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Abstract—

The decision to inline a procedure in the Open Research
Compiler (ORC) was based on a temperature heuristics that
takes into consideration the time spent in a procedure and
the size of the procedure. In this paper we describe the
trade-off that has to be worked out to make the correct inlin-
ing decisions. We introduce two new heuristics to enhance
the ORC inlining heuristics: adaptation and cycle_density.
With adaptation we are allowed to vary the temperature
threshold and prevent penalizing small benchmarks. With
cycle_density we prevent the inlining of procedures that have
a high temperature in spite of being called infrequently. We
implemented our improved heuristics in the ORC and tested
them for the Intel®Itanium™ Processor Family Platform
using the SPEC INT2000 benchmark suite. While adapta-
tion improves the speedup obtained with inlining across the
SPEC2000 suite, cycle_density reduces significantly both the
code growth and compilation time increase caused by inlin-
ing. We then characterize the SPEC INT2000 benchmarks
according to the inlining potential of their function calls.
Our enhancement is released in the ORC 2.0.

I. INTRODUCTION

Function inlining is a very important optimization tech-
nique that replaces a function call with the body of the
function [2], [5], [6], [7], [8], [10], [13], [19], [14]. One advan-
tage of inlining is that it eliminates the overhead resulting
from function calls. The savings are especially pronounced
for applications where only a few call sites are responsible
for the bulk of the function invocations because inlining
those call sites significantly reduces the function invoca-
tion overhead. For example, MCF (one of the SPEC2000
benchmarks) contains 34 call sites. Among these call sites,
there are 5 that are executed more than 10 million times
and 4 call sites that are executed more than 1 million times
in a standard SPEC2000 training execution. These 9 call
sites account for 99.85% of all the function invocations in
MCEF. Our experiments show that inlining the 15 most fre-
quent call sites can reduce the running time of MCF by
more than 9%.

Inlining also expands the context of static analysis. This
wider scoped analysis creates opportunities for other opti-
mizations. Because the body of the callee is now available
at the call site, conservative assumptions that the compiler
would previously make about the call site are no longer re-
quired.

Another advantage of inlining is the improvement of
cache efficiency. From the point of view of the data cache
(D-cache), after inlining the caller’s variables that are refer-
enced by the callee do not need to be passed as parameters.

Thus, a variable that previously had separate representa-
tions in the caller and in the callee can now be reduced
to a single memory location or even promoted to a reg-
ister. This storage consolidation reduces the data access
footprint of the application and improves the use of the
memory hierarchy. A similar advantage also exists for the
instruction cache (I-cache). After inlining, closely related
segments of code are placed together, reducing chances of
instruction cache conflicts [16].

However, inlining has negative effects. One problem
with inlining is the growth of the code, also known as code
bloat. Because a procedure may be called from multiple
call sites, It is often impossible to eliminate a procedure
after inlining a single call site. Thus, the final executable
file must contain several copies of the procedure: the orig-
inal one (if it is not eliminated as a dead function) and the
inlined copies.

With the growth of functions because of inlining, the
compilation time and the memory space consumption may
become intolerable because some of the algorithms used
for static analysis have super-linear complexity.

Besides the time and memory resource cost, inlining
might also have the adverse effect of increasing the exe-
cution time of the application. After inlining the register
pressure may become a limitation because the caller now
contains more code, more variables, and more intermediate
values. This additional storage requirement may not fit in
the register set available in the machine. Thus, inlining
may increase the number of register spills resulting in a
larger number of load and store instructions executed at
runtime.

Moreover, because the caller becomes larger after inlin-
ing, the possibility that it will either have instruction cache
conflicts among its own instructions or interfere with other
procedures in the cache is higher. This interference causes
deterioration of the I-cache efficiency.

The above discussion of the benefits and drawbacks of in-
lining leads to an intuitive criteria to decide which call sites
are good candidates for profitable inlining. The benefits
of inlining (elimination of function call overhead, enabling
of more optimization opportunities, improving cache effi-
ciency) depend on the execution frequency of the call site.
The more frequently a call site is invoked, the more promis-
ing the inlining of the site is. If the call site is invoked only
a couple of hundred times in a long execution, inlining it
unlikely to produce any improvement.



