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Abstract

EARTH is a multithreaded program execution and architecture model that hides communication and synchronization
latencies through fine-grain multithreading. EARTH provides a simple synchronization mechanism: a thread is spawned
when a pre-specified number of synchronization signals are received in its synchronization slot — signaling the fact that
all dependences required for its execution are satisfied. This simple synchronization mechanism is an essential primitive
in Threaded-C — a multithreaded language designed to program applications on EARTH. The EARTH synchronization
mechanism has been efficiently implemented on a number of computer platforms, and has played an essential role in the
support of a large number of parallel applications on EARTH.

An interesting open question has been: is such a simple mechanism sufficient to satisfy the synchronization needs
of the large set of applications that EARTH can implement? Or could the EARTH programming model benefit from
the implementation of more elaborate synchronization mechanism? In such case, what are the benefits and tradeoffs of
adding this mechanisms to EARTH?

This paper describes the implementation of I-structures under the EARTH execution and architecture model. An
I-structure is a data structure that allows for the implementation of a lenient computation model. A read operation
can be issued to an element of an I-structure before it is known that the corresponding write operation has produced
the value. We also introduce a new parallel kernel based on the Hopfield Network and demonstrate how the I-structure
support on EARTH can be utilized. We finish presenting a complete Threaded-C program to solve the Hopfield kernel

is also presented.
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I. INTRODUCTION

The EARTH multithreaded architecture was designed to effectively hide communication and syn-
chronization latency and thus support scalable parallel applications. One of the advantage of the
EARTH model is that it can be efficiently implemented using off-the-shelf commercial processors and
components [18], [19], [20]. The EARTH architecture and program execution model was first imple-
mented on the MANNA machine [6]. Now, it has been successfully ported to parallel machines such
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as the IBM SP-2 [7], and a network of affordable computers running the Linux operating system,
Beowulf[23], [24]).

Threaded-C is the language used to program the EARTH architecture in the different platforms.
Threaded-C implements support for EARTH multithread programming through a set of extensions
to the standard C language. Threaded-C offer explicit support to multithreaded operations, such as
thread creation, synchronization, and communication. Programmers use these primitives to access the
underlying EARTH multithreaded features. A complete reference to the Threaded-C language can be
found in [25].

[-structure is a non-strict data structure proposed as an extension to the functional language Id by
Arvind and his colleagues [3]. This data structure can be used as a synchronization mechanism to
support producer and consumer type of computation. Because an [-structure is able to queue read
operations when they arrive before the corresponding write operation, the read operation will return
the expected value even when it is issued before the write has been performed.

Threaded-C does not provide direct support for I-structures. In this paper we describe the imple-
mentation of a library of functions that delivers the functionality of I-structures in Threaded-C. We
describe a parallel programming kernel based on a Hopfield Network and present our implementation
of this kernel in Threaded-C using I-structures. This implementation demonstrates how I-structures
facilitate the job of the programmer to synchronize readers and writers.

Although descriptions of the EARTH architecture and program execution model have been published
elsewhere, we include a brief description of the architecture in section IT and of the Threaded-C
language in section III. We include a brief description of I-structures in section IV and present our
implementation of I-structures in Threaded-C in section V. Section VI describes a parallel kernel based
on Hopfield Networks, and Section VII describes our implementation of this kernel in Threaded-C using

I-structures. In Section VIII we discuss related work.

II. THE EARTH ARCHITECTURE

In the EARTH programming model, threads are sequences of instructions belonging to an enclosing
function. Threads always run to completion — they are non-preemptive. Synchronization mechanisms
are used to determine when threads become executable (or ready). Although it is possible to spawn a
thread explicitly, in most cases a thread starts executing when a specified synchronization slot counter
reaches zero. A synchronization slot counter is decremented each time a synchronization signal is
received. In a typical program, such a signal is received when some data becomes available. Besides

the counter, a synchronization slot holds the identification number, or thread id, of the thread that is to
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Fig. 1. EARTH architecture

be started when the counter reaches zero. This mechanism permits the implementation of dataflow-like
firing rules for threads (a thread is enabled as soon as all data it will use is available).

