Applying Genetic Algorithms to the
State Assignment Problem: A case Study

Jose Nelson Amaral, Kagan Tumer, and Joydeep Ghosh
Department of Electrical and Computer Engineering,
University of Texas at Austin,

Austin, Texas 78712

Abstract

Finding the best state assignment for implementing a synchronous sequential circuit is important for reducing
silicon area or chip count in many digital designs. This State Assignment Problem (SAP) belongs to a broader
class of combinatorial optimization problems than the well studied traveling salesman problem, which can be
formulated as a special case of SAP. The search for a good solution is considerably more involved for the SAP
than it is for the traveling salesman problem due to a much larger number of equivalent solutions, and no effective
heuristic has been found so far to cater to all types of circuits.

In this paper, a matrix representation is used as the genotype for a Genetic Algorithm (GA) approach to this
problem. A novel selection mechanism is introduced, and suitable genetic operators for crossover and mutation,
are constructed. The properties of each of these elements of the GA are discussed and an analysis of parameters
that influence the algorithm is given. A canonical form for a solution is defined to significantly reduce the search
space and number of local minima. Simulation results for scalable examples show that the GA approach yields
results that are comparable to those obtained using competing heuristics. Although a GA does not seems to be the
tool of choice for use in a sequential Von-Neumann machine, the results obtained are good enough to encourage
further research on distributed processing GA machines that can exploit its intrinsic parallelism.

1 INTRODUCTION

The purpose of this study 1s to investigate the suitability of genetic algorithms for finding good solutions for Combina-
torial Optimization Problems (COP). A COP is defined as the search for an optimal solution of a problem described
with discrete variables. The set of feasible solutions is finite—or possibly countably infinite, and is called the search
space[13]. Some COPs are characterized by having a number of solutions that grows at least exponentially with
the size of the problem. These problems are called intractable, since the time necessary to find an optimal solution
for a given instance of such problems grows combinatorially with the problem size [7]. However, for many practical
engineering situations, 1t is not necessary to obtain the actual best solution for the problem. It is sufficient to find
a good solution that differs only slightly in quality from the best one. This procedure is specially interesting if the
tradeoff between the time necessary to find a solution and the cost associated with that search is significantly better
that for the optimum solution. In this study the state assignment problem is used as a testbed to investigate the use
of Genetic Algorithms to find practical solutions to COPs.

The state assignment problem, which entails the codification of states in a Finite State Machine (FSM), is a
well studied NP-complete problem. Micheli et al developed a system called KISS (Keep Internal State Simple) at
Berkeley [6]. KISS works with symbolic minimization and multivalued logic. A rule-based system called ASYL was
developed in France for control logic design [14]. ASYL includes a solution to the state assignment problem. A system
for implementation of sequential circuits in Programmable Logic Array was developed by Varma and Trachterberg
[15]. In this solution, partition theory and spectral translation techniques were used in the search of a good state
assignment. Amaral and Cunha developed an algorithmic solution based on a set of heuristic rules [1]. Thus a wide
variety of heuristics based on diverse approaches, are available for this problem. Moreover, several well-known COPs
such as the traveling salesman problem, are special cases of the SAP. For these reasons, we use SAP in this paper as
a testbed to investigate the use of Genetic Algorithms to find practical solutions to COPs.

In this paper, we present the state assignment problem, and through an example show the importance of proper
codification. After reviewing the available heuristics methods to obtain good solutions, we present a GA approach,
and propose a set of operators needed for its implementation. The efficacy of these operators over alternative GA
formulation is highlighted. Finally, we present the results obtained by the GA and compare it with competing
conventional methods.

2 STATE ASSIGNMENT PROBLEM

2.1 Statement of the problem

The behavior of a Synchronous Sequential Circuit (SSC) can be represented by an FSM. In this representation, each
state is identified by a symbol, i.e., a string of characters. In the actual implementation of an SSC, the states are
represented by bit strings. In the process of realizing an SSC from its FSM specification, it is necessary to assign a
bit string to each state. The cost of the SSC realization depends heavily on this assignment. The problem of finding
the association between states and bit strings that results in minimal cost is called the State Assignment Problem
(SAP).

