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The very long and highly variable latencies in the deep memory hierarchy of a
petaflop-scale architecture design, such as the Hybrid Technology Multi-Threaded Ar-
chitecture (HTMT) [13], present a new challenge to its programming and execution
model. A solution to coping with such high and variable latencies is to directly and
explicitly expose the different memory regions of the machine to the program execu-
tion model, allowing better management of communication. In this paper we describe
the novel percolation model that lies at the heart of the HTMT program execution
model [13]. The Percolation Model combines multithreading with dynamic prefetch-
ing of coarse-grain contexts. In the past, prefetching techniques have concentrated on
moving blocks of data within the memory hierarchy. Instead of only moving contiguous
blocks of data, the thread percolation approach manages contexts that include data,
program instructions, and control states.

The main contributions of this paper include the specification of the HTMT runtime
execution model based on the concept of percolation, and a discussion of the role of the
compiler in a machine that exposes the memory hierarchy to the programming model.

1 Introduction

The Hybrid Technology Multi-Threaded (HTMT) Architecture project [15] has
the goal of designing a petaflop scale computer by the year 2007. Such a machine
will use a number of unconventional technologies such as: processors and inter-
connection networks built from super-conducting processing elements (called
SPELLs [32]), networks based on RSFQ (Rapid Single Flux Quantum) logic
devices [11], “Processor In Memory” (PIM) technology [20], high-performance
optical packet switched network technology [7], optical holographic storage tech-
nology [26], and fine grain multi-threaded computing technology [16].

In this paper we introduce a new program execution model developed for
the future HTMT machine. An important characteristic of the HTMT machine
is the availability of a large number of very high performance super-conductor
processing elements (SPELLs) with a modest amount of single-flux-quantum
cryo-memory (CRAM) that can be accessed with a relatively low latency [32].
The latency for the next levels in the memory hierarchy (e.g. SRAM and DRAM)
will be several orders of magnitude higher than a CPU cycle time in the SPELLs.

Our analysis shows that hiding the latencies of the deep memory hierarchy
in the HTMT architecture is a great challenge; existing multi-threaded execu-
tion/programming models may not be able to cope with such latencies, where
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even a small percentage of cache misses can have disastrous effects upon per-
formance. As a result, we introduce a new program execution and programming
model, the percolation model, in order to meet this challenge.

Percolation can be considered to be a combination of multi-threading with
dynamic prefetching and reorganization of the data as well as the threads which
use the data into coarse-grain contexts. Prefetching in the past has concentrated
on moving blocks of data within the memory hierarchy. Instead, functions, data,
and control states are combined and sent in a single parcel. A parcel cannot be
percolated to CRAM until all functions and data associated with it are available
for transport. The latencies incurred in gathering data for the parcel and its
component threads will then be made to overlap. Also, under this model, any
data destined to be reused by the same thread is guaranteed to be already stored
locally.

The programming model for percolation makes use of program directives to
specify what pieces of data will be needed by a portion of the code and how the
data should be organized into parcels before any code is actually sent to the high
speed processors. Processors-in-memory (PIMs) provide the necessary capability
to perform such data transformations and to prepare parcels. These parcels, once
completed, are percolated to the fast processing units. Any results produced by
the computation are percolated back to the memory after the computation in the
processing units is complete. These results might then undergo (reverse) data
transformations by the PIMs.

The unique memory model of the HTMT and its ramifications are discussed
in section 2. Next, in section 3 we introduce, at a conceptual level, the percolation
model of program execution as a means of coping with the architectural con-
straints discussed above. We then divide the conceptual diagram into phases of
execution and introduce the runtime system (RTS) that implements the percola-
tion model (section 4). This leads into a discussion of the role of a compiler for a
petaflops machine (section 5) and of the next steps in evaluating the percolation
model for the HTMT (section 7).

2 Memory Model

Conventional architectures present to the programmer the appearance of a uni-
form address space below the registers, with caching and paging hiding the real
details of the hierarchy from the programmer. This luxury is not available in the
HTMT model. Instead, each level of memory is considered to be a “buffer” of
the next level, e.g., super-conducting memory is a buffer of the SRAM, which
itself is a buffer of DRAM, and so on. Unlike in traditional cache organization,
these buffers are directly addressable. Memory allocation and data movement at
each level may be explicitly controlled if necessary [13].

