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Abstract— Multithreaded architectures are a feasible
approach to exploit both regular and irregular paral-
lelism. Today a large collection of multi-threading archi-
tectures with different threaded models, ad implementa-
tion platforms are available. These architectures provide
support for multithreading either at hardware level, with
customized functional units, or at the software level, as
emulators written in some high-level language. The later
approach is usually preferred because of its favorable
price tag, speed of development, and portability. In this
article we review some of these architectures focusing in
their capabilities to provide load balancing for irregular,
data-parallel and recursive applications. The paper is
anchored on a description of our own implementation of
load balancers for EARTH - Efficient Architecture for
Running THreads. Most of the multithreading architec-
tures that we review are software emulations based on
off-the-shelf hardware and compiler technologies. In a re-
lated paper we detail the implementation of the EARTH
runtime system.

Keywords— Fine-grain parallelism, multithreading,
non-blocking threads, context-switching, runtime sys-
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I. INTRODUCTION

In the classical strict data-flow model of computa-
tion, an instruction is enabled for execution when all its
operands are available [13], [17], [12], [24]. To enforce
the enabling condition, the instructions that produce
such operands must be able to send a synchronization
signal to all the instructions that will consume the re-
cently produced result. This model proved unyielding
for the implementation of machines based on current
standard off-the-shelf hardware and compiler technol-
ogy. However many research groups have successfully
implemented a model of computation that is a direct
evolution of the classical data-flow model: fine grain
multi-threading. In the later, the unit of computation
is no longer an instruction, but a code-block formed by
many instructions. An instantiation of the code-block
running on a processing node is called a thread, thus
the name multi-threading for these systems. Threads,
and not individual instructions, are enabled by synchro-

nization signals. The main motivation for the design of
multi-threading system is the overlapping of communi-
cation and synchronization latencies with computation.

Around the same time that architectures derived from
the data-flow model were proposed, the term thread
started to be used to refer to multiple contexts of com-
putation in operating systems. These threads represent
different lines of control that are active at the same time
within an OS process. We refer to such threads as OS-
threads. Well known OS-thread systems include POSIX
Threads, Solaris Threads, and NT Threads. OS-threads
share all the resources of a process such as memory
space, files, and device drivers. However, each thread
has its own set of registers, and its own stack, which
are usually stored in heap memory. Context-switching
between these threads is far easier than that between
processes, as there is no need to save and restore mem-
ory pointers and other process related resources. Only
the contents of the thread specific stack and register set
need to be swapped at context-switch time. Program-
ming applications at the level of these threads, rather
than at the process level is advantageous because of the
high-speed context-switching among threads.

There is a major historical difference between the fine
grain threads discussed earlier and OS-threads. Fine
grain threads are generated from code-blocks that grow
upwards from the data-flow single instruction. A fine
grain thread is the largest unit of code that can run
without incurring any long latencies due to dependence
on other pieces of code or on data stored remotely. OS-
threads grow downward from the process abstraction in
operating system. An OS-thread is the smallest seg-
ment of code that can share a set of resources with
the other threads of the same process. Typically OS-
threads exploit parallelism at a coarser grain than fine
grain threads, and thus must execute a higher number
of instructions between thread switchings.

In the multi-threading systems that we discuss in



this paper, each processing unit issues instructions from
a single thread at any time '. An alternative multi-
threading system is called simultaneous multi-threading
(SMT). In an SMT system a single processor is capable
of issuing instructions from multiple threads simultane-
ously [9]. Machines with such an organization use multi-
ple threads of computation to hide the latency incurred
due to the fetching of data from the local memory. An
example of the later is the Tera machine [1].

All the platforms discussed in this paper fall in the
category of distributed multi-threading systems. They
are implemented on clusters of off the shelf computers
and use threads of computation to hide the latency of
fetching data from remote regions of the memory, most
likely in the memory of another processing node. These
platforms do not use multi-threading to hide the latency
caused by a cache miss, i.e., as long as the memory
address referenced is in the memory hierarchy of the
local processing node, the reference is regarded as a local
access.