The number of distinct state assignments for a machine with s states, each of which is encoded by k > [logas]
bits, is given by [10]:

]\7:.(2i (1)

FEven for a moderate size problem (s = 16, k = 4), the number of distinct assignments is large enough to discourage
any attempt at obtaining the solution by enumeration (N > 101).

2.2 A Motivating Example

We begin by presenting an example that illustrates how the state assignment can influence the cost of an SSC.
This example will also be used later on to illustrate the genetic algorithm operators. An FSM with five states
(51, 52,53,54,55), one input (Ip), and two outputs (Zy, 7Z1), is given in Table 1.

Present State Next State Present Output
Ih=0|Ih=1 A A
So S1 S 0
S1 Sy Ss 1 1

Table 1: State table.

Table 2: State Assignments.

Two different state assignments are proposed in Table 2. If the cost to implement an assignment is taken to be
the number of inputs to logic gates [3] in the correspondent set of Boolean equations, Assignment 1 has a cost of
33, whereas Assignment 2 has a cost of 11. This example illustrates that choosing an appropriate state assignment
greatly reduces the cost of implementation.

2.8 Heuristic Rules

Given an FSM specification, determining the state assignments leading to an SSC implementation with minimum
cost is a non-trivial problem. A set of heuristic rules compiled along the years, have been proven to lead to good
SSC implementations for many designs [2, 4]. Before presenting these rules, some definitions are necessary:

The bit string assigned to state S; is called the attribution of state S; and is denoted by A(S;).
A state S; is called a successor of a state Sy if there is a transition from state S} to state S;. The set of all successors
of a state Sy, is denoted by S(Sk).
A state S; is called a predecessor of a state Sy if there 1s a transition from state S; to state S;. The set of all
predecessors of a state S; with a given input condition, is denoted by P(S;, < input condition >).

Each output is said to partition the states of an FSM into two subsets. The set of partitions of an output 7; is
denoted by O(7;).

States S; and S; are said to be associated with each other if both of them are a successor of a given state Sy, if both
of them are in the set of predecessors of a state S; with a given input condition, or if both of them are in the same
partition of an output 7,,.

The distance between two states S; and Sy is defined as the Hamming distance between A(S;) and A(Sy), and is
denoted by D(S;, Sk).

According to the heuristic rules, the cost of the SSC will be minimized when the state assignment is done in a
way that minimizes the distance between states that:

i. are in the same set of successors of a given state;
ii. are in the same set of predecessors of a given state with a given input condition; or
iii. are in the same partition for a given output.

Returning to the FSM used in the previous section, we have: S(Sp) := {51, 52}; S(S1) := {53, 54}; S(52) :=
{53,54}; S(Sg) = {54}; 5(54) = {SQ}; P(S4,Io = 0) = {51,52,53}; P(Sg,[o = 1) = {51,52}; O(Zo) =
{(S1,52); (S0, 53, S4)}; O(Z1) := {(S1, S3); (S0, S2,54)}.

Observe that the pairs of states (S1,52), (S3,54) and (Sp, S4) are associated with each other more frequently
than other pairs. Therefore, in a good state assignment for the FSM in Table 1, the Hamming distance between these
states should be small. Tndeed the Assignment # 1 of Table 2 has D(Sy,S2) = 3, D(Ss3,54) = 2, and D(Sy, S4) = 3;
while Assignment #2 has D(S1,53) = 1, D(Ss3,54) = 1, and D(Sg, S4) = 1. Clearly Assignment 2 achieves this task

while Assignment 1 does not, explaining the significant difference in the respective SSC costs.

