Genetic Algorithms in Optimization:
Better than Random Search?*

José Nelson Amaral, Ph.D.
amaral@ee.pucrs.br
http://www.ee.pucrs.br/~amaral

Adalberto Teixeira Castelo Neto
castelo@ee.pucrs.br
http://www.ee.pucrs.br/~ castelo

Alessandro Valério Dias
dias@ee.pucrs.br

Programa de Pds-Graduagao em Engenharia Elétrica
Pontificia Universidade Catélica do Rio Grande do Sul

90619-900 - Porto Alegre - RS - Brasil

Abstract

In this paper we show that bit strings are sel-
dom the representation of choice for individu-
als in Genetic Algorithms and that genetic op-
erators must be tailored to each specific prob-
lem. We use simple functions to compare the
performance of bit string representation with
the performance of a simple “blind” random
search which requires the same level of compu-
tational effort as the GA. For approximation
of continuous functions mapping R” into R',
we compare the performance of bit string GAs
with that using standard floating point rep-
resentation for the individuals. Experimental
results indicate that the bit-string GA fares no
better than the random search algorithm and
that a GA using a floating point representa-
tion yields better results for complex search
spaces.

*This research is supported in part by Con-
selho Nacional de Desenvolvimento Cientifico
e Tecnolégico (CNPq), by Fundagdo de Am-
paro a Pesquisa do Estado do Rio Grande do
Sul (FAPERGS) and by Pontificia Universidade
Catdlica do Rio Grande do Sul (PUCRS).

1 Introduction

Combinatorial Optimization Problems (COP)
are commonly found in all branches of engi-
neering [9, 10]. Although most COPs are NP-
complete problems [5], approximate solutions
are often found in engineering through the re-
duction of a COP to a search in a high dimen-
sional space [8]. Genetic Algorithms are often
considered for search problems in which the so-
lution space is described by non-continuous or
multimodal functions [2, 7, 11, 12].

Because Goldberg used bit strings to repre-
sent individuals in his seminal work [6], many
applications of Genetic Algorithms for COP
in Engineering are still constructed using bit
strings to represent individuals. In these ap-
plications, two-point crossover is often used
for reproduction and mutation is accomplished
through bit flipping [13].

In this paper we present a comparative study
between genetic algorithms operating with bit
strings and numerical representation of data.
Our results indicate that unless a appropri-
ate genotypical representation is used, GAs fail
even in the simplest search problems.

2 Motivation

While participating as invited speaker in a
joint Mexico-USA conference in 1995 [1], Ama-
ral’s attention was caught by a student paper
that reported a simple study of GAs [3]. The
students were seeking to minimize f(z) given
below on the interval [0, 50].

cos(z)

— 14—
F@) =1+ o1

(1)

The function f(z) is a continuous and mul-
timodal function with eight local minima in
the interval of interest. Even the simpliest GA
should easily solve this problem. Moreover, if a
simple GA fails to solve this problem we should
have little hope about using GA for complex
COPs; however, the students reported that in
their first attempt to solve the problem, a sim-
ple GA with an initial population of fifty indi-
viduals that evolved for fifty generations failed
to find the global minimum. After successfully
obtaining the global minimum in a second trial
using a population with a hundred individuals
that evolved for a hundred generations, they
concluded that GAs are sensitive to parameter
tuning.

We decided to examine their solution closely
because we were troubled by the fact that a
simple GA was failing to solve such an easy
problem. We noticed that a bit string was used
as a genotypical representation of an individ-
ual. They first used a string of ten bits and
then a string of twenty bits. The phenotypical
representation of a individual was a real value
2 in the domain of the function f(z). They
used a single point crossover and their muta-
tion operator complemented a single bit in the
bit string representation according to a speci-
fied mutation rate.

