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Abstract

This paper presents a new production system architecture that takes advantage of modern associative
memory devices to allow parallel production firing, concurrent matching, and overlap among matching,
selection, and firing of productions. We prove that the results produced by the architecture are correct
according to the serializability criterion. A comprehensive event driven simulator is used to evaluate
the scaling properties of the new architecture and to compare it with a parallel architecture that does
global synchronization before every production firing. We also present measures for the improvement
in speed due to the use of associative memories and an estimate for the amount of associative memory
needed. Architectural evaluation is facilitated by a new benchmark program that allows for changes in
the number of productions, the size of the database, the variance between the sizes of local data clusters,
and the ratio between local and global data. Our results indicate that substantial improvements in speed

can be achieved with a very modest increase in hardware cost.
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1 Introduction

Considerable efforts have been made towards speeding up production system machines in the past twenty
years [6, 29]. Originally, production systems were realized as interpreted language programs for sequential
machines. The high cost of matching motivated the development of concurrent matching systems and,
subsequently, systems that also allowed multiple productions to be fired at the same time. In a separate line
of research, modern compile optimization techniques were developed to run production system programs

more efficiently on general purpose sequential machines.

These efforts have led to great advances in the understanding of the issues involved in the construction of
faster production system machines, but only limited improvement in actual performance. Also, there have
been few attempts to integrate progress made in different areas: the use of the restrictive commutativity
criterion for correctness and the notion of a match-select-act “cycle” forced even advanced architectures
to perform synchronization before each production firing; compile optimization techniques were mostly
restricted to sequential machines; many of the concurrent matching engines were constructed with a large
number of small processors and were not combined with parallel firing techniques. Moreover, parallel
processing researchers failed to take advantage of the fact that, in typical production systems, reading

operations are performed much more often than writing ones.

We propose a novel parallel production system architecture that uses the less restrictive serializability
criterion for correctness. This architecture eliminates the concept of a production system “cycle”, thus
eliminating the need to construct a global “conflict set” and to perform global synchronization before
each production firing. Productions are partitioned among processors based on information about the
workload of each production and on production dependencies identified through compiling techniques.
The use of modern content addressable memories allows a new production to be selected to fire before all
the matches resulting from previous production actions are complete. This architecture follows an early
recommendation of Gupta and Forgy [15], i.e., that a parallel production system machine be constructed

with a small number of relatively powerful processors.

2 Background

Attempts to speed up Production Systems (PS) date back to 1979 when Forgy created the Rete network,
a state saving algorithm to speed up the matching phase of PS [11]. Following a 1986 study by Gupta,
which indicated that a significant portion of the processing time in a Rete-based PS machine is consumed

in the matching phase [14], substantial efforts were made to improve this phase. This includes concurrent



implementations of the Rete network [13, 16, 25, 24, 39], generalization of the Rete network [30], elimination
of internal memories from the Rete network to increased speed [31], extension of the Rete network for
compatibility with real-time systems [9], and the use of message-passing computers to implement the Rete
network [2]. Progress in other aspects of production system machines included compile time optimization
for the Rete network [19], nondeterministic resolution for the conflict set combined with parallel firing
of productions [21, 27], loosely coupled implementations of production systems [21], and the use of meta
rules to solve the conflict set [40]. Comprehensive surveys of the research towards speeding up production

systems are found in the works of Kuo and Moldovan [29] and Amaral and Ghosh [6].

The issue of which criterion to use for correctness in the execution of a production system is still an
open question. The two most prominent candidates are the commutativity eriterion and the serializability
criterton. When commutativity is used, a set of rules can be executed in parallel if and only if the result is
the same that would be produced by any possible sequential execution of the set. Under serializability it
is enough that the result produced by the parallel execution be equal to af least one sequential execution

of the set [36].

The commutativity criterion proposed by Ishida and Stolfo [20] is favored by programmers because it
allows for easy verification of correctness in a production system. However, it is very restrictive and the
amount of parallelism extracted from a PS using this criterion is very low. The use of the serializability
criterion increases the amount of parallelism available but makes the verification of correctness in a program
more difficult. Nevertheless, if serializable production systems are proven to be sufficiently faster than

commutable ones, development tools will be created to aid the verification of correctness.

Schmolze and Snyder [38] studied the use of confluence to control a parallel production system. They
suggest the use of term rewriting systems [17, 26] to verify the confluence of a production set. They
argue that a confluent production set that is guaranteed to terminate will produce the same final result
independent of the sequence in which the productions are executed. Therefore, for such a class of systems,
the verification of correctness with the serializability criterion would not impose an extra burden in the

programimer.

The need to improve other phases of production execution besides the match cycle 1s now evident
[6]. In this paper we present a parallel architecture based on the serializability criterion of correctness.
The architecture exploits the high read/write ratio of production systems; and the increased importance
of associative search operations when global synchronization is eliminated, to yield a fast and efficient
production system engine. The next section presents the architectural model and proves that its operation
is correct. In section 4 we present a partitioning algorithm that performs the assignment of productions to

processors. Section 5 describes the benchmarks used to study performance and introduces a new benchmark



program. Section 6 presents comparative measurements with a synchronized architecture and an evaluation

for the volume of activity in the bus and the size of associative memories.