2.4 Desired Adjacency Graph

Based on a paper by Armstrong [2], Amaral introduced the Desired Adjacency Graph (DAG) as a tool for applying
heuristic rules to any given FSM [1]. The DAG is a undirected, weighted, fully connected graph that has as its
nodes the states of the FSM. The weight on an arc connecting two nodes of the DAG represents the strength of that
connection, and indicates the “desirability” of having these states “close” to each other in the SSC implementation.
To have a low cost SSC, it is necessary to minimize the distance between states that are strongly connected in the
DAG. The connection between state ¢ and state j in the DAG is given by the multi-objective function expressed in
equation 2.

s—1s—1s—1 c—1s—1s—1s—1
DAG;; = DAG;; = R ZZ Z i 05k + Ro Z ZZZ Bik,iabik
i=0 j=0 k=0 a=03i=0 j=0 k=j
v—1s—1s—1 s—1s—1
+ RsZZZ Yij 1 0ij +R4ZZ Yij biz,
=0 i=0 j=0 i=0 j=0

where ¢ 18 the number of input conditions, v is the number of output variables, s is the number of states, and

{ 1 af Sj € S(SZ) and Sy € S(SZ)
Qg =

0 otherwise

0 otherwise

P _{ 1 if S € P(S;,1,) and Sy € P(Si, I.))
ik ia

{ 1 af Z](SZ) = ZI(S]')
Yijl =

0 otherwise

0 otherwise

1/)2']' _ { 1 af Sj S S(SZ)

0 ifj =k

The first term of equation 2 sums all pairs of states that are common successors to a given state (rule i). The
second term sums all pairs of states that have a common predecessor with a given input condition (rule ii). The
third term sums the pairs of states that are in the same output partition for a given output (rule iii). The last term
sums the number of transitions between two states, and is used as a tie breaker when the previous terms fail to
indicate the relative position of each state. Since the DAG is an undirected and fully connected graph, the values
of its connections might be represented by a symmetric square matrix. The coefficients R; are constants which are
set according to the importance of each individual rule. In this study Ry = 3, Rs = 4, Rz = 2, and R4 = 1 were
used. Table 3 shows the matrix representation of the connections in the DAG obtained for the FSM of Table 1, using
equation 2.

62’]':{1 ifj £k

So | S1 | S | S3 | 5
So| 0| 5 114] 2
Si | 50|19 1
So | 1 |15] 0 | 5 1
Ss | 4 5 | 0| 8
Sy | 2 1 11810

Table 3: Matrix of DAG Connections.

The SSC cost 1s lowered when two states with strong connections in the DAG are close to each other. Thus, if
the DAG;y;, is large, D(S;, Sy) should be small. Given an FSM specification and a state assignment, it is possible to
quantify the “fitness” of this specific assignment. The fitness function which achieves this is given by:

s—1s—1
FITNESS = > Y (k+1 — D(S;,S;))DAG;; (2)

i=0 j=0

where k is the number of bits used for the state codification. A state assignment with maximum fitness results
in an SSC with minimum cost. From now on we shall assume that the DAG is given and our task is to find an
assignment that maximizes the fitness.

2.5 Comparison of SAP with TSP

There are some similarities between the State Assignment Problem (SAP) as formulated in this paper and the well-
studied Traveling Salesman Problem (TSP) [11]. Just as the goal of the TSP is to find a path that minimizes the
traveled distance, the goal of the SAP is to find an implementation that minimizes the implementation cost. The
equivalent of the distance between two cities in the TSP is the connection value of a DAG arc in the SAP. However
in the TSP only the distance between adjacent cities in a tour is computed to form the fitness of a given path. In
the SAP the connection of each state with all other states must be weighted by the corresponding distances between
these states, and then summed to form the fitness. In other words, the TSP can be seen as a special case of the SAP
where the Hamming distance is reduced to a binary function whose value is one if the states are adjacent, and zero
otherwise.

In the TSP, when the position of two cities on a tour are swapped, only the connections with their neighbors
change. Defining this property as locality, we observe that the SAP does not have locality: if two state assignments
are swapped, their connections with all other states are affected.

The fitness function used for an n-city TSP is the length of the tour. Due to the symmetry of this function,
for each path there are at least 2n — 1 other paths with the same length. In the SAP the symmetry of the fitness
function results in 2%k! equivalent solutions, where k is the number of bits used in the SSC. This large number of
equivalent solutions results in a search space with many local minima. Therefore, it is harder to find a good solution

for the SAP then for the TSP.