An EARTH computer consists of a set of EARTH nodes connected by a communications network.
Each EARTH node has an Ezecution Unit (EU) and a Synchronization Unit (SU) linked to each other
by queues (see Figure 1). The EU executes active threads, and the SU handles the synchronization
and scheduling of threads and communication with remote processors.

This division allows the implementation of multithreading architectures with off-the-shelf micropro-
cessors mass-produced for uniprocessor workstations [20]. The EU is expected to be a conventional
microprocessor executing threads sequentially.? The SU performs specialized tasks and is relatively
simple compared to the EU. Thus, the SU can be implemented in a small ASIC chip. The two queues
connecting the EU and SU may be in separate hardware or may be part of the EU and/or SU.

The function of the queues shown in Figure 1 is to buffer the communication between the EU and
SU. The ready queue, written by the SU and read by the EU, contains a set of threads which are ready
to be executed. The EU fetches a thread from the ready queue whenever the EU is ready to begin
executing a new thread. The event queue, written by the EU and read by the SU, contains requests for
synchronization events and remote memory accesses, generated by the EU. The SU reads and processes
these requests as fast as it is able. Request from the EU for remote data can go directly to the network
or go through the local SU; implementation constraints will determine the best mechanism, so this is
not defined in the model.

To assure flexibility, the EARTH model does not specify a particular instruction set. Instead,

!The EARTH model does not specify the network’s topology.
2More precisely, the EU executes threads according to their sequential semantics. Naturally, such a processor could take

advantage of conventional techniques for speeding up sequential threads, such as out-of-order execution and branch prediction.



ordinary arithmetic and memory operations use whatever instructions are native to the processor(s)
serving as the EU. The EARTH model specifies a set of EARTH operations for synchronization and
communication. These operations are mapped to native EU instructions according to the needs of the
specific architecture. For instance, on a machine with ASIC SU chips, the EU EARTH instructions
would most likely be converted to loads and stores from/to memory-mapped addresses which would
be recognized and intercepted by the SU hardware.

To maximize portability, the EARTH model makes minimal assumptions about memory addressing
and sharing. An EARTH multiprocessor is assumed to be a distributed memory machine in which
the local memories combine to form a global address space. Any node can specify any address in this
global space. However, a node cannot read or write a non-local address directly. Remote addresses are
accessed with special EARTH operations for remote access. A remote load is a split-phase transaction
with two phases: issuing the operation and using the value returned. The second phase is performed

in another thread, after the load has completed.

III. THE THREADED-C LANGUAGE

A thread is an atomically-scheduled sequence of instructions. When an EU executes a thread, it
executes the instructions according to their sequential semantics. In other words, instructions within
a thread are scheduled using an ordinary program counter. Notice that this does not preclude the use
of semantically-correct out-of-order and parallel execution to increase the instruction issue rate within
a thread. Both conditional and unconditional branches are only allowed to destinations within the
same thread.

EARTH threads are non-preemptive. Once a thread begins execution, it remains active in the EU
until it executes an EARTH operation to terminate the thread. If the CPU should stall (e.g., due to
a cache miss), the thread will not be swapped out of the EU. There are no mechanisms to check that
data accessed by an executing thread is actually valid or to suspend the thread if it isn’t, except for
normal register checks such as register score-boarding. Therefore, data and control dependences must
be checked and verified before a thread begins execution. This is done explicitly using synchronization
slots and synchronization signals. A sync signal is used by the producer of a datum to tell the consumer
that the data is ready. A sync slot is used to coordinate the incoming sync signals, so that a consumer
knows when all required data is ready. Each sync signal is directed to a specific sync slot. Sync signals
and slots are handled with explicit EARTH operations, and are made visible in Threaded-C.

A sync slot contains three fields: a reset count, a sync count, and a thread pointer, as shown in

Figure 2. The sync count indicates the number of sync signals that have to be received by the sync
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Fig. 2. Synchronization slot format

slot before the corresponding thread can be enabled. When a sync signal is received, the sync count is
decremented. If the count reaches 0 the thread id specified by the thread pointer is placed in the ready
queue and the sync count is set back to the value of the reset count. The thread pointer (or thread
id) consists of a frame pointer (FP) and an instruction pointer (IP). The frame pointer specifies a
particular function instance while the instruction pointer points to the first instruction of the thread.