On the other hand, the negative effects of inlining relate
to the size of the caller and the size of the callee. Larger
functions tend to have worse cache behavior and higher
register pressure. Inlining large callees results in more se-
rious code bloat, and, probably, performance degradation
due to additional memory spills or conflict cache misses.

Thus, we have two basic guidelines for inlining. First,
the call site must be very frequent, and, second, neither the
callee nor the caller should be too large. Most of the papers
that address inlining take these two factors in consideration
in their inlining analysis.

In this paper we describe our experience in tunning the
inlining heuristics for the Open Research Compiler (ORC).
The main contributions of this paper are:

o We propose adaptive inlining to enable aggressive in-
lining for small benchmarks. Usually, small bench-
marks are amenable to aggressive inlining as shown
in section IV. Adaptive inlining becomes conserva-
tive for large benchmarks such as GCC because the
negative effects of aggressive inlining are often more
pronounced in such benchmarks.

o We introduce the concept of cycle_density to control
the code bloat and compilation time increase.

e Our detailed experimental results show the potential
of inlining. We investigate the impediments to benefi-
cial inlining and propose approaches to remove these
impediments.

The rest of the paper is organized as follows: Section IT
describes the existent inlining analysis in ORC and its lim-
itations. Section III describes our enhancements of the in-
lining analysis (adaptive inlining and cycle_density heuris-
tics) and Section IV is the performance study. Section V
reviews related work. Section VI quantify impediments to
inlining and discusses our ongoing research.

II. OvERVIEW OF ORC INLINING

In order to control the negative effects of inlining, we
should inline selectively. How do we determine whether a
call site is suitable for inlining? The performance effect of
inlining an edge of the call graph depends on two factors:
the execution frequency of the site and the size of the callee.
The problem of selecting the most beneficial call sites while
satisfying the code bloat constraints can be mapped to
the knapsack problem, which has been shown to be NP-
complete [11], [17]. Thus, we need heuristics to estimate
the gains and the costs of each potential inlining. ORC
used profiling information to calculate the temperature of
a call site to approximate the potential benefit of inlining
an edge E;(p,q) (i.e. a call site in function p which calls
function ¢ in the call graph).!
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I Because function p may call ¢ at different call sites, the pair (p, q)
does not define an unique call site. Thus, we add the subscript ¢ to
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PUset is the set of all program units (i.e. functions)
in the program, cycle_count, is the estimated number of
cycles spent on function q.
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cycle_count, = (4)
where stmts, is the set of all statements of function g,
fregq; is the frequency of execution of statement 7 in the
training run.
Furthermore, the overall frequency of execution of the
callee ¢ is computed by:
(5)
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where callers, is the set of all functions that contain a call
to q.

Essentially, cycle_ratio is the contribution of a call
graph edge to the execution time of the whole appli-
cation. A function’s cycle count is the execution time
spent in that function, including all its invocations.

(ﬁ%eq(:”’)  cycle_count,) is the number of cycles con-

tributed by the callee g invoked by the edge E;(p, q). Thus,
cycle_ratiog,(,,q) is the contribution of the cycles resulting
from the call site E;(p,q) to the application’s total cycle
count. The larger the cycle_ratiog,(p q) is, the more im-
portant the call graph edge.

sizey

(6)

Total_application_size is the estimated size of the ap-
plication. It is the sum of the estimated sizes of all the
functions in the application. size,, the estimated size of
the function ¢, is computed by:

size_ratio; =
1 Tatal_application_size

sizeq = 5% BB_county + STMT _county + CALL_count,
(7)
where BB_countg is the number of basic blocks in func-
tion ¢ and reflects the complexity of the control flow in
the PU, STMT _count, is the number of statements in g,
excluding non-executable statements such as labels, pa-
rameters, pragmas, and so on, and CALL_count, is the
number of call sites in q.
The size_ratio, is the callee ¢’s contribution to the whole
application’s size.
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And the Total_application_size is given by:

>

k € PUset

Total _application_size = sizey, (8)

With careful selection of a threshold, ORC can use tem-
perature to find cycle-heavy calling edges whose callee is
small compared to the whole application.