This paper is organized as follows. Section II reviews
preemptive, cooperative, blocking, and non-blocking
thread models. Section III categorize modern imple-
mentations of multi-threading system in language-based
and library-based systems. In section III-A we present
an extended discussion of EARTH, Cilk, and TAM,
three multi-threading system with extensive effort on
language support. In section III-E we review many
multi-threading systems whose implementation is based
on function libraries and that rely on OS-threads.

II. THREADING MODELS

Fine-grain multi-threading architectures might be
characterized by their threading model. Threads can
adopt the cooperative multithreading model, where
threads voluntarily release the CPU, or the preemptive
model where threads can utilize the CPU only as long as
certain conditions specified by the scheduler are valid.
Cooperative threads can be non-blocking or blocking. In
a non-blocking system, threads must run until comple-
tion. Under a blocking threading model a thread can
block when an operation with long or unpredictable la-
tency is encountered in the application. In this case the
machine state has to be saved to be restored later. In a
preemptive threading model, the scheduler determines
the running time of a thread based on its scheduling
policy, which may be based on priority, time-slices or
a combination of both. In a preemptive threading sys-
tem, threads are always blocking, and threads enter the
blocked state either due to an operation in the program
or due to a scheduling decision.

'When these systems are implemented on top of super-
scalar/super-pipelined processors multiple instructions belonging
to the same thread can be issued at one time.

In a non-blocking and non-preemptive thread model,
operations with long or unpredictable latencies must be
executed in a split-phase fashion. The first phase of the
operation, also referred to as the issuing of the opera-
tion is performed in one thread, while the second phase,
sometimes referred to as the consumption of the result
of the operation is performed in another thread. When
such a thread model is chosen, a mechanism must be
provided to enable the issuing thread to specify which
one is the consuming thread. There is no need to pre-
serve machine state during context-switch time.

Neither cooperative blocking thread model nor a pre-
emptive threading model are very attractive for fine-
grain multi-threading architectures because the removal
of the context of a thread from the processing unit re-
quires that the contents of the registers and the stack
must be saved in a temporary user-area before context-
switching, and these must be reloaded again when the
suspended threads are enabled at a latter time. In ad-
dition, this model might be unyielding for the imple-
mentation of machine-independent multi-threaded plat-
forms. Also dynamic and irregular applications might
cause excessive waste of cycles when mapped to a block-
ing thread model.

III. IMPLEMENTATIONS OF MULTI-THREADING
PLATFORMS

The multi-thread systems that we discuss in this pa-
per are software emulations of architectures. Most of
these emulations are based on off-the-shelf hardware
and compiler technology. These systems can be broadly
divided in two classes.

Language-Based Systems: These systems are based
on the support of a custom runtime system. The
runtime system implements an interface with the
hardware and the system level software in the
machine and provides a standard interface for
portable implementations of the multi-threading
program environment. These systems often of-
fer a language with multi-threaded constructs, and
a source-to-source translator to convert this lan-
guage to a standard and broadly supported lan-
guage, such as C. The advantage of these systems
is that threads are usually non-blocking and ex-
ecute in user space. Thus overheads associated
with thread switching are reduced, resulting in very
light-weight threads. These systems can be imple-
mented efficiently in both shared and distributed
memory platforms. Examples of systems in this
class include EARTH [16], [20], [15], [24], [18], [14],
Cilk [11], and TAM [8].

Library-Based Systems: These systems provide a li-
brary of multi-threaded primitives to manage user
level threads on top of OS threads. In this approach



the management of threads requires a few system
calls, which is costly in terms of execution cycles.
Most of the thread library packages that we found
in the literature are designed for shared memory or
distributed shared memory systems. One exception
is the Chant library [22] that extends the POSIX
standard for light-weight threads with functionality
for distributed memory environments. Examples
of systems based on library of primitives include
Nano-threads [2], Ariadne [21], Opus [22], Struc-
ture Thread Library [25], and Active Threads [27].