For instance, consider the issue of a split-phase read operation in thread ¢. After issuing the read
operation, thread ¢ continues its execution without waiting for the read operation to finish. The
operation that uses the returned value must be placed in a different thread, thread j. To ensure the
correctness of the split-phase read, thread j is associated with a sync slot. This way, thread j will not
be scheduled for execution before a sync signal is received signaling that the remote read has finished.

The only restrictions imposed by the EARTH model on thread scheduling are the synchronization
rules implemented by the sync slots. A thread can begin execution any time after the sync count in
its corresponding sync slot reaches 0. The simplest scheduling policy is a FIFO scheduling in which
newly enabled threads are placed in the end of the ready queue and the EU always read threads from
the beginning of the ready queue. However, more elaborate policies are possible in implementations
that allow random access to the ready queue [20]. For instance, threads can be prioritized to favor
threads known to be on critical paths, or threads can be scheduled in LIFO order to benefit from
register locality.

The atomicity and non-preemptiveness of threads does not prevent multiple threads from running
simultaneously on the same EARTH node. The EARTH model allows for the EU to maintain multiple
independent active threads, whether their execution is interleaved or simultaneous. The model also
allows for implementations in which several single-thread uniprocessors share the same memory, SU
and ready queue. Therefore, to assure portability of code across all EARTH platforms, when writing
Threaded-C code, a programmer shall make no unwarranted assumptions about concurrent thread

execution.



IV. I-STRUCTURES

[-structures are data structures introduced by Arvind and his collaborators in the context of the
functional programming language Id [3]. The most salient advantage of an I-structure is that there is
no need for synchronization between reads and writes at their issuing time. An I-structure is considered
to be an array of elements®, where each element of the array can be in one of three states: empty,
initialized, and suspended. Each element of the array can only be written once, but it can be read
many times. Right after allocation all the elements of the array are in the empty state. Conceptually,
if a read occurs before the write the element goes into the suspended state and the read operation is
kept in a local queue. Subsequent reads are also queued. When a write occurs, if the element been
written is in the empty state, the value is written in the array and the element goes into the initialized
state. If the element was in the suspended state, all the reads that were queued for that element are
serviced before the writing operation is complete, and the element goes into the initialized state. A
read to an initialized element returns immediately with the value previously written. A write to an
element that is in the initialized state is considered a fatal error and causes the program to terminate.

In this document we present a set of functions that implement the functionality of I-structures
in Portable Threaded-C (PTC). Functional language environments have a mechanism called garbage
collector that is responsible for reclaiming the memory previously allocated for I-structures that are no
longer needed. In languages such as Threaded-C this mechanism is not available. Therefore we need
to introduce two new operations that were not part of the original I-structure proposition: delete and
reset.

Observe that for the proper functioning of an I-structure, the read and write operations must be
atomic. This implementation of I-structures in PTC running on the existing EARTH platforms derives
atomicity from the following two assumptions:

i. Threads are non-preemptive.
ii. Only a single thread can run on a node at a time.

The first condition is inherent to the EARTH model, the second condition might not be valid in
future implementations (in SMP clusters for example). However both conditions are true for all the
current implementations of EARTH systems. In future implementations, if condition ii is no longer
valid, this implementation of I-structure will have to be revised.

3T-structures were defined as arrays of elements in the seminal work of Arvind, Nikhil, and Pingali [3]. However, nothing prevents

the implementation of single element i-structure, or other data structure organizations.



V. IMPLEMENTING [-STRUCTURES IN THREADED-C

This document describes the support for I-structures implemented in Portable Threaded-C through
a set of library functions. In this implementation an I-structure can be allocated from the heap and

when it is no longer in use can be returned to the heap. The library supports five operations in an

[-structure: allocate, read, write, reset, and delete.

delete w

write reset

Initialized
delete

Fig. 3. State Transition Diagram for the I-Structure Implementation

The implementation of I-structures described in this document implements the state transition
diagram displayed in Figure 3. The states in this figure represent the state of individual elements within
an I-structure. The operations in the state transition can be separated in two groups. Operations that
cause all the elements of the array to change state: allocate, reset and delete; and operations that
cause a single element of the array to change state: read and write. We consider that previous to its
allocation an I-structure is in the memory heap. When an I-structure is allocated all its elements are
placed in the empty state. As read and write operations are performed, individual elements can then
be moved to the suspended or initialized state. If any element goes into the FATAL EFRROR state, the
program emits an error message and terminates. Only three conditions are cause for a fatal error in
this implementation:

« a write to an array element that has already been initialized;
« a delete or a reset of an I-structure that contains at least one element in the suspended state;

« a delete or a reset of an I-structure that is in the heap (was never allocated or has already been



deleted);
Observe that there are other situations that will cause error but that are not checked in this im-
plementation, such as a write or a read to a non-allocated I-structure or a write or a read out of the

bounds of the allocated [-structure. The functions that implement I-structure in Threaded-C are listed

in Table I.

THREADED ILINIT(SPTR slot_adr)

THREADED I_ALLOCATE(int array_length, void *GLOBAL *GLOBAL place, SPTR slot_adr)
THREADED I_READ x(void *GLOBAL array, int index, int *GLOBAL place, SPTR slot_adr)
THREADED I_ READ BLOCK(void *GLOBAL g_array, int index, long block size, void *GLOBAL
place, SPTR slot_adr)

THREADED [_.WRITE x(void *GLOBAL array, int index, T value)

THREADED [I.WRITE_BLOCK_SYNC(void *GLOBAL array, int index, long blocksize, void
*GLOBAL origin, SPTR slot_adr)

THREADED I DELETE(void *GLOBAL array)

THREADED I DELETE_BLOCK(void *GLOBAL array)

THREADED I RESET(void *GLOBAL array)

THREADED I_LRESET_BLOCK (void *GLOBAL array)

TABLE 1

LIBRARY OF FUNCTIONS THAT IMPLEMENT I[-STRUCTURES IN THREADED-C.

VI. THE HorrIELD KERNEL

In this section we introduce a kernel, based on the Hopfield Network, to illustrate the utilization of
the I-structures presented in this document. The motivation for the introduction of this kernel is to
illustrate the use of I-structures to provide for simpler user defined synchronization in multithreaded
programming.

The Hopfield Network is a recursive neural network that is often used in combinatorial optimization
problems and as an associative memory [11]. In both cases the network is formed by a set of neurons
that are connected by synapses*. Every neuron is connected to every other neuron in the network. The
architecture of a fully connected, synchronous, recursive Hopfield Network is displayed in Figure 4.

A unit time delay in a discrete time computation is represented by z~1 in Figure 4, and v; is the i-th

“In this paper we discuss a Hopfield kernel suitable for the implementation of an associative memory. With few modifications

a similar kernel for the resolution of combinatorial optimization problems can be implemented.



Fig. 4. Architecture of a recursive Hopfield Network

neuron in the network. The presence of unit delays in the network imposes a global synchronization
because the computation of the value of the activation for the next time interval cannot be completed
before all the activation values for the current time interval are ready. An alternative Hopfield network
is the asynchronous network in which all neurons are constantly reading their inputs and updating
their outputs without concern for synchronization.

For the kernel that we introduce in this section we consider only the situation in which the network
is placed in a given initial unstable state and is allowed to move to a stable state. In this case the
values of the synapses are fixed and the only values that change are the values of the activation level
of the neurons. In this recollection mode, the value of the output of each neuron at time k + 1 is given

by the following equation.

51+ 1) = sun | w0 )

Where wj; is the weight of the synapse connecting neuron i to neuron j, S;(k) is the output of
neuron ¢ at time k, and sgn() is the sign function that evaluates to +1 if its argument is positive and
evaluates to —1 if its argument is negative. In order to update its activation level, a neuron computes

the sum of the product of each one of its synapses and the output level of the corresponding neuron.
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Fig. 5. Synchronization Structure of the Hopfield Kernel Implementation

VII. IMPLEMENTING THE HOPFIELD KERNEL IN THREADED-C

Figure 5 presents the structure of our implementation of the Hopfield network in Threaded-C using
[-structures®. The program has three functions: MAIN with six threads, activation_update with
two threads, and compute_change with a single thread. In this section we introduce the code and
explain each piece of the program. Observe in the figure that most of the computation is spent in the
loop formed by threads 3 and 4 of the main function and by the function activation update and
compute_change. Threads 0, 1, and 2 of the main function are necessary for initialization and thread
5 prints the final results. In Figure 5 each thread is annotated with the initial count and the reset
count of the sync slot that causes the thread to be spawned. Please refer frequently to Figure 5 as you
read the following explanation.