Temperature distribution of bzip2

10000 F— — T T — T —
2
2
5
=4
£
)
&
. . . . . N4
PO L S I NI NS VU S VSO S SIS VU —
1e+06 100000 10000 1000 100 10 1 0.
Frequency of call sites

Fig. 1. Temperature Distribution of BZIP2

For instance, Figure 1 shows the distribution of the tem-
perature for the BZIP2 benchmark.? The horizontal axis
shows the calling frequency and the vertical axis the tem-
perature. Each dot in the graph represents an edge in the
call graph. The temperature varies in a wide range: from
0 to 3000. The calling frequency is shown in reverse or-
der, the most frequently called edges appear to the left of
the graph and the least frequently called are toward the
right. From left to right, the temperature decreases as the
frequency of the call sites also decreases. It is reasonable
that the temperature doesn’t go straight down because be-
sides the call site frequency, the temperature heuristics also
takes the callee’s size into consideration. Procedure size
negatively influences the temperature. Thus, frequently
invoked call sites might be “cold” simply because they are
too large.

In the original ORC inlining heuristic, an edge (call site)
is rejected for inlining if its temperature is less than a speci-
fied threshold. The intuition for this heuristic is that edges
with high temperature are call-sites that are invoked fre-
quently and whose callee is small compared to the entire
application. However, this heuristics may lead to the inlin-
ing of edges with high temperature but very low frequency.
For instance, we highlighted two clusters of edges in the
temperature x frequency graph for BZIP2 in Figure 1. The
cluster to the right of the graph has higher temperature
but much lower frequency than the cluster to the left of
the graph. Inlining infrequently invoked call sites should
always be avoided because it does not help performance.
To improve this heuristic, we created a new mechanism to

2 To make it easy to read, the two axes of the graphs are drawn in
log scale, thus some call sites whose frequencies or temperatures are
0 are not shown in the graph. The same situation exists in Figure 3.
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Fig. 2. Frequency accumulation of GCC (Only the top 2750 of all

the 19,000 call sites are plotted.)

cooperate with the temperature heuristics to prevent in-
lining hot but infrequently invoked call sites. We describe
our solution in Section III.

III. INLINING TUNING

We improve the inlining heuristics of ORC in two ways.
First, adaptive inlining is employed to make the inlin-
ing heuristics more flexible. Second, a new cycle_density
heuristics is introduced to restrict the inlining of “hot” but
infrequent procedures.

A. Adaptive Inlining

The original inlining heuristic in ORC used a fixed
temperature threshold (120) for inlining decisions. This
threshold was chosen as a trade-off among compilation
time, executable sizes and performance results of differ-
ent benchmarks. However, a fixed threshold turns out to
be very inflexible for applications with very different char-
acteristics. For example, a high threshold (e.g. 120) is
reasonable for large benchmarks because they are more
vulnerable to the negative effects of code explosion result-
ing from inlining. However, the same threshold might not
be good for small applications such as MCF, BZIP2, GZIP
etc . We will use GCC, which is a typical large application,
and BZIP2, which is a representative small application, to
illustrate this problem.

Figure 2 shows the frequency accumulation for the GCC
benchmark and Figure 3 shows its temperature distribu-
tion. In Figure 2, the X-axis represents the call sites sorted
by invocation frequency from high to low. The it* point
numbered from left to right in the figure represents the
accumulated percentage of the ¢ most frequent call sites.

GCC has a very complex function call hierarchy and
the function invocations are distributed amongst a large
number of call sites: there are more than 19,000 call sites
in GCC. In the standard SPEC2000 training execution,
there are more than 42,000,000 function invocations, and
the most frequent call site is called no more than 800,000
times. Figure 2 shows that the top 10% (about 2,000) most
frequently invoked call sites account for more than 95% of



all the function calls. Inlining these 2,000 call sites would
result in unbearable compilation cost and substantial code
bloat.

In Figure 3, according to the frequency of execution, we
should inline the call sites on the left hand side of the graph
and we should avoid inlining the call sites on the right hand
side. Notice that several call sites on the right hand side
are hot, and thus are inlined by the original heuristics of
ORC.