3 Genetic Algorithms

3.1 Introduction

Algorithmic approaches to COPs can have a constructive approach, an improvement approach, or a combination of
both [11]. A Genetic Algorithm (GA) can be classified as an improvement type algorithm. Tt starts with a population
of randomly generated individuals (solutions to the problem), from which individuals are selected for the application
of a crossover operator. Given two parents (selected individuals), a crossover generates an offspring. A mutate
operator introduces some random information in the offspring which is then inserted back into the population. When
the population reaches a given size, usually twice that of the initial one, one generation is completed. A selection
procedure is then used to reduce the size of the population, typically to its original size, and a new generation
starts. All the selections are done in a probabilistic fashion and according to the fitness of each individual. A good
introduction to GAs and their applications is provided in [8], and the use of a GA at a meta-level to obtain control
parameters for another GA is explored in [9]. Some considerations made by Whitley for the TSP are also valid for

the SAP [18]:

1. The crossover operator should preserve as much information from the parents as possible. Moreover, the
solutions generated by crossover should be valid. Typically an additional procedure is needed, and care should
be taken to ensure that information not present in either parent is not introduced at this stage.

2. In the TSP the specific position of a given city in the tour does not matter. What matters i1s sequence in
which the cities are visited. Similarly, in the SAP the particular attribution of a given state is irrelevant to
the fitness function. Rather, the fitness is determined by the Hamming distance among state attributions.
Thus the crossover operator should preserve the distance among attributions in the parents, rather than any
particular value of attribution.

3. The mutate operator must be able to introduce enough random information to enable search over the entire
solution space. In other words, the probability of reaching any solution must be non-zero.

4. The probability of selecting a given individual as a parent for the crossover operator must be proportional to
its fitness.

3.2 Genetic Algorithm applied to SAP

To apply a GA to a problem like the SAP, it is necessary to precisely define an individual, a fitness function, a mutate
operator, a crossover operator, and a selection procedure.

3.2.1 Genotype

The “genotype” of a problem is the representation of an individual in the GA. De Jong and Spears have some
considerations about the difficulty in finding a suitable genotype for a given problem [5]. They speculate that if there
is a fairly natural mapping of the problem to GAs, robust performance might be achieved. GAs have been applied
to many problems, where each individual was represented by a single bit string encoding a solution. This is also
the way GAs have been presented by Goldberg [8]. However, for certain problems, a matrix representation is more
suitable than a bit-string representation in terms of both naturalness and quality of results [16]. For the SAP, if the
individual representation contains the underlined structure of a solution, i.e. represents clearly each state attribution
and the distance among them, it is easier to define genetic operators and compute the fitness function. In this sense,
a binary matrix is a very natural and suitable mapping for an individual in the SAP. In this study an individual
will be represented by a binary matrix with s rows and k columns, where s is the number of states in the FSM and
k is the number of bits used in the SSC, thus k > [logas]. Assignments in Table 2 constitute representations of
individuals.

3.2.2 Selection

A selection mechanism is necessary to select the individuals that will generate offsprings, and also to select the
individuals that will survive to the next generation. In this study the roulette wheel method was chosen. In the
method presented in [8], the probability of selecting a given individual is given by its fitness divided by the “length”
of the roulette wheel—the length of the wheel 1s the sum of the fitnesses of all individuals. However, for some
problems, the fitness varies in a narrow interval, with a large offset. Therefore, if the very same method is used,
the selectiveness of the roulette wheel becomes very poor. For instance, an FSM used in our tests has individual
fitnesses within the interval [47694, 53346]. Using the simple roulette wheel selection, the probability of selecting the
best individual would be just 1.12 times the probability of selecting the worst one. To get around this problem, the
actual value used in building the roulette wheel is given by:

Roul W heel_Fitness(I) = Fitness(Iy) — (¢ + 1) Fitness(Min) + qFitness(Max) (3)

where Roul Wheel_Fitness(Ii,) is the fitness used in the roulette wheel for the individual Iy, Fitness(Iy) is
the actual fitness of the individual Iy, Fitness(Min) is the fitness of the worst individual in the population and
Fitness(Max) is the fitness of the best individual in the population. The constant ¢ is arbitrary, and is used to
define the selectiveness of the roulette. The relationship between the probability of choosing the best individual
P(best) and the probability of chosing the worst individual P(worst) is given by:

