in a given routine,
the average number of instructions inserted is 1.91. By
adding one more alloc instruction per routine, we can
manage to reduce the number of registers allocated by
15.70%. However, in some rare cases the number of alloc
instructions inserted is high. For instance in one routine
of 175.vpr the algorithm inserted 32 alloc instructions.
We are investigating such cases to identify opportunities
for improvement.

Despite the savings in register allocated, the execu-
tion time of the programs has been increased by up to
56% for crafty. The main reason is the cost of the al-
loc instruction itself that was not taken into account by
the algorithm. This instruction is expensive and intro-
duces false dependences that can break a good instruc-
tion schedule. Moreover the insertion of basic blocks to
host alloc instructions at the entrance of loops results in
the insertion of branch instructions as well. Finally, most
of the time, the difference between the number of regis-
ters allocated between two alloc instructions is small and
inserting a second alloc instruction does not pay off.

6 Future Work

Future generations of processors of the Itanium family
are expected to have a muchmore efficient Register Stack
Engine. We anticipate that the implementation of eager
spill and eager fill modes in the RSE will lead to a more
effective application of the idea of using multiple alloc
instructions introduced in this paper. Moreover we plan
to study the following modifications to the original algo-
rithm:

– The algorithm could use an alloc instruction imme-
diately before a loop entry to reduce the number of

registers allocated to the number of variables live at
that point in the program, and another alloc instruc-
tion at the loop exit to restore the number of registers
required by the paths that leave the loop.

– A similar solution could be used around function
calls. In the Itanium architecture, there are 96 reg-
isters available in the register stack. As long as all
the cumulative number of registers requested by ac-
tive functions is less then 96, there will be no spills
and fills. Using this observation, we could delay the
time when the 96 register threshold value is reached
by shrinking the current register stack frame as much
as possible right before every function call.

– When feedback profiling information is available,
the multiple alloc placement algorithm can favor
placing the least number of alloc instructions in the
control paths that have the highest frequency of ex-
ecution. The placement of alloc instructions in other
paths would be secondary to this constraints.

– the insertion of alloc instructions could be triggered
by a profitability analysis, and be restricted to the
places where the gain is significant enough. The reg-
isters could be allocated in chunks, or quanta, of 5
or 10 up to the maximum needed by the function. It
would reduce the number of alloc instructions in the
program (efficiency criterion) with a limited cost for
the fitness criterion. This idea follows from the im-
plementation of efficient dynamicmemory allocation
algorithms.

7 Acknowledgments

We would like to acknowledge Gerolf Hoflehner and Jim
Pierce for their contributions and for insightful comments
about our approach to the problem. This research is sup-
ported by the National Science Foundation (NSF), by
the National Security Agency (NSA), by the Defense
Advanced Research Projects Agency (DARPA), and by
the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

8 Conclusion

In this paper, we tried to solve the problem of inserting
alloc instructions in Itanium code in order to achieve a
finer-grain allocation scheme and reduces the number of
blocking spills and restores with the register stack en-
gine. We defined four subgoals: correctness, fitness, ef-
ficiency and stability and proved that the problem was
NP-complete.

Then we propose a heuristic that solves the first two
criteria: correctness and fitness. The algorithm is linear
and achieves ...

However the algorithm did not consider the fre-
quency of execution of the control-flow paths in the CFG
and the resulting code could be further improved. Also,
the eager allocation modes were not available in the Ita-
nium processor used for the the experiments, although it
would a efficient source of improvement.

The next step is now to consider the frequency of ex-
ecution of control-flow paths and try different levels of
optimizations by releasing the fitness constraint for in-
stance.

References
1. Open research compiler for itanium processors. http://ipf-
orc.sourceforge.net/, January 2002.

2. Open64 compiler and tools.
http://open64.sourceforge.net/, January 2002.

3. D. Callahan and B. Koblenz. Register allocation via hi-
erarchical graph colloring. In SIGPLAN 91 Conference
on Programming Language Design and Implementation,
pages 192–203, Toronto,ON, June 1991.

4. G. J. Chaitin. Register allocation & spilling via graph col-
oring. In SIGPLAN 82 Symposium on Compiler Construc-
tion, pages 98–105, June 1982.

5. F. C. Chow and J. L. Hennessy. The priority-based col-
oring approach to register allocation. ACM Transactions
on Programming Language and Systems, 12(4):501–536,
October 1990.

6. Intel Corporation. Intel Itanium Architecture Software
Manual vol1-4, December 2001. revision 2.0.

7. Intel Corporation. Intel Itanium Processor Reference Man-
ual for Software Development, December 2001. revision
2.0.

8. Intel Corporation. Intel Itanium Processor Reference
Manual for Software Optimization, November 2001.
http://developer.intel.com/design/itanium/.

9. R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and
G. R. Gao. Minimum register instruction sequence prob-
lem: Revisiting optimal code generation for dags. In 15th
International Parallel and Distributed Processing Sympo-
sium, San Francisco, CA, April 2001.

10. R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and
G. R. Gao. Minimum register instruction sequencing to
reduce register spills in out-of-order issue superscalar ar-
chitectures. IEEE Transactions on Computers, 2002.