A. Language-Based Systems

In this section we present three fine grain multi-
threading systems. Each of these systems supports non-
blocking, non-preemptive threads. First we describe our
own home-grown EARTH system. The development of
EARTH started at the McGill University in Montreal,
Canada, and continues at the University of Delaware,
USA. The original inspiration for EARTH has been de-
rived from the McGill Dataflow Machine [13]. The re-
search around EARTH has spawned over many fields
including the development of pre-processors, runtime
systems, language development, application studies,
source-to-source compilers, and dynamic load balancers.
Recently an evolutionary path for the EARTH system
was envisioned chartering the progressive development
of further customized platforms [24]. The EARTH sys-
tem has been implemented on the MANNA machine,
IBM SP2, Beowulf and on a SUN SMP cluster.

Leiserson et al. at MIT developed Cilk, an algo-
rithmic multi-threaded language currently designed for
symmetric multiprocessors (SMP’s). Central to Cilk’s
development is the scheduling of multi-threaded com-
putations using a work-stealing mechanism. The Cilk
computation model and its implementation are de-
scribed in [5]. Earlier releases of Cilk implement the
memory model called ”dag consistency” [4]. Cilk is a
succinct extension to C and has the “C elision prop-
erty”: when all the Cilk constructs are removed from a
Cilk code, what remains is a legal C code. The most re-
cent release of Cilk is described in [11]. The Cilk group
is well known for their implementation of world-class
chess programs on the Cilk platform. A unique feature
of Cilk is the development of a novel debugging tool,
called “Nondeterminator”, that finds data races in the
execution of programs [7].

The Threaded Abstract Machine project [8] at the
University of Berkeley, California presents an execution
model in which the compiler controls the synchroniza-
tion, scheduling and storage management. The role of
the compiler in scheduling and management of threads
is emphasized to take advantage of critical processor re-
sources such as register storage and exploit considerable

inter-thread locality. TAM was one of the first multi-
threaded systems that were built through software em-
ulation with minimal hardware support. The compiler
translates programs written in the functional language
Id into an intermediate language called TLO, which in-
cludes code generated for thread support [23] in a dis-
tributed memory environment. An important feature
in TAM is the introduction of inlets which are special-
ized message handlers to support inter-frame commu-
nications. These inlets are generated by the compiler,
one for every value to be received.

B. The EARTH Model

A threadin EARTH is a set of instructions that are ex-
ecuted sequentially. Interacting threads sharing context
are grouped into threaded functions, and are represented
in the EARTH runtime system as tokens. Applications
execute in global memory space comprising the local
memories on all the nodes in the system. Applications
in EARTH are written in Threaded-C, a multithreaded
variant of C. Fig. 1 shows a typical activation graph for
a Threaded-C program.
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Fig. 1. A generic activation graph for a Threaded-C program.

Three important features characterize the EARTH
model [16], [24]:

Synchronization Slots: Conceptually, each processing
node has a table of synchronization slots. Any
threaded function can allocate a slot, initialize its
counter and its reset value, associate the slot n
to a thread, and pass the address of the slot to
other thread functions. Synchronization signals
are sent to slots. Each arriving signal causes the
slot counter to be decremented. When the counter
reaches zero the associated thread is enabled for
execution and the counter is reset to the speci-
fied reset value. The versatility of the synchroniza-
tion slots allows for the construction of generic call
graphs, such as the one illustrated in Figure 1.

Synchronization Unit: The EARTH model assumes
that a functional unit is provided to imple-
ment communication, synchronization, and dy-
namic load balancing functions. The functions of



the SU can be implemented by a second proces-
sor in the processing node, by custom hardware, or
it can be emulated in software when the EARTH
system is implemented on clusters of off the shelf
computers, such as the IBM-SP2 and the Beowulf
implementations.

Dynamic Load Balancer: Balancing the work load
for irregular and data-parallel applications in fine-
grain multi-threading architectures might be chal-
lenging. Seven distinct dynamic load balancing al-
gorithms have been implemented for EARTH and
their performance is studied [6]. Central to the
implementation of EARTH’s load balancers is the
instantiation of threads as migratable tokens, and
the implementation of a storage mechanism that
behaves as a stack operatable on both ends, as il-
lustrated in Figure 2 [18], [6]. Locality is favored
with this mechanism, because tokens generated lo-
cally are more likely to be executed in the local
processing unit while tokens that arrive from other
nodes are more likely to migrate.
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Fig. 2. Internal Queues in the EARTH Runtime System