For large applications, the improvement from inlining is
usually very limited (as we will see in the section IV). On
one hand, it is impossible to eliminate most of the func-
tion overheads without wholesale inlining. On the other
hand, if we use the same temperature threshold as for
small benchmarks, we might end up with the problem of
over-inlining, i.e. too many procedures are inlined and the
negative effects of inlining are more pronounced than the
positive ones. For example, if the temperature threshold is
set to 1, there will be more than 1,700 call sites inlined in
GCC. Such aggressive inlining makes the compilation time
much longer without performance improvement as our ex-
periments show.
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The high temperature threshold (120) in the original
ORC was chosen to avoid over-inlining in large applica-
tions. However, this conservative strategy impedes aggres-
sive inlining for small benchmarks where code bloat is not
as prominent. For instance, Figure 1 and Figure 4 show
the temperature distribution and frequency accumulation
of the BZIP2 benchmark. There are only 239 call sites
and about 3,900 lines of C code in BZIP2. This implies
that the program is quite small (compared to more than
19,000 call sites and 190,000 lines of C code in the GCC
benchmark). Moreover, in BZIP2 the top ten most fre-
quently invoked call sites (about 4.2% of the total number
of call sites) accounts for nearly 97% of all the function
calls (Figure 4).

As we will see in the section IV, aggressive inlining is
good for small benchmarks such as BZIP2: inlining the
10 most frequently invoked call sites in BZIP2 eliminates
almost all the function calls.

However, the inflexible temperature threshold often pre-

vents the inlining of the most frequent call sites (the points
in the shadowed area in Figure 1) because their tempera-
tures are lower than the fixed threshold (120). Thus, it is
desirable that the temperature threshold for small bench-
marks be lowered because many of the call sites that have
performance potential do not reach the conservative tem-
perature threshold used to prevent code bloat in large ap-
plications.

The contradiction between the threshold distributions of
large benchmarks and small ones naturally motivates adap-
tive inlining: we use high temperature threshold for large
applications because they tend to have many “hot” call
sites; and we enable more aggressive inlining for small ap-
plications by lowering the temperature threshold for them.
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Adapting the inlining temperature threshold according
to application size is pretty simple in ORC. Because the
estimated size of each procedure in ORC is available in the
Inter-Procedural Optimization (IPO) phase, their sum is
the estimated size of the application.®> We classify appli-
cations into three categories: large applications, median
applications and small applications. In the compilation,
we utilize proper temperature threshold according to the
estimated application size. If an application is a large ap-
plication, its temperature threshold is 120. If it is a median
application, its temperature threshold is 50. Otherwise,
the temperature threshold is lowered to 1. The thresh-
old values were obtained by a detailed empirical study of
the SPEC2000 benchmarks.* This division of applications
into three categories produces better results than any sin-
gle threshold applied to all benchmarks.

B. Cycle_density

The intuition behind the definition of temperature is
that hot procedures should be frequently invoked and not
too large. However, as we have seen in Figure 3 and Fig-
ure 1, some of the procedures with high temperature are

3 We ignore library functions and dynamic shared-objects because
we cannot acquire this information at compilation time.

4 This approach is not unlike the application of machine learning
to tune compilers used in [18]. However in our case we chose the
parameter through manual tuning.
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// decide if a call site should be inlined (returning TRUE)
// or not (returning FALSE).
BOOL inlining_analysis(call_site)
{
// MEDIAN_THRESHOLD & LARGE_THRESHOLD are pre-selected thresholds
// to classify the application as large, small or median,
// and select the proper temperature threshold
if ( estimated_size < MEDIAN_THRESHOLD)
temperature_threshold = 1;
else
if ( estimated_size < LARGE_THRESHOLD)
temperature_threshold = 50;
else
temperature_threshold = 120;
// temperature_analysis() computes the temperature of a call site
// and compare it with the temperature threshold. It returns TRUE
// if this call site is "hot" enough for inlining and FALSE otherwise.
if (temperature_analysis(temperature_threshold, call_site)) {
// if this is the only call to the callee
// in the entire application, ORC inlines it anyway
if (called_only_once(callee))
return TRUE;
// cycle_density_analysis() computes the cycle_density of the callee
// and compare it with the cycle_density threshold to decide whether
// the callee is ‘‘heavy’’ or not
if (cycle_density_analysis(call_site)) {
return TRUE;
}else {
return FALSE;
}
Yelse {
// do not inline this call site
return FALSE;
}
}

Fig. 5. Adaptive inlining in ORC.

not actually “hot”, i.e. some infrequently invoked call sites
also have high temperatures (those points in the top-right
part of the graphs). These call sites correspond to func-
tions that are not called frequently, but contain high-trip
count loops that contribute to their high cycle_ratio, which
result in a high temperature (see Equation 2). We call the
functions that are called infrequently but have high tem-
peratures heavy functions.