P(worst) = #P(best). (4)

If ¢ is zero, the probability of selecting the worst individual is reduced to zero. This is not recommended in
terms of genetic procedures, where the probability of selecting any individual should be strictly positive. In this
study, ¢ = 0.01 is used, which makes the best individual two orders of magnitude more likely to be selected then the
worst one. A final observation in this modification to the roulette wheel procedure is that the distribution of the
individuals in the roulette is still proportional to their fitness, and the selectiveness of the roulette is independent of
the particular population. However, this procedure does not work properly in a completely homogeneous population
because this causes Roul W heel _Fitness(I) = 0 for all Tj.

3.2.3 Crossover

As pointed out in section 3.1, an important characteristic of a crossover operator is that it should preserve as much
information as possible from the parents while creating an offspring. Whitley et al. devised a crossover operator
for the TSP that generates only legal tours, and preserves connections among cities [18]. Defining edges as the
connections between the cities, Whitley argues that operators that break fewer edges are more successful in finding
good solutions. To design an operator for the SAP, it is necessary to find a parameter that influences the fitness value
and can be manipulated easily. Examining equation 2, one can notice that the fitness depends on the Hamming
distance between the state attributions, and the DAG. The DAG is equivalent to the distance map in the TSP,
and is fixed for a given FSM. Therefore the fitness of a particular individual will be determined by the D(S;, S;)s,
the Hamming distances among states. The Hamming distance between two bit strings is the sum of the Hamming
distances between individual bits that form the string. With the genotype defined in section 3.2.1, the fitness function
might be considered the sum of contributions from each binary matrix column. Therefore, if bit columns from the
parents are preserved, the information relevant to the fitness is preserved.

The crossover operator suitable for the SAP consists of randomly selecting columns from the parents in order
to create an offspring. This selection is done by independent flippings of a fair coin wherein a column 1s selected
from the first parent if the outcome is a head and from the second parent otherwise. The result might be an invalid
solution in case of conflicts among states. In this case the offspring generated is converted into a valid solution by
restoring the information that came from the parent with better fitness. These conflicts do not occur very often, and
usually can be eliminated with few changes in the offspring.

In the example presented in Table 4, the first two columns are taken from parent #1 and the third column is
taken from parent #2. This yields a transition solution which is invalid because states Ss and S3 have the same
attribution. To resolve the conflict, the attribution of state S3 is changed in such a way that preserves the first two
columns, taken from parent #1. Parent #1 was assumed to have a better fitness in this example.

Parent # 1 | Parent # 2 | transition | Offspring
So 000 001 001 001
S1 100 011 101 101
S 010 010 010 010
Ss 011 110 010 011
Sy 001 100 000 000
Ss 110 101 111 111

Table 4: Crossover example.

Since the “correction” is made by taking information from one of the parents, new information is not introduced
by the crossover operator. Also, it is always possible to resolve collisions by deciding in favor of the parent with
better fitness. This is because the number of states with a given combination of bits in the columns taken from a
parent cannot be greater then the possible number of combinations in these columns. A final consideration about
this crossover operator is that by preserving the information from the strongest parent, it benefits the survivability
of better characteristics in the population.

3.2.4 Mutation

Since the crossover operator preserves information existing in the parents, if it is used all by itself, it will hinder
the emergence of new traits and the diversity of the population will vanish. Only patterns present in the current
population will be passed on to the next generation and the GA will be heavily biased by the initial population. The
search will not encompass the entire solution space and the probability of finding a good solution will be limited. It
is therefore necessary to introduce some random information in the offsprings generated by crossover. This random
information is introduced by a mutation operator. Two properties are desirable in this operator:

e Given any individual, it must be possible to obtain any other individual within the solution space by a finite
number of successive applications of the mutate operator.

e There must be a way of controlling the amount of random information introduced by the mutation operator.

These properties guarantee that with a minimum amount of random information, it is possible to reach all the
states in the solution space.

Given two patterns of bits P; and P,,, and two states S; and S;, such that A(S;) = Py and A(S;) = P, a
swapping operation between P, and P, results in A(S;) = P, and A(S;) = P!