3 Architectural Model

The parallel architecture presented in this paper stems from the realization that improvements restricted
to the matching phase of the traditional match-select-act cycle of Production Systems (PS) fail to produce
significant speedup. Even machines that allow concurrent execution of the acting and matching phases,
while maintaining the global production selection, yield limited improvements in speed. The architecture
proposed here allows parallel firing of productions allocated to distinct processors. Within a processor,
activities related to matching, acting and selecting are concurrent. Thus the next instantiation to be fired

may be selected even before the Rete network updates due to a previous production firing are completed.

Such aggressive parallelism is possible because the concept of a match-select-act cycle is eliminated.
The principle of firing the most recent and specific instantiation is replaced by an approximation of it: only
instantiations that are known at the time of the selection are considered, we call this a partially informed
selection mechanism. The use of associative memories allows for quick elimination of instantiations that are
no longer fireable. We also replace the restrictive commutativity criterion by the serializability criterion
of correctness. The use of serializability reduces the number of situations in which synchronization is

necessary, increasing the amount of parallelism available.

On surveying measurements published by other authors [14, 33], we found that the ratios of reading and
writing operations in the benchmarks studied are between 100 and 1000. We also found that in complex
benchmarks that bear more similarity with “real life” problems, this ratio tends to be higher than in “toy
problems”. This is primarily because productions have a larger number of antecedents than consequents in
such problems [4]. Our observation motivates an architecture based on a broadcasting network over which
only writing operations occur. Such an architectural model imposes limits to the number of processors
used. However, two characteristics of PS make them compatible with an architecture with a moderate
number of processors: the amount of inter-production parallelism is limited and, as a PS grows, the size

of the database grows much faster than its production set.

Section 3.1 presents basic definitions that set the environment for the processing model. Section 3.2
introduces the architectural organization and expands on the processor model, conflict set management,
and processor operation. Section 3.3 presents a theorem that demonstrates that the results produced by

the processing model is correct according to the serializability criterion of correctness.



3.1 Basic Definitions

A Production R; consists of a set of antecedents A(R;) and a set of consequents C'(R;): the antecedents
specify the conditions upon which the production can be fired; the consequents specify the actions per-

formed when the production is fired.

Definition 1 The database manipulated by a Production System consists of a set of assertions. Fach
assertion is represented by a Working Memory Element (WMFE), notated by Wy,. A WME consists of
a class name and a set of attribute-value pairs. The class name and the set of attribute names of a WME

together characterize its type, T[Wg].

Definition 2 Fach production antecedent specifies a type of WME and a set of values for its attribute-
value pairs. A WME W}, 1s tested by an antecedent if it has the specified type. An antecedent 1s matched
by a WME if the WME has the type specified and all the values in the antecedent match the ones in the
WME.

Definition 3 If an antecedent of a production R; tests WMEs of type T[Wyg], then we say that Wy is
tested by the production R;, this is notated by Wi > A(R;).

Definition 4 A non-negated antecedent tests for the presence of a maiching WMFE in the memory.
A negated antecedent tests for the absence of any matching WME in the memory. A production R; is
said to be fireable if all its non-negated antecedents are matched and none of its negated antecedents are

matched.

The consequent of a production can specify three kinds of actions that modify WMEs: addition,

deletion, or modification.

Definition 5 A WME W} is modifiable by the consequents of a production R; iff the firing of R; adds
(deletes) any WME of type T[Wy] to (from) the Working Memory. This is denoted by Wy > C(R;).

Definition 6 If an antecedent of production R; tests for the presence of a WME Wy, this is a positive
test, notated by SA(Ri)[Wk] = +, which s read as “R; has at least one antecedent that tests for the presence
of a WME of type T[W4]”. In a similar fashion, if the test is for absence of Wy, it is a negative test,
denoted by Sa(r,)[Wk] = —.



Definition 7 When the consequent of a production specifies the addition of a WME Wy, to Working Mem-
ory, it is a positive action, denoted by SC(Ri)[Wk] = +. A mnegative action specifies the deletion of a
WME Wy, denoted by Scr,)[Wi] = —.

Consequence 1 The notation Sar,)[Wi] # So(r,)[Wi] implies that Wy, > A(R;), Wi > C(R;), and that
the R; test of Wy, is positive (negative) while R; action on W) is negative (positive).

In the processing model discussed in section 3.2 some productions fire locally while others need to
change WM Es that are stored in the local memory of remote processors. The following definitions describe

important situations that appear in the execution of the model.

Definition 8 A WMFE Wy, is local to a processor P; iff Wy, 1s stored in the local memory of P;; Wy is not
stored in the local memory of any other processor P;; and there is no production allocated to a processor

other than P; that changes Wi.