Inlining heavy functions results in little performance im-
provement. First, very few runtime function calls are elim-
inated. Second, the path from the caller to a heavy func-
tion is not a hot path at all, and thus will not benefit from
post-inlining optimization. Third, inlining heavy functions
might prevent frequent edges from being inlined if the code
growth budget is spent. To handle this problem, we intro-
duce cycle_density to filter out heavy functions.

. le_ "
cycle_density, = oMy

9
frequency, )
where cycle_count, is the number of cycles spent on pro-
cedure ¢ and frequency, is the number of times that the
procedure gq is invoked.

When a call site fulfills the temperature threshold, the

cycle_density of the callee is computed. If the callee has a

large cycle count but small frequency, i.e. its cycle_density
is high, it must contain loops with high trip count. These
heavy procedures are not inlined. cycle_density has little
impact on the performance because it only filters out infre-
quent call sites. However, cycle_density can significantly
reduce the compilation time and executable sizes, which is
important in some application contexts, such as embedded
computing.

Figure 6 compares the temperature against the
cycle_density for each call site in BZIP2. For call sites
that are actually “hot”, the temperature is indeed high
while the cycle_density is low (for BZIP2 they are always
less than 0.5). These call sites are the ones that will benefit
from inlining.

Infrequently invoked call sites fall into two categories
according to their temperatures. Infrequently invoked call
sites with low temperature are eliminated by the temper-
ature threshold. Infrequently invoked call sites with high
temperature always have very high cycle_density. Thus
we can prevent the inlining of these sites by choosing a
proper cycle_density threshold. In our tuning, we use a
fixed cycle_density threshold of 10 that works well for the
SPEC2000 benchmarks as we will see in the next section.

We implemented this enhanced inlining decision criteria
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Fig. 6. Cycle Density VS. Temperature (BZIP2)

and contributed it to the ORC-2.0 release. Figure 5 shows
the C-style pseudo code for the improved inlining analysis
in the ORC. Notice that a procedure that has a single call
site in the entire application will always be inlined. The
reasoning is that the inlining of that single call site will
render the callee dead, and will allow the elimination of the
callee, therefore this inlining will save function invocations
without causing code growth.

IV. RESuLTS
A. Ezperimental Environment

We investigate the effects of adaptive inlining and of
the introduction of the cycle_density heuristic on perfor-
mance, compilation time, and the final executable size of
SPEC INT2000 benchmarks. We use a cross-compilation
method: we run ORC on an TA32 machine (a SMP ma-
chine with 2 Pentium-IIT 600MHz processors and 512MB
memory) to generate an IA64 executable which is run on
an Itanium machine (733MHz Itanium-I processor, 1GB
memory). Thus our performance comparison is conducted
on the TA64 systems and our compilation time comparison
is conducted on the TA32 system.

B. Performance Analysis

Inlining speedup (compared with no inlining)

_10 I I I I I i I I I ¥
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Benchmarks
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Fig. 7. Overall performance comparison

Figure 7 shows the performance improvement when dif-
ferent inlining strategies are used. T120 represents a fixed
temperature threshold of 120, T1, is a fixed tempera-
ture threshold of 1, similarly for the other T labels. In
adaptive the temperature threshold varies according to
the adaptation heuristic described in Section II. In the
adaptive+density compiler, both the adaptation and the
cycle_density heuristics are used.

Except for PERLBMK, in all benchmarks the adap-
tation heuristic results in positive speedup for inlin-
ing.> These results suggest that our adaptive temperature
threshold is properly selected. In some cases the difference
between a fixed threshold and the threshold chosen with
adaptation is very significant (see BZIP2 and TWOLF).
Note also that the addition of cycle_density to adaptation
does not produce much effect on performance. This result
is explained by the fact that cycle_density only prevents
heavy and infrequently invoked functions from inlining.