We assume that the entire HTMT memory address space is explicitly divided
into regions: a CRAM region, an SRAM region, a DRAM region, and an Optical

! Remote transactions such as data movement are handled asynchronously. Sync slots
can be used to signal their completion.



memory region. The actual size of each region is initialized at system config-
uration time. A memory location can then be addressed by giving the region
name and the corresponding offset. In this article we concentrate on the relation
between the SRAM region and DRAM region.

Each memory location within the HTMT machine has a unique global ad-
dress. However, data and instructions used by a processor for computation should
be local before a processor can use them for computation. Currently, consistency
of an object among regions of memory is the responsibility of the programmer.

If a program moves a memory object from region X to region Y explicitly,
we expect that the rest of the program, and any other programs that interact
with it, is prepared for this movement and correct code is in place to access the
moved memory object in region Y. Our percolation model, to be illustrated in
the rest of this paper, assumes explicit control of such data movements between
different memory regions.

3 The Percolation Model
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Fig. 1. HTMT Runtime Percolation Model.

This section describes the HTMT percolation model implemented by the HTMT
runtime system running in SRAM-PIM. The runtime system consists of three
major components: the Parcel Invocation and Termination Module (PIT), the
Parcel Assembly and Disassembly Module (PAD), and the Parcel Dispatcher and

2 In a future implementation of the HTMT system, the compiler and runtime system
might, perhaps in conjunction with some “hints” provided by the user for efficiency,
provide memory consistency management.



Dispenser Module (PDD). Various concurrent data structures are used to con-
nect these major components; I-pool, T-pool, A-pool, and D-pool. The relation
among these modules and data structures are shown in Figure 1.

The underlying purpose of the modules described below is to provide a par-
allel mechanism for preparing and retiring parcels of code and data, allowing the
high speed processors to remain usefully busy at all times.

The main role of the PIT invocation manager is to detect if a parcel func-
tion (a function to be sent in a parcel to a SPELL) has become enabled, i.e.
whether all its dependencies have been satisfied. The invocation manager will
place enabled parcel functions in the I-pool. From here on we will refer to parcel
threaded functions simply as parcels.

The PAD module will take enabled parcels from the I-pool and prepare them
for further percolation. The role of the PAD assembly manager is to move the
required code and data into local SRAM locations. At the same time, the data
should be organized into its desired structure (via gather/scatter, permutation,
pointer swizzling, etc.). This usually involves data movements from DRAM into
SRAM through special PIM operations via the DMA (Direct Memory Access)
channel between DRAM and SRAM as shown in Figure 1. Once the assembly
process is completed, a parcel is passed on to the next stage by entering it into
the A-pool.

The PDD module selects parcels from the A-pool and moves them further
up to the cryostatic region. The role of the PDD manager is to first reserve
space in the CRAM region and then move the data and code associated with
the parcel into the reserved region. This movement uses the DMA channel be-
tween SRAM and CRAM. After this is completed, the parcel has completed its
percolation process and can start execution in the cryostatic region once the
super-conducting processing resource becomes available.

After a parcel finishes its execution in the cryostatic region, it needs to be
retired from it. This is begun by the PDD dispenser manager. A completed parcel
has its return data (if any) structured and sent to space allocated in SRAM for
post-processing. Aside from this processing (if any), the dispenser deallocates
the CRAM resources reserved by the parcel. It then enters the parcel into the
D-pool.

The PAD disassembly manager processes the parcels from the D-pool, disas-
sembling and distributing output data into its proper places. It may then release
the SRAM space used for assembly and disassembly, unless another thread will
use the same space. When the disassembly process is finished, the parcel is en-
tered into the T- pool for the final termination service.

The PIT module will take parcels from the T-pool for termination processing.
The role of the PIT termination manager is to inform the dependent successor
parcels that the parcel under consideration has completed its execution. This
may cause other parcels to become enabled, the beginning of another percolation
process.



3.1 Extensions to the Base Model

There is a short-cut path between the D-pool and the A-pool within the PAD
module, provided so that parcels may be immediately re-enabled with minimum
overhead.