The mutate operator created for the SAP works by applying a sequence of swapping operations to the state
assignment. The mutation rate controls the number of operations to be applied and in this way controls the amount
of random information introduced into an individual.

In the example of Table 5 two swapping operations are performed during mutation. The first one swaps the
states with assignments 110 and 010, changing assignments of states S; and S2. The second swapping is between
the patterns 011 and 111, changing the assignments of states S3 and Ss.

The mutation operator defined above fulfills the two properties stated earlier. It works by “breaking edges” in a
well-controlled fashion in the individuals obtained by crossover. All solutions are reachable by this operator because
given an assignment, a finite number of single swapping operations can transform it to any other assignment in the
solution space. Finally, the result of the application of this operator is always a valid assignment.

1In the case that one of the patterns is not assigned to any state, the swapping is reduced to a change in the assignment of a single
state. If both patterns P; and Py, are not used, the swapping has no effect on the assignment.

Before mutation | After mutation
So 001 001
S1 110 010
Ss 010 110
S3 011 111
Sy 000 000
Sy 111 011

Table 5: Mutation example.

3.3 Reducing the solution space

Two state assignments for an FSM are said to be equivalent if one can be obtained from the other by a finite sequence
of column complement and column permutation operations [12, 17, 10]. Due to the symmetry of the fitness function,
given an FSM, for each state assignment, there are 2¥k! equivalent assignments, where k is the number of bits used

in the SSC2.

Reducing the solution space improves the probability of getting a good solution in a smaller number of generations.
This reduction of space is accomplished in the SAP by expressing each individual in a canonical form. This procedure
is applied to the individuals generated randomly for the first generation, as well as to those obtained through crossover
and mutation in the subsequent generations.

To specify the canonical form, a weight function is defined for each column of the binary matrix that represents
an individual. Let B;; be the bit value of A(S;) in column C;. Then, we define

s—1
Weight(Cj) = Bi;2' (5)
i=0
Original Individual | After complement | After permutation
So 001 000 000
S1 010 011 110
S 110 111 111
Sy 111 110 101
Sy 000 001 010
Ss 011 010 100

Table 6: Reduction in solution space.

The canonical form is defined by having A(S;) = 0 and all columns C; fully ordered in descending order of
Weight(C;). Any arbitrary solution can be reduced to the canonical form by complementing and permuting columns.
The complement operations reduce the solution space by a factor of 2°, and the permutations reduce it by another
factor of s!. An example of these operations is presented in Table 6. Assuming the columns of the binary matrix are
numbered as Cy, Cy, and Cy from left to right, the column Cy is complemented to enforce that A(Sp) = 0. After
this operation, Weight(Cy) = 12, Weight(Cy) = 46, Weight(C2) = 14. To enforce descending order Cy is permuted
with C1, and subsequently C is permuted with C5.

Two distinct solutions in canonical form are nonequivalent and cannot be reduced to each other while preserving

distance among its states. The solution space reduced in this way contains at least one solution with the same fitness
as any other solution in the actual state space. Therefore the reduced space contains the absolute optimum solution.

2 Actually the column complement operation affects the cost of the SSC. However the Fitness function defined by equation 2 is
insensitive to this effect. For more details on equivalent assignments see [10].

4 EXPERIMENTAL RESULTS

The Genetic Algorithm described in this paper was tested against FSM specifications with 32, 33 and 64 states.
Different degrees of connectivity among states were used. Some regular structures were developed to enable the
prediction of an assignment sufficiently close to the best one. For comparison purposes, an assignment using an
heuristic algorithm previously developed by Amaral was also performed [1], and the fitness of that solution was
considered to be unity. For machines with small number of states, the algorithm invariably finds a solution that is
optimal or close to optimal. To allow comparisons between different machines and obtain a relative measure, the
fitness computed by the GA was normalized using equation 6. MIN is the worst solution ever obtained by random
search. MAX is the solution obtained by the heuristic algorithm mentioned above.