Figure 6 presents the preamble used in the file that contains the MAIN function. This preamble
defines the functions prototypes and the variables used in the main function.

Besides main, three functions are used, one to initialize the synapses, one to update the activation
level in each neuron and one to compute the change of state. In this example we do not implement
input/output functions. Instead we use a define to specify the number of neurons in the network. We
use a synapse array of floats and a float change_of_state in global scope. Remember that each node
has its own copy of a global scoped variable. Therefore the synapse values must be initialized in each

5 A complete description of the Threaded-C language can be found in [25], and a description of the set of functions that implement

the I-structure mechanism is described in [2].



#include <stdio.h>
#define EXTERN
#include "i-struct.h"

#define NET_SIZE 2
#define STOPPING_CRITERIUM 0.1

float synapse[NET_SIZE];
float change_of_state;

THREADED init_synapses(int num_neurons, SPTR done);

THREADED activation_update(void *GLOBAL old, void *GLOBAL new,
int num_neurons, SPTR done);

THREADED compute_change_of_state(float change, SPTR done) ;

THREADED MAIN()
{
SLOT SYNC_SLOTS[5];
void *GLOBAL i_old;
void *GLOBAL i_new;
void *GLOBAL temp;

float *final;
int i;
int num_neurons = NET_SIZE;

Fig. 6. Preamble of the Threaded-C code for the Hopfield Network kernel.

node. In this kernel implementation each node is in charge of computing the new activation level of
one neuron.

Figure 7 presents the code for threads 0 through 3 of the MAIN function. The array final is
dynamically allocated because in the general case the number of neurons is specified by the user.

The function init_synapses is invoked in each node to establish an initial value for the synapses
of the neuron allocated for that node. Observe that this function synchronizes slot 1, therefore
num_neurons synchronization signals to this slot are generated by init_synapses.

The last action of THREAD_O is to invoke the function I_INIT() in node 0. This function must be
invoked in all nodes in which I-structures will be allocated. The invocation of I_INIT() must precede
the invocation of any other I-structure in that node.

We use two I-structures in this implementation i_old contains the values of the activation in the
previous iteration. i_new contains the new activation values. At the end of each iteration, i _new
becomes i_old, the I[-structure i_old is reseted and becomes i _new.

THREAD_1 invokes the allocation of the two I-structures i_old and i_new. Observe that the allocation
of i_old synchronizes slot 1. The sync slot 1 was initialized with 1. Therefore, as soon as the i_old
structure is allocated, THREAD_2 is spawned by the system. On the other hand, the allocation of i_new
synchronizes slot 2. Because this slot was initialized with num_neurons + 1, THREAD_3 is spawned for
the first time as soon as all the synapses are initialized and the I-structure i_new has been allocated.

THREAD_2 writes an initial value for the activation of all the neurons. This initial value represents



INIT_SYNC(0,1,1,1);

INIT_SYNC(1,1,1,2);
INIT_SYNC(2,num_neurons+1,1,3);
INIT_SYNC(3,num_neurons,num_neurons,4) ;
INIT_SYNC(4,num_neurons,num_neurons,6) ;

final = (float *)malloc(num_neurons*sizeof (float));

for(i=0 ; i<num_neurons ; i++)
INVOKE(i, init_synapses, num_neurons, SLOT_ADR(2));

INVOKE(O,I_INIT,SLOT_ADR(0));
END_THREAD () ;

THREAD_1:
INVOKE(O, I_ALLOCATE, num_neurons, TO_GLOBAL(&i_old), SLOT_ADR(1));
INVOKE(O, I_ALLOCATE, num_neurons, TO_GLOBAL(&i_new), SLOT_ADR(2));
END_THREAD() ;

THREAD_2:
for(i=0 ; i<num_neurons ; i++)
INVOKE(O, I_WRITE_F, i_old, i, 0.01%*(float)i);
END_THREAD() ;