We arranged the benchmarks in Figure 7 according to
their sizes with the smaller benchmarks on the left and
the larger ones on the right. Comparatively, in general,
for small benchmarks inlining yields better speedups than
for large benchmarks. This observation can be made by
examining the maximum performance improvement from
all the strategies. Excluding TWOLF and VORTEX, the
maximum performance improvement decreases from left to
right (from small benchmark to large benchmarks). This
trend suggests a loose correlation between the application
size and potential performance improvements that can be
obtained from inlining.

Final Performance Comparison

% improvement
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T100 T70 T50 T20 T10 T1
Strategy
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Fig. 8. Final Performance Comparison

Figure 8 compares the performance improvements of
different strategies more explicitly. Each bar represents
the average performance speedup for the 11 benchmarks
studied. The base line is the average performance of the
11 benchmarks compiled without inlining. And the two
rightmost bars are for adaptive inlining without and with
cycle_density heuristics. Adaptive inlining strategy speeds
up the benchmarks by 5.28%, while the best average per-

5 Inlining seems to always have a slight negative effect on the perfor-
mance of PERLBMEK. We are currently investigating this benchmark
in more detail.
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Executable Size Compilation Time
Benchmarks | no inline adaptive adap+density | no inline | adaptive | adap+density
(Bytes) | % inc | calls | % inc | calls (Secs) | % increase | % increase
bzip2 116295 54.1 89 26.9 88 70.356 117.8 71.3
gee 4397983 44 919 4.4 919 4194.54 6.0 4.0
crafty 635855 20.1 204 20.1 204 440.687 30.9 30.9
gap 1977644 9.7 345 7.3 343 1409.18 9.1 2.7
gzip 147417 67.6 62 28.0 54 109.457 93.8 41.2
mcf 48241 -0.5 19 -6.3 17 41.832 9.3 8.5
parser 340223 18.1 239 16.4 224 274.868 17.1 12.9
perlbmk 2163047 7.5 419 7.5 419 1518.37 10.6 8.9
twolf 823832 10.6 147 10.6 147 646.769 19.8 20.5
vortex 1170014 | 314 210 31.1 208 1162.27 33.0 36.5
vpr 532912 17.5 141 16.4 139 293.683 30.2 26.2
| average | | 219 | | 148 | | | 343 | 24.0 |
TABLE 1

cycle_density’s IMPACT ON EXECUTABLE SIZE AND COMPILATION TIME

formance gain of all other strategies is 4.45% when the
temperature threshold is 50. Notice also that the perfor-
mance influence of cycle_density heuristics is negligible.

C. Compilation Time and Ezxecutable Size Analysis

In this section, we study the effect of the cycle_density
heuristics on the compilation time and on the executable
size. Because cycle_density filters procedures that have
high temperatures but are infrequently invoked call sites,
we expected that its use should reduce both the compila-
tion time and the final executable size.

Table I shows the executable size, measured in bytes, and
the compilation time, measured in seconds, for all bench-
marks when no inlining is performed. Then for the com-
piler with adaptive inlining and the compiler with adaptive
inlining with cycle_density, the table displays the percent-
age increase in the executable size and on the compilation
time. The table also show, under the “calls” columns, the
number of call sites that were inlined in each case.

The cycle_density heuristic significantly reduces the
code bloat and compilation time problem. On average,
adaptive inlining increases the code size by 21.9% and
the compilation time by 34.3%. When cycle_density is
used to screen out heavy procedures, these numbers re-
duce to 14.8% and 24%, respectively. It is also interest-
ing to compare the actual number of inlined call sites:
the cycle_density heuristic only eliminates a few call sites.
Except for GZIP and PARSER, cycle_density prevents
the inlining of no more than 2 call sites in each bench-
mark. Table I also shows some curious results. Al-
though cycle_density prevents the inlining of a single call
site for BZIP2, the code growth reduces from 54.1% to
26.9%. A close examination of BZIP2 reveals that the
procedure doReversibleTransformation calls sortlt in-
frequently (only 22 times in the standard training run).
However ORC performs a bottom-up inlining, in which
the edges in the bottom of the call graph are analyzed

and inlined first. In the BZIP2 case, sortIt absorbs many
functions and becomes very large and heavy before it is
analyzed as the callee. When ORC analyzes the call sites
that have sortlt as the callee, the estimated cycle number
spent in sortlt is huge, which contributes to its high tem-
perature. However, sortlt is called infrequently and its in-
lining does not produce measurable performance benefits.
cycle_density filters these heavy functions successfully.