3 The Problem with a Bit
String Representation

Consider g(z) of equation 2 plotted in Figure 2.
This is a much simpler function then f(z);
therefore an algorithm that finds the minimum
of f(x) must be also able to find the minimum

of g(x). Let’s consider a individual represented
by a string of bits whose genotype is a point z
in the domain of g. The fitness of each indi-
vidual is the corresponding value g(z). In this
case the GA will be looking for the individual
with the smallest fitness.

g(z) = 2? (2)

In order to further simplify this discussion,
let’s consider an integer representation for the
individuals. Assuming that a individual repre-
sents a point in the domain of ¢ in a ten-bit
two-complement notation. For example, the
binary representation for the numbers -2 and
+1 are given below, with the respective fitness
for these individuals.

21 = 1111111110

zy = 00/00000001
l

z3 = 110000001

r4 = 001111110

Figure 3: Positional Crossover for the Mini-
mum Seeking Example

2y = =2 = 1111111110 = f(21) = 4
2y = 41 = 0000000001 = f(z5) = 1

We use a positional crossover operator and
select an arbitrary position in the bit string to
slice the individuals. Assuming that the indi-
viduals 1 and z9 were selected for reproduc-
tion, and that the position selected for slicing
is to the right of the second bit, the offspring
generated are shown in Figure 3.

In the integer two-complement notation that
we are using, the resulting bit strings z3 and x4
represent the integer numbers —255 and 4254,
respectively. Computing the fitness function
of the new offspring we find ¢g(z3) = 3969 and
g(z4) = 3844. Observe that we started with
two individuals that were close to the best so-
lution and ended up with two offspring that
are quite far from the solution.

What we are seeing in this example is a very
classical example of deception, which occurs

fla) 138

0 5 10

15 20 25 30 35

40 45 50

Figure 1: A graph of function f(z) in interval [0, 50].

Figure 2: A graph of function g(z) in interval [—4, +4].

when the combination of two individuals that
are close to the optimal solution results in off-
spring that are farther from it [4]. A better
crossover mechanism for this problem simply
computes the arithmetic average of the two
parents, as illustrated in equation 3.

T + 9 -2 + 1
3 2 2
g(zs) = 0.25 (3)

For the parents selected earlier in this ex-
ample, the offspring generated with this new
crossover operator is better than either parent;
however in some situations this new crossover
operator is deceptive, as illustrated in Figure

4. The questions we have in front of us are how
do we know whether a given crossover mech-
anism makes a certain problem deceptive to
GA and how much deception can we accept
and still be able to use GA to solve a problem.
In most GA solutions, we must expect some
degree of deception for most real life problem,
i.e., we should expect that some applications of
the crossover operators will generate offspring
that are worse than either parent.

A second problem with the bit string repre-
sentation of a individual is related to the muta-
tion operator. In the Canonical Genetic Algo-
rithm the mutation operator randomly selects
one or more bits in the bit string representa-
tion and complements it [12]. Let’s examine

Figure 4: Deception with the new crossover operator.

the two applications of this mutation operator
shown in Figure 5.

The problem ilustrated in Figure 5 is that
two applications of the same mutation op-
erator might produce very different amounts
of change in the individual. A desirable
property for a mutation operator is that the
amount of change introduced by its application
be controlled by a parameter called mutation
rate [14]. One solution to this problem is to at-
tach a probability of mutation proportional to
the weight of each bit of the string. In this way
the least significant bits would be more likely
to be complemented than the more significant
ones.

In section 4 we report experimental results
that compare the quality of solutions obtained
by two versions of GA and a “blind” random
search. The objective is to investigate whether
the problems with bit string representation of
individuals that we discussed in this section
actually affect the performance of GAs.

4 Experimental Results

After the analysis presented in section 3, we de-
cided to implement a fair experiment to com-
pare three approaches:

GA with bit string - Each individual is
represented with a 32 bit string. An
elitist selection strategy is implemented

with a rank-based roulette wheel [12]. A
two point string slicing crossover mecha-
nism is used and a mutation rate of 30%
indicates that whenever a new offspring is
generated, there is a 0.3 probability that a
random picked bit will be complemented.
The results of this algorithm are labeled
string in our graphs.