THREAD_3:
change_of_state = 0.0;
for(i=0 ; i<num_neurons ; i++)
INVOKE(i, activation_update, i_old, i_new, num_neurons, SLOT_ADR(3));
END_THREAD () ;

Fig. 7. Threads 0 through 3 of MAIN function in the Hopfield Network kernel.

the input for the Hopfield network, it is usually provided by the user. In this kernel we are generating
a different initial value for each neuron. The initial value usually puts the Hopfield network in an
unstable state. The network evolves from there until it reaches a stable state that is a local minimum
in its energy surface. Observe that THREAD_2 does not perform any synchronization. This is possible
because in I-structures writes do not need to precede reads. Thus the programmer is relieved of some
complex synchronization responsibilities.

THREAD_3 is spawned after the synapses are initialized and the i_new structure is allocated. The
variable change of state is a variable in global scope that accumulates the changes of state in-
curred in each neuron. Therefore before invoking the update function we have to reset the value of
change_of _state.

THREAD_3 invokes the activation_update function in each node. This function reads the value of the
activation of all other neurons to perform the computation describe by equation 1. When finished, the
function computes its change of state that is a measure of how much the activation level of that neuron
has changed. The function then invokes the compute_change_of_state function in node 0. This is the
function that synchronizes slot 3. Observe that slot 3 is initiated with num neurons. Therefore when

all nodes have finished their activation update and have reported their change of state, THREAD 4 is



spawned.

THREAD_4:
temp = i_old;
i_old = i_new;
i_new = temp;

if(change_of_state > STOPPING_CRITERIUM)
INVOKE(O, I_RESET, i_new,SLOT_ADR(2));
else
{
INVOKE(O, I_DELETE, i_new);
for(i=0 ; i<num_neurons ; i++)
INVOKE(O, I_READ_F, i_old, i, TO_GLOBAL(&finall[il), SLOT_ADR(4));
}
END_THREAD() ;

THREAD_5:
INVOKE(O, I_DELETE, i_old);
for(i=0 ; i<num_neurons ; i++)
printf ("activation of node %d = %f\n",i,finall[il);
free(final);
RETURN(Q) ;

Figure 8 presents the code for threads 4 and 5 of the MAIN function. This thread first swaps the
pointers for i_old and i_new. This is an efficient way of copying the old values into the new ones. If
the total change of state in the Hopfield Network is still above an established stopping criterion, the
[-structure i_new is reseted. This causes all its elements to transit to the empty state allowing fresh
write operations to all of them. The I_RESET operation synchronizes slot 2. Observe that although

the initial count of the slot 2 was num neurons+1, its reset count is 1. Therefore THREAD_3 will be

Fig. 8. Threads 4 and 5 of MAIN function in the Hopfield Network kernel.

spawned as soon as I_RESET is completed.

If the change of state is smaller than the stopping criterion, it means that the Hopfield Network
is close enough to a stable state. Therefore, instead of reseting the i_new structure, we delete the I-
structure i_new and invoke reads for the last values of activation computed from the i_old I-structure
into the final array. When each read is successfully served, slot 4 is synchronized. When all reads are

completed, THREAD_5 is spawned by the system. THREAD_5 prints the activation level of each neuron,

and release the memory allocated for the final array.

THREADED compute_change_of_state(float change, SPTR done)
{

change_of_state += change;

RSYNC (done) ;

END_FUNCTIONQ) ;
}

Figure 9 contains the code for the compute_change of _state() function. This function adds the

Fig. 9. Function compute_change of_state() in the Hopfield Network kernel.




value of all the changes of state in each neuron, and synchronizes the slot specified by done. This
function is invoked by the function activation update and effectively synchronizes the completion of

the function execution.

THREADED init_synapses(int num_neurons, SPTR done)
{

int i;

for(i=0 ; i<num_neurons ; i++)
synapse[i]l = 0.01*NODE_ID#i;

synapse [NODE_ID] = 0.0;

RSYNC (done) ;

END_FUNCTIONQ) ;

Fig. 10. Function init_synapses() in the Hopfield Network kernel.

Figure 10 contains the code for the init_synapses() function. In a complete implementation of
the Hopfield Network the weight of the synapses is established by a set of patterns that are stored in
the associative memory or by a set of equations that specify a combinatorial optimization problem. In
this kernel we simply initialize the synapses with small values that are distinct for each synapse and

for each node.