Another extension is the connection between the cryostatic area and the
PIM-resident PIT module. This will allow the SPELLs to initiate in an SRAM
PIM an action or synchronization without retiring an entire parcel. Such actions
are non-blocking and may be performed in parallel with computation.

3.2 Managing Concurrent Data Structures

Note that the runtime system, as described, is highly concurrent in itself. All the
three modules can process different parcels in a pipelined fashion. We anticipate
that a family of scheduling policies may be provided to manage concurrent data
structures in a way to maximize code and data reuse.

4 An Overview of HTMT-Threaded-C
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Fig. 2. Phases of the Percolation for HTMT-Threaded-C.

The first version of HTMT-Threaded-C considers the percolation process in the
HTMT runtime system as described by a set of phases. These phases can overlap
to implement computation in a pipelined fashion with data sharing (as among



iterations of an algorithm). In this section we outline the basic functionality
added to the original Threaded-C language to define HTMT-Threaded-C. Prim-
itive functionality in each phase is as follows:

DATA ASSEMBLY Performs the data transformations required before the
data can be transferred to the CRAM region. In a future implementation
of HTMT-Threaded-C a collection of functions for data transformation will
be provided. For the time being the programmer will write the routines to
perform such data transformations.

DATA DISPATCH The transformed data is moved to the CRAM region.
Previously reserved space in CRAM is used to store the dispatched data. If
no space has been previously reserved, the data dispatch phase allocates the
space necessary for the data storage.

PARCEL DISPATCH Assembles a parcel with the code of the parcel threaded
function(s) to be executed in the SPELL. Percolates the parcel to the des-
ignated SPELL.

SPELL COMPUTATION Performs the specified computation in the cryo-
genic processor. The data used during this phase is referenced by its address
in the SRAM region. In HTMT-Threaded-C this computation is specified by
a PARCEL THREADED function.

DATA WRITE BACK Writes back to the SRAM region the results produced
by the computation. The data to be returned is referred by the address
assigned to it in SRAM. The runtime system will provide the address to
locate the data in the CRAM region.

SCATTER Applies transformations to the results that have been transferred
back from the CRAM region and store them in appropriate locations in
SRAM. In a future implementation of HTMT standard functions for scat-
tering transformations will also be provided, but for the time being the
programmer must supply the scattering functions.

CLEAN UP Release memory that has been reserved in the CRAM region to
allow the start of the next percolation. An equivalent process occurs in other
memory regions.

The phases of computation are presented in Figure 2. Although this figure in-
dicates a sequential execution of the phases, the actual program execution model
allows for the overlapping of the percolation phases. For instance, after the data
for one iteration of the computation has been assembled and dispatched, the
assembly of the data needed in the next iteration can start while the SPELL
computation of the first iteration is performed. To allow the overlapping of com-
putation phases, the runtime system implements a synchronization mechanism
based on synchronization slots that allows for the specification of multi-threaded
programs in the SRAM-PIM level. Such a synchronization mechanism was pre-
viously implemented in the EARTH system [31].
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Fig. 3. Relation between a Future HTMT high-level compiler and the HTMT-C lan-
guage.

5 The Role of the Compiler and of the Runtime System

Providing support for multi-threading at the architecture level is not enough,
we must also be able to effectively program such architectures.

HTMT-C is the language introduced to allow the implementation of the
program execution model described in Section 3. HTMT-C is currently imple-
mented as a library of functions that extends Threaded-C, a thread-aware multi-
threading language originally proposed at McGill University in Canada and that
is undergoing incremental improvement by the CAPSL group at the University
of Delaware.

Figure 3 illustrates the relationship between an HTMT high-level compiler
and the HTMT-C Language. It is expected that in the future a compiler for
HTMT will support high-level parallel languages with only a few HTMT ex-
tensions. Such a language would include a library of functions to perform data
transformations and means to automatically generate threads and allow for run-
time partitioning of threads into strands.

However, in this early phase of the project, neither the resources nor the time
to implement such a compiler are available. Therefore the pioneer programmers
of HTMT code their problems in a lower level language that requires more effort
to implement the correct synchronization mechanism than might be desired by
an application programmer.