Fitness — MIN

Norm_Fitness = . 6
MAX — MIN ()
Fitness
—
| | | | || andom
1.00 — " | Gen=40
B— & —_— e e
| _ o= "5 .:_\1\ Gen = 100
095 — S ol oy, Sl e Sy e = —
If" ,PTTTe s mme s TR T = - D T8 | Gen=200
s, = X O — — =
L NN ~x | Gen =400
090 — [? e SR
! B a S Gen = 800
/’,’ J o T ®
L 1 . _ |
085 /. S
I’,’
Lo
0.80 i fgennne B
I’I'
[
075 7411 '.' |
;s
L
070 —d —
0.65 — —
0.60 — —
0.55 — —
0.50 — —
| ‘ ‘ ‘ ‘ ‘ Mutation Rate
0.00 2.00 4.00 6.00 8.00 10.00

Figure 1: Effect of the number of generations on solution quality (Population = 100).

The first set of tests fixed the population to 100 individuals and varied the number of generations and the mutation
rate. The results are plotted in Figure 1. The test was repeated with a smaller population (40 individuals) and the
results are presented in Figure 2. In Figure 3, the number of generations is fixed at 40 and the population size is
changed. These tests were done with a 32 state FSM, using five bits to code each state.

The results of the experiment presented in Figure 1 show that GAs produce results comparable to those obtained
by the heuristic algorithm, if both the number of generations and the population size are properly chosen. The results

obtained are clearly better than the ones given by random search (flat line in the graph). Also when the solution
approaches the best one, even significant increases in the number of generations have little effect in the quality of
the results.

Fitness
| ‘ Random
1o = — BT
Gen.=40
09 " Gen.= 60
000 N Ger =50 ~
. — A — _ _
7 s NTEL Gen. = 100
- &
a7 No N —
0.85 — /f/’x_—*\w~_x \\0\ E\ —
7 N - NO
y/ Q Mo - x— \E
080 — i e om0 * ">\\ —
I, /,, \G’ \\& \X
075 — f,l ° -t —
4
;) ,l '.ﬂ : \\\
070 — 't 7 s |
[' . o
J/l)/ K “‘u ----- oo TR SR
065 41, g |
Is,.*
0.60 —+ _
055 —]
050 — _
| ‘ ‘ ‘ ‘ ‘ Mutation Rate
0.00 2.00 4.00 6.00 8.00 10.00

Figure 2: Effect of the number of generations on solution quality (Population = 40).

Figure 2 presents results obtained for a reduced population size and fewer generations. The results are still better
than a random search, but clearly not as good as those previously presented. The results also appear to be more
sensitive to variations in the mutation rate.

Figure 3 shows how the population size can influence the quality of the solutions. Increasing the population size
compensates for the reduction in the number of generations. However further tests showed that this compensation
is not linear. If the number of generations is too small, even a very large population will not be able to get the same
result quality as that of a GA with more generations.

When working with 33 and 64 state machines it was observed that the quality of the solutions deteriorates with
the number of bits used to code the states. We believe that this is due to the fact that the number of bits determines
the size of the search space. Variations in the number of states does not seems to have a big impact on the results
as long as the number of bits needed for codification remains constant.

The mutation rate producing the best results seems not to change significantly with the definition of the FSM or
its number of states. If a sufficient number of generations and a large enough population is used, the result of the
GA 1s close to the best one for a reasonably large range of mutation rate. This i1s a salient feature since it removes
the need for tuning the algorithm for each new FSM design.

10

Fitness

E—

| ‘ Random
100 = 1 Bop =107

Pop=20" ~
0» " Pop =40
Pop = 100
090 — | Fop
o — =
/‘*‘ —— —0— N
0.85 — \<> _
/ - -o\
/
0.80 — 4 x)(,/&\ \0— e
~ -~
/ P Sx7 N
% ou S B
O.75*// // e___e.___e,f’ "~\s \)e" G\\ _ |
Vs ~ -
/ 4 AN e s \§
070 —¢ ¥ ; RN, v s |
//' s ~ /I_ .g-- = s - =
//I ,‘E" gt RRRT: Tl a
065 — , |
1 -

N

8 .
0.60 —o _
0.55 —]
0.50 — _

| ‘ ‘ ‘ ‘ ‘ Mutation Rate

0.00 2.00 4.00 6.00 8.00 10.00

Figure 3: Effect of the population size on solution quality (40 Generations).