THREADED activation_update(void *GLOBAL old, void *GLOBAL new, int num_neurons,
SPTR domne)
{
SLOT SYNC_SLOTS[1];
static float *a_old;
float activation;
float change;
int i;

INIT_SYNC(O, num_neurons, num_neurons, 1);

a_old = (float *) malloc(num_neurons*sizeof (float));
for(i=0 ; i<num_neurons ; i++)

INVOKE(O, I_READ_F, old, i, TO_GLOBAL(&a_old[i]), SLOT_ADR(0));
END_THREAD() ;

THREAD_1:
activation = 0;
for(i=0 ; i<num_neurons ; i++)
activation = synapse[i]l*a_old[i];

INVOKE(O, I_WRITE_F, new, NODE_ID, activation);
change = (activation - a_old[il);

change = change*change;

INVOKE(O, compute_change_of_state, change, done);
free(a_old);

END_FUNCTIONQ) ;

Fig. 11. Function activation_update() in the Hopfield Network kernel.

Figure 11 contains the code for the activation update () function. The first time that this function

is called, its THREAD_O allocates the memory necessary for the a_old array. THREAD_O is also responsible



for invoking the I_READ_F function for each element of the I-structure array.

Because the sync slot is initialized with num_neurons, THREAD_1 is not spawned until all the read
operations are serviced. THREAD_1 computes the new activation for the neuron NODE_ID, invokes the
I_WRITE_F function to write this new activation value to the new I-structure, computes the square of
the amount of change in the activation value and reports this change to node 0 invoking the function
compute_change of state(). This later function synchronizes the sync slot done to signal that the

activation update is complete.

VIII. RELATED WORK

The Hopfield network was introduced by John Hopfield in a seminal 1982 paper [13]. Its application
as an associative memory as well as to find solutions for combinatory optimization problems have since
been widely studied [12], [16], [15], [14], [26].

EARTH is a fine grain multithreaded architecture originally developed to be implemented in a
distributed memory platform. Currently research at the University of Delaware is been performed
to develop an implementation of the EARTH architecture on a cluster of shared memory machines.
Another important fine grain multithreaded architecture is the MIT Cilk architecture [5], [10]. In Cilk
the distribution of threads among distinct processors is performed through a mechanism called work
stealing: a new thread is always spawned in the local processor. Whenever a processor runs out of
work it tries to steal threads from processors that have more threads than what they can process. To
the best of our knowledge, non-strict data structures, such as I-structures, have not been implemented
in Cilk.

After the original proposition of I-structures, Arvind and his collaborators proposed M-structures[4].
The main difference between an M-structure and an I-structure is that in an M-structure a read
operation — which is called take — resets the location to the empty state. When a write operation —
called put — is performed to a location that has more than one take waiting, only one of the takes is
served and the location remains empty. The advantage of an M-structure is that it allows for multiple
writes to the same location. Its disadvantage is that it only allows a single read for each value written.
M-structures can be also implemented as a library of functions in Threaded-C in a similar fashion as
the implementation of I-structures described in this paper. I-structures are included as instructions in
the pH language [1], a parallel dialect of Haskell [17].

An interesting research question is whether and how data structures such I-structures and M-
structures could benefit from caching. Dennis and Gao propose four possible approaches to implement

a defer queue where read operations that cannot be immediately serviced can be stored [8], [9]. They



choose to store in memory a list of identifiers of the processor nodes that have one or more pending
reads for a memory location. Each processors itself holds a list of continuations for the requested read

operation.

IX. CONCLUSION

In this paper we proposed a new parallel kernel based on the Hopfield network and described the
implementation of I-structures as a library of functions on Threaded-C. The EARTH architecture has
been implemented in different platforms, including SP2, MANNA and Beowulf [6], [7], [22]. In each one
of these platform the ratio between communication costs and processing costs are different. At the time
of the submission of this paper we are working on experiments to investigate how this different ratios
affect the performance of our implementation of the Hopfield kernel in EARTH using I-structures. We
are also working in an implementation of the Hopfield kernel that does not use I-structures to study
the effect of using I-structures for synchronization. We intend to present the numerical results of our

studies at the conference in September.
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