Finally, cycle_density only eliminates a few call sites be-
cause it is not applied to callees that are only called at one
call site in the entire application (see Figure 5).

V. RELATED WORK

In this paper we presented improvements to the inlin-
ing heuristics in the Open Research Compiler (ORC). Sev-
eral researchers have investigated inlining. However, very
few of them produced a detailed empirical study on an
industry-strong compiler infrastructure based on industry-
standard benchmarks such as the one that we present in
this paper.

Ayers et al. [2] and Chang et al. [5], [13] demonstrate
impressive performance improvement by aggressive inlin-
ing and cloning. Their inlining facility is very much like
that in ORC: the inlining happens on high level intermedi-
ate representation, using feedback information and cross-
module analysis. Both of them use a budget to control
code bloat: inlining a call site consumes code growth bud-
get. Ayers et al. use an estimated 100% compilation time
increase as budget for inlining. ORC uses an estimated
100% code size increase for the inlining budget. In our ex-
periments, inlining in ORC never uses up the budget (i.e.
double the estimated application size).

Without feedback information, Allen and Johnson per-
form inlining at source level [1]. Besides reporting impres-
sive speedup (12% in average), they also show that inlining
might exert negative impact on performance.

Several researchers try to enable aggressive inlining in



the context of object oriented programming. A single call
site may have multiple potential callees. For instance, C
and C++ programming languages allow calling functions
through pointers. Polymorphism in OO programming lan-
guages is often realized via indirect function calls, also
called virtual method invocation. For indirect function
calls, it may be impossible to infer the callee before run-
time. Thus, inlining cannot be applied straightforwardly
to dynamic function calls. A series of special inlining
approaches were developed to improve the performance
of applications that employ indirect function calls inten-
sively [3], 4], [9], [10], [12].

VI. ONGOING WORK
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Fig. 9. Call Site Breakdown

Figure 9 shows how many dynamic function calls we can
eliminate using our adaptive inlining technique. We di-
vided the function calls into five different categories:

inlined Call sites that can be inlined with our adaptive
inlining technique. These call sites have high temper-
ature and low cycle_density.

NotHot Call sites that are not frequently invoked. It
brings no benefit to inline these call sites.

Recursive ORC does not inline call sites that are in a
cycle in the call graph.

Large Call sites that have high temperature but can-
not be inlined because either the callee, the caller
or its combination is too large. GCC, PERLBMK,
CRAFTY and GAP have some large call sites.

Other Call sites that cannot be inlined due to some
other special reasons. For example, the actual pa-
rameters to the call sites do not match the formal pa-
rameters of the callee. As Figure 9 shows, these call
sites are very rare.

With our enhanced inlining framework, we were able

to eliminate most of the dynamic function calls for small

benchmarks such as MCF, BZIP2 and GZIP. However we
only eliminated about 30% dynamic function invocations
for GCC and 57% for PERLBMK. Examining the graph
in Figure 9, to obtain further benefits from inlining we
need to address inlining in these large benchmarks. The
categories that are the most promising are the recursive
function calls and call sites with large callers or callees.

Figure 9 shows that for some large benchmarks
(PARSER, PERLBMK and GCC) a significant portion of
the function invocations that are not inlined are recursive
functions. We are conducting a study of the depth of re-
cursions. If a recursive function is invoked often, but its
recursion is shallow, limited inlining should be beneficial
(the analogy in intra-procedural transformations is loop
unrolling).

In order to harvest the benefits from inlining without
ncurring in high costs on code growth and compilation
me, we should inline only the portions of the procedures
at are actually hot. Thus we are currently investigating
outlining-enabled inlining (i.e. partial inlining). Partial
lining has been proposed in [15], [16]. Our initial studies
ndicate that there is potential performance gains to be
btained from partial inlining, and thus this is the focus of
ur ongoing research.
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