GA with numerical representation -
The genotypical representation of a indi-
vidual is a 32-bit floating point number
in the interval between 0.0 and 50.0.
Also uses an elitist selection through
rank-based roulette wheel. The crossover
the one described by
equation 3. Every individual undergoes
mutation. The mutation rate specifies
how much each individual changes in the
mutation process. The results of this
algorithm are labeled numerical in our
graphs.

mechanism is

Random search - The random search
method simply randomly generates 50
new individuals for each generation. The
best individual is always kept in the next
generation. Thus after y generations
we have the best of 50 x y randomly
generated individuals. The results of this
algorithm are labeled random in our

graphs.

l

z1 = 0000000001 =41

z3 = 0000000011 =43

= g(@1) =1

= g(zs) =9

l
3 = 1000000001

z1 = 0000000001 =41

=-511 =

= g(@1) =1

g(z3) = 261121

Figure 5: Mutation Operations in the Minimum Seeking Example

2

18
16
14
12 F
1 —

Fitness

0.8 -
0.6 -
04
02

"numerical” ——
‘string” --- -
?random” —-—-

0 | | |

25 30 35 40 45 50

Generation

Figure 6: Performance of the three methods with function f(z). The curves in this graph were
obtained averaging the best individual of each generation over the twenty runs of each method.

4.1 Working with a Simple Solution

Space

Observe that all three methods will evaluate
the fitness of the same number of 50 x 50 in-
dividuals. Considering that most of the com-
putational cost in the implementation of a ge-
netic algorithm is incurred during the evalua-
tion of the fitness, we might consider that the
three methods have the same computational
cost. For the GA that searches for the mini-
mum of the function f(z) we defined the fitness
function according to equation 4. This defini-
tion allows the GA to search for the maximum
of the fitness.

fitness(z) =2 — f(x) (4)

Our first experiments were with the func-
tion f(z) described earlier. The results for
the three methods are shown in Figure 6. Al-
though the bit string version of GA performed
slightly worse than the random search or the
numerical representation, there is no relevant
distinction between the results obtained for

any of the methods. We should observe the
the GA with numerical representation of in-
dividuals only performed to the same level as
the random search and the bit string GA af-
ter some tuning of the mutation rate. It seems
that if the mutation rate is too low the algo-
rithm cannot always explore the entire solution
space.

From this, we might conclude that regardless
of our choice for the genotypical representa-
tion of an individual, the performance of GAs
is the same of a simple random search that
evaluates the same number of individual; how-
ever we must notice that this is a very simple
function. Before jumping to a conclusion, we
should study some problem with a more com-
plex solution space.

4.2 What Happens When the Solu-

tion Space is More Complex?

To investigate how the two versions of GA
and the random search compare in a prob-
lem with a more complex solution space we
choose the function h : R® — R presented by

100

numerical
string
random

80

60

Fitness

20

Fitness

25 30
Generation

()

w

T T T T T T T T T
numerical

string

random

100

0 | | | | | | | | |
20 25 30
Generation

(b)

100

Fitness

numerical
string
random

Figure 7: Comparative results of the three algorithms for the function h(zy,zs,..

n=1; (b) n="5; (c) n = 10.

Tanomaru [13] and defined by equation 5.

h(z1, 22, ... 2,) =
100 Zn: cos(0.15m (z¥ — 2;)) + 1 (5)
no =\ 24 0.0025(x7 — 24)?

The advantage of this function is that the
complexity of the search space changes with
the value of n. The graphs in Figure 7 present
the results with n equal 1, 5, and 10 for the
three algorithms. The careful reader will ob-
serve that our results for n 10 are sig-
nificantly worse than the ones published by
Tanomaru [13]. Because we were interested in

comparing the performance of the three meth-
ods with roughly the same design effort, we did
not run as many generations as he did, and we
did not spend much time tuning our numerical
GA.