5 CONCLUSIONS

This paper explored the use of Genetic Algorithms for the solution of Combinatorial Optimization Problems. The
research highlights the importance of having good insights into a problem before defining an adequate genotype,
and designing the operators necessary to apply a GA. By using a natural matrix representation and state space
reduction techniques, the GA proposed in this paper consistently outperformed alternative GA formulations. From
our experiments with various FSMs of different size, it seems that the optimum parameters of this GA do not change
much for different FSM specifications. However, it took extensive simulations and “educated guesses” to find an
adequate set of parameters for SAP.

Although good results were obtained for practical size State Assignment Problems, GAs still do not seem to be the
tool of choice for these kinds of problems. It is true for the SAP, where the GA does not yield better solutions than
the competing heuristic approach. However, the results are good enough to encourage further research in distributed
processing GA machines. The GA technique has intrinsic parallelism in the generation and selection of offsprings.
The speed gained with parallel processing might be used to further improve the results, or to tackle larger problems
that at this stage appear out of range.

Acknowledgements: This research is supported in part by Conselho Nacional de Pesquisa Cientifica e Tecno-
logica (CNPq), and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) - Brazil, by an NSF Initiation
grant MIP 9011-787, and by a Faculty Development Award from TRW Foundation.

11

References

[1]

[2]

J. N. Amaral and W. C. Cunha. State assignment algorithm for incompletely specified finite state machines. In
Fitfth Congress of the Brazilian Society of Microelectronics, pages 174-183, July 1990.

D. B. Armstrong. A programmed algorithm for assigning internal codes to sequential machines. IRE Transactions
on Electronic Computers, pages 466-472, August 1962.

R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli. Logic Minimization Algo-
rithms for VLST Synthesis. Kluwer Academic Publishers, Boston, 1984.

D. J. Comer. Digital Logic and State Machine Design. CBS College Publishing, New York, 1984.

K. A. De Jong and W. M. Spears. Using genetic algorithms to solve np-complete problems. In Proceedings of
the Third International Conference on Genetic Algorithms, pages 124-132, 1989.

G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment for finite state machines.
IEFEE Trans. Comp.-Aided Design, pages 269-284, July 1985.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to NP-completeness. W. H. Freeman,
San Francisco, 1979.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading,
Massachusetts, 1989.

J. Grefenstette. Optimization of control parameters for genetic algorithms. In TEFE Transactions on Systems,
Man, and Cybernetics, pages 122-128, Jan/Feb 1986.

M. A. Harrison. On equivalence of state assignments. [FFE Transactions on Computers, C-17:55-57, January

1968.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shimoys. The Travelling-Salesman Problem.
John Wiley & Sons, Chichester, 1985.

E. J. McCluskey and S. H. Unger. A note on the number of internal variable assignments for sequential switching
circuits. IRE Transactions Electronics Computers, pages 439-440, December 1959.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization Algorithms and Complezity. Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

G. Saucier, M. C. Paulet, and P. Sicard. Asyl: A rule-based system for controller synthesis. TEFE Trans.
Comp.-Aided Design, pages 1088-1097, November 1987.

D. Varma and E. A. Trachtenberg. A fast algorithm for the optimal state assignment of large finite state
machines. In International Conference on Computer-Aided Design, pages 152-155, 1988.

G. A. Vignaux and 7Z. Michalewicz. A genetic algorithm for the linear transportation problem. In [EEFE
Transactions on Systems, Man, and Cybernetics, pages 445-452, Jan/Feb 1991.

F. R. Weiner and E. J. Smith. On the number of distinct state assignments for synchronous sequential machines.
IEFEE Transactions on Electronics Computers, EC-16:220-221, April 1967.

D. Whitley, T. Starkweather, and D. Fuquay. Scheduling problems and traveling salesmen: The genetic edge
recombination operator. In Proceedings of the Third International Conference on Genetic Algorithms, pages

133-140, 1989.

12