EARTH has dynamic load balancers tailored for fine-
grain multi-threading. The balancers aim to ensure that
all nodes are busy, rather than trying to distribute the
workload equally among all the nodes in the system.
Three kinds of balancers are implemented: receiver-
initiated, sender-initiated and hybrid balancers. Signif-
icant performance gains have been obtained with load
balancing [6]. The results have also demonstrated the
difficulty in designing a single load balancer that is per-
fect for all applications. As an important result of this
study, hybrid balancers that rely on history information
have been suggested for best performance and scalabil-
ity in applications representing irregular, structured and
recursive parallelism.

C. The Cilk Multi-threaded Language

The Cilk multi-threaded language [11] is an extension
to C, and processes user-level fine-grain, non-blocking
threads in a shared memory environment. The Cilk
compiler generates two versions of target C code for each

Cilk procedure - a fast clone and a slow clone. The fast
clones are meant for local execution of a procedure, and
the slow clones are used as units for dynamic load bal-
ancing. The Cilk runtime system [5] employs a random-
izing, work-stealing scheduler and operates on a double-
ended queue that is similar to the token queue in the
EARTH runtime system [16]. Such queuing structure
was developed earlier in the ADAM architecture [19].

The Cilk threading model is very amenable for
the solution of divide-and-conquer problems, and is
most suited for fully-strict computations [5]. While
the directed-acyclic graph formed from a Cilk multi-
threaded computation allows communications between
parent and child procedures, it does not support com-
munications between threads belonging to different Cilk
procedures that are at the same level in the activation
graph. In contrast, the EARTH threaded model enables
the implementation of any arbitrary activation graph
through the exchange of synchronization slot addresses.
The efficiency of the Cilk scheduler is analytically stud-
ied [3].

D. The Threaded Abstract Machine

A TAM program is a collection of code-blocks, similar
to EARTH programs which are collections of threaded
functions [8]. Each code-block, like a threaded func-
tion in EARTH, consists of several threads. However,
a code-block also includes code for the inlets. Since an
activation frame corresponding to a code-block is al-
located on a processor, all the threads belonging to a
code-block execute on the same processor. For this rea-
son, code-blocks are the units of workload rather than
individual threads, as is the case of threaded functions
in EARTH. However the distribution of this workload
onto the processors in the system is decided by the TAM
compiler [23], whereas in EARTH the workload is dy-
namically distributed at runtime by the load balancer.

A quantum in TAM is the number of threads belong-
ing to a code-block that are enabled for execution at any
particular instant of time. All the threads in a quan-
tum are executed consecutively, and values defined and
used within a thread can be retained in processor reg-
isters. This is unlike EARTH, where enabled threads
belonging to different threaded functions are placed in
a FIFO ready queue, and therefore threads from differ-
ent threaded functions execute on a first-come basis. In
EARTH, threads in a threaded function usually have
synchronization dependences between them. Therefore,
it is highly unlikely that there many threads of the same
threaded function are enabled at the same time to take
advantage of TAM’s register usage technique. Further,
the gains from register usage as in TAM may be insignif-
icant when there is a single or a few enabled threads in
a quantum. Another difference between EARTH and



TAM is the dynamic scheduling of threads. In EARTH,
the ready queue (FIFO) and the token queue (DEQUE)
are used for local and remote scheduling of threads,
whereas complex entry and exit codes have to be gen-
erated for each quantum by the compiler in TAM.

E. Library-Based Systems

In this section we present multi-threaded systems
that are implemented on top of operating system based
threads. Although such systems might be more portable
because they can run in any machine that supports the
underlying operating system, they pay a high price on
the cost of system calls to implement thread switching.