The HTMT-C language is explicitly multi-threaded and requires a set of
primitives to implement the percolation model. The functionality described by
the semantics of these primitives is implemented by the HTMT Runtime System
(RTS). For example, a request to dispatch a parcel to CRAM, in conjunction with



the appropriate synchronization, must be handled by the RTS. 3. In general,
the RTS is required to:

— Implement the thread synchronization mechanism through synchronization

slots;

Implement the percolation model providing primitives for the percolation of

data and code;

— Provide the automatic translation of addresses from the SRAM region to the
CRAM region.

In this document, we describe a number of actions as the responsibility of
the “programmer”. In the future, many responsibilities inherent to the perco-
lation model, including data assembly, synchronization primitives, etc., may be
undertaken by library functions or assumed entirely by the compiler.

6 Perfomance Evaluation

Although HTMT-C is currently implemented at University of Delaware, profiling-
based performance analysis is not available at the time of publication. Emulation
is not the only means of determining performance, however. Some analytical
studies of the HTMT architecture’s performance, using the percolation model,
have been performed [6]. * Working HTMT-C code examples can be made
available upon request.

7 Future Work

During the current phase of the HTMT project, that will end in July 1999,
the Delaware team will deliver the program execution model emulator for the
machine. This emulator will enable application scientists from some national
laboratories to develop irregular applications in HTMT-Threaded-C and to ob-
tain measurements for runtime parameters in these applications. In collaboration
with these scientists we will develop an analytical performance model that takes
as input the runtime parameters measured by the emulator and estimations
for architectural parameters such as processing speed, communication latency,
communication bandwidth and storage capacities in the different levels of the
machine.

If financing is in place for the next phase of the project, the HTMT-Threaded-
C language will be revised and a compiler framework will be developed for
the construction of a compiler that enables the development of applications for
HTMT in a higher level language.

3 It should be noted thata fully functional RTS is required for any program in HTMT-
C to be exectured

* The algorithm analyzed in this report should be implemented in HTMT-C by the
time this article is published.



Although the percolation model of execution was originally proposed for the
HTMT project, it is suitable to other architectures that also have to cope with
high latencies but that do not necessarily have as many levels of processing. We
are currently working in a split phase percolation model that might extend the
model described in this paper.

8 Related Work

The percolation model presented in this paper is an extension of EARTH, a fine
grain multi-threaded model developed by Prof. Gao and many of his students
and research associates [16]. Many other architectures have been proposed to
address the problem of tolerating inherent communication and synchronization
latencies by switching to a new ready thread of control whenever a long-latency
operation is encountered [4,5,8,10,12,18,19,23-25,29].

Central ideas in the program execution model proposed in this document orig-
inate from the extensive experience that the Delaware team has acquired with
the multi-threading program execution model and the multi-threaded language
developed for EARTH [16, 31]. The initial design of the HTMT-Threaded-C lan-
guage presented here is a simple extension of the Threaded-C language. Thus the
HTMT project will be able to benefit from the joint effort and investment of the
McGill/Delaware group in the development of the EARTH architecture and the
Threaded-C language. Another benefit of choosing an extension of Threaded-C
as a first emulator for the HT'MT project is the fact that Threaded-C is currently
operational on a number of important parallel platforms.

This document builds on a number of documents, discussions, and research
efforts in Delaware and elsewhere. In our July 1997 Technical Memo 09 we
presented the concept of a percolation model [13]. In related studies the Delaware
group has explored ways to achieve high levels of parallelism at the instruction
level without incurring a great penalty in the real estate required for control
flow and synchronization mechanisms in the hardware implementation of the
machine [21, 22]. The Super-strand Architecture introduces the notion of a strand
as a block of instructions grouped together to become a scheduling quantum of
execution. The first experiments with this architecture indicate that programs
can be efficiently partitioned into strands to be executed under a super-strand
execution model.

Compiling a program that is not thread aware into a multi-threaded program
is a difficult task that includes the need to partition the code into threads. In
the area of functional language, research into this problem is more abundant [9,
17,28, 27]. Hendren et al. and Tang et al. have introduced heuristic-based thread
partitioning algorithms for imperative languages [14, 30].
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