Observe that for n = 1, still a quite simple
problem, all three algorithm have roughly the

25 30

Generation

(c)

()

Sy Tp).

same performance, but as the search space be-
comes more complex the GA with a numerical
representation for individual solutions outper-
forms the other two methods. Even with sig-
nificantly more complicated problems, the GA
that uses bit strings to represent individuals
yields the same performance of a simple ran-
dom search, and in some experiments even a
slightly worse performance.

5 Conclusion

The results of the experiments presented in
this article allow some insights in the perfor-
mance of GAs. First, GA operators must be
designed to fit the problem that we are try-
ing to solve. An often repeated mistake is
to replicate the operators originally published
by Goldberg [6] producing a gross missfit with
the problem we are trying to solve. Second,
a poorly designed GA will perform no better

than a simple random search. Third, unless we

use test cases with a search space that is com-
plex, enough we might not observe the poor
performance of our GA.

Finally, answering the question posed in the
title of this article: Yes, well designed GAs can
do better than a random search in the solution

space.
References
[1] J. N. Amaral. Genetic algorithm and

evolutionary neural computation. Invited
Lecture in Sian Ka’an International Con-
ference: The First Joint Mezico-US In-
ternational Workshop on Neural Networks
and Neurocontrol Proceedings, to appear,
September 1995.

J. N. Amaral, K. Tumer, and J. Ghosh.
Applying genetic algorithm approaches
to the state assignment problem. [FEF
Transactions on Systems, Man and Cy-
bernetics, 25(4):687-694, April 1995.

A. L. O. Cruz, M. A. B. Saucedo, and
J. L. P. Silva. Simple study of genetic
algorithm. 1In Sian Ka’an International
Conference: The First Joint Mexico-US
International Workshop on Neural Net-
works and Neurocontrol, pages 212-226,
September 1995.

R. Das and D. Whitley. The only challeng-
ing problems are deceptive: Global search
by solving order-1 hyperplanes, 1991.

M. R. Garey and D. S. Johnson. Com-
puters and Intractability: A Guide to NP-
completeness. W. H. Freeman, San Fran-
cisco, 1979.

D. E. Goldberg. Genetic Algorithms
in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading,
Mass., 1989.

D. E. Goldberg. Genetic and evolutionary
algorithms come of age. Communications
of ACM, 37(3):113-119, March 1994.

[8]

[11]

[12]

[13]

H. Miihlenbein, M. Georges-Schleuter,
and O. Kramer. Evolution algorithms in
combinatorial optimization. In Proceed-
ings of the Third International Confer-
ence on Genetic Algorithms, pages 416—
421, 1989.

C. H. Papadimitriou and K. Steiglitz.
Combinatorial Optimization Algorithms
and Complezity. Prentice-Hall, FEngle-
wood Cliffs, New Jersey, 1982.

C. H. Papadimitriou and M. Yannakakis.
Optimization, approximation, and com-
plexity classes. Journal of Computer and
System Sciences, 43:425-440, 1991.

W. M. Spears and K. A. De Jong. Using
neural networks and genetic algorithms as
heuristics for np-complete problems.

International Joint Conference on Neural
Networks, pages 118-121, 1990.

In

M. Srinivas and L. M. Patnaik. Genetic al-
gorithms: A survey. Computer, 27(6):17-
26, June 1994.

J. Tanomaru. Motivacido, fundamentos
e aplicacoes de algoritmos genéticos. In
Il Congresso Brasileiro de Redes Neurais,
pages 373-403, 1995.

D. Whitley, T. Starkweather, and
D. Fuquay. Scheduling problems and
traveling salesmen: The genetic edge
recombination operator. In Proceedings

of the Third International Conference on
Genetic Algorithms, pages 133-140, 1989.