F. Distributed Filaments

The distributed Filaments system [10] offer multi-
threaded primitives to implement fine-grain threads in
a distributed shared memory model. The Filaments
runtime system implements distributed shared mem-
ory with no hardware support over distributed memory
systems. The threads are blocking in nature, and fa-
vor irregular, data-parallel and recursive applications.
There are multiple server threads per-node, and each
server thread executes a set of sharing context fila-
ments (called a pool). In the case of irregular and
data-parallel threads, the programmer/compiler has to
assign context-sharing filaments to pools on different
nodes so as to maintain locality and equal task distribu-
tion. However, a simple receiver-initiated scheduler dis-
tributes workload in the case of recursive threads. This
balancer queries other nodes in a round-robin fashion to
steal work. A filament blocks when a long latency op-
eration is encountered. Though there is a provision for
the programmer/compiler to enable/disable load bal-
ancing in Filaments, it is difficult to estimate runtime
load imbalances at compile-time, especially in the case
of fine-grain applications.

G. The Opus Language

The Opus language [22] provides Fortran language ex-
tensions to support task and data parallelism. Indepen-
dent tasks representing coarse-grain parallelism, com-
municate and synchronize through monitor-like struc-
tures called shared-data-abstractions. The Opus run-
time system relies on a light-weight threads package
called Chant, to support multithreading functionality in
a distributed memory environment. The Chant threads
package extends the pthreads interface with primitives
for remote communications, remote thread operations
by using existing communication library (MPI stan-
dard). Workload has to be mapped onto different nodes
by the programmer /compiler keeping in mind locality of
the tasks as there is no runtime dynamic load balancing
support.

H. Nano-Threads

The Nano-Threads [2] are user-level threads built on
top of kernel threads. The Nano-threads library pro-
vides primitives to support multithreading efficiently in
a multi-user /multiprocessor environment with shared
memory. A compiler takes as input C/Fortran pro-
grams with Nano-Threads keywords, and generates tar-
get C/Fortran code (Nano-Threads) along with code to
manage an intermediate representation of varying lev-
els of parallelism in the application, called the Hierar-
chical Task Graph. The associated code chooses the
appropriate granularity for execution at runtime, de-
pending on the availability of resources. Each Nano-
Thread is associated with a per-thread-counter and a
nano-thread descriptor. Nano-Threads block so that
child threads can access local variables from the address
space of the parent nano-thread. All enabled Nano-
threads are placed in globally accessible and manage-
able ready queue called GQ (FIFO). To preserve local-
ity, each node has its own local queue (FIFO) that is
accessible from all nodes. The objective of load bal-
ancing in the Nano-Threads system is to distribute the
load equally among all the nodes. This is a different
goal from the one adopted on EARTH, where the aim
is to keep all processors busy, thereby minimizing bal-
ancer overheads in an extremely fine-grain environment.
Another potential balancing overhead may be the con-
tention problems for controlling the global queue which
may degrade scalability of the system.

1. Active Threads

The Active threads library [27] define an interface for
supporting fine-grain, non-preemptive, blocking threads
over traditional kernel threads. They can be used to
hand code applications, or as virtual machine target for
compilers of parallel languages. Threads sharing con-
text are grouped into bundles. Each bundle has its
own scheduler and the scheduler may be chosen by the
application from a set of schedulers distributed with
the active threads package. The scheduler maps ac-
tive threads onto processor thread dispatch buffers for
each processor. Though the fast threading primitives
ensure low overheads for thread operations, the multi-
threading overheads for thread initialization, context-
switching, thread stack management and synchroniza-
tion are quite high for irregular applications employ-
ing fine-grain threads. In contrast, context-switching in
EARTH is as cheap as a C function call, and there is no
need for thread stack management.

J.  Concert, Structured Threads and Ariadne

The Concert runtime system [26] proposes close cou-
pling with the compiler and hardware to overcome over-
heads associated with thread management and commu-



nication in a distributed memory environment, espe-
cially when dealing with fine-grain threads for dynamic
and irregular applications. The hybrid stack-heap exe-
cution mechanism overcomes multithreading overheads,
and the pull-based messaging technique minimizes com-

munication overheads.

The structured threads li-

brary [25] provides multithreading support on top of
kernel threads in Windows NT. Ariadne [21] is a threads
library that is modeled for process-oriented parallel and
distributed simulations. Ariadne threads run on top of
the kernel threads, and are implemented in both shared

and distributed memory environments.

The internal

scheduling policy is based on priority queues, i.e. a
highest priority non-blocked thread gets executed first.
This library is more suited for coarse-grain parallelism.
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