Definition 9 A WME W} is pseudo-local to a processor P; iff Wy s stored in the local memory of
Py; Wy 1s not stored in the local memory of any other processor P;; and there is at least one production

allocated to P; # P; that changes Wy. We say that P; shares Wj,.

For example, a WME that is written by many processors and read by only one processor is pseudo-local
for the processor that reads it; it is a shared WME for all processors that write it. A processor does not

store shared WMEs in its local memory.

Definition 10 A production R, fires locally in a processor P; iff VW, 1> C(R,,), Wy is local or pseudo-
local to P;.

Consequence 2 A production that does not fire locally, is said to be a global production. Such a

production must propagate actions to remote processors.

Definition 11 A production R, enables a production Ry, iff AW}, such that Sc(g,)[Wk] = Sa(r,,)[Wkl-
A production R, disables a production R, iff AWy, such that So(g,)[Wk] # Sa(r,)[Wk]-

Definition 12 A production R, has an output conflict with a production R, iff AW} such that SO(RW)[Wk] +
SO(Rm)[WE]-



Productions that can fire locally are classified as Independent of Network Transactions (INT) or De-
pendent on Network Transactions (DNT), according to their dependencies with other productions that
belong to other processors. INT and DNT productions have to be mapped and processed differently for
correct execution according to the serializability criterion. Productions are partitioned into disjoint sets
with one set assigned to each processor. R, € P; indicates that production R, belongs to processor F;.
The Working Memory is distributed among the processors in such a way that a processor stores in its local

memory all and only the WMEs tested by its productions.

Definition 13 A production that can fire locally 1s DN'T if and only if at least one of the following condi-
tions holds:

(1) two of the antecedents of the production are changed by the consequents of a single production allocated
to another processor: one of these changes produces an enabling dependency and the other produces

a disabling one;
(i1) the production has two conflicting writes with a production allocated to another processor;

(iii) the production has an output conflict and a disabling dependency with a production allocated to

another processor.

At compile time, after the set of productions is partitioned among the processors, the set of antecedents
and the set of consequents of each production are analyzed to determine whether the production is global,
local INT, or local DNT. To check if a production is local DNT is a simple matter of checking if any of the
conditions of definition 13 holds.

Definition 14 A production R, is INT iff R, can fire locally and R, is not DNT.

An INT production can start firing at any time as long as its antecedents are satisfied. A DNT
production P; only starts firing after all tokens generated by a production P;, currently being fired by a
remote processor, are broadcast in the network and consumed by the processor that fires P;. This prevents

P; and P; actions from being intermingled, avoiding thus non-serializable behavior.

3.2 System Overview

The architectural model proposed in this paper consists of a moderate number of processors interconnected

through a broadcasting network. The set of productions is partitioned among these processors with each



production assigned to exactly one processor. A processor reads data only from its local memory, i.e.,
no read operations are performed over the network. Due to the absence of network reads and the low
frequency of network writes, a simple bus should be adequate as the broadcasting system. This conclusion
is supported by detailed experimental results showing the bus not to be a bottleneck even for a twenty
processor system. A number of associative memories implement a system of lookaside tables to allow
parallel operations within each processor. This scheme does not allow parallel production firing within a
processor, but allows the match-select-act phases of a PS to overlap. A snooping directory isolates the
activities in remote processors from the activities in a local processor, and interrupts a local operation only

when pieces of data that affect it are broadcast over the network.

The parallel architecture is formed by identical processors connected via a Broadcasting Interconnection
Network (BIN), as shown on Figure 1. At start-up the I/O processor (I/OP) loads the productions on all
processors. System level 1/O and user interface are also handled through the 1/OP. The main components
of each processor are the Snooping Directory (SD), the Matching Engine (ME), the Production Controller
(PC) and the Instantiation Controller (IC). Whenever a processor P; needs to broadcast a change to a WME
that is stored in other processors local memories, P; creates a token to broadcast in BIN. The Snooping
Directory is an associative memory that identifies whether a token broadcast on BIN conveys an action
relevant to the local processor. Relevant tokens are kept in a Broadcasting Network Buffer (BNB) until
the IC and the ME are able to process it. The Matching Engine is a Rete-based matcher that implements
a state-saving algorithm. The 1C uses specialized memory structures to maintain and rapidly update the
list of fireable instantiations. To perform this task, it has to monitor the outputs of ME as well as the firing
of local (through PC) and global (through SD) productions. One of the memories controlled by IC is the
Firing Instantiation Memory (FIM) that keeps a list of all the production instantiations that are enabled
to fire. The Production Controller (PC) selects an instantiation to be fired from the list maintained by
IC, and, whenever necessary, synchronizes the production firing with BIN operations to guarantee that

production firings appear to be atomic.

Productions are divided in three categories: local INT, local DNT, and global. The firing of a local INT
production does not require BIN ownership because all its actions modify local WMEs only. Therefore,
upon selecting an INT production, the PC immediately propagates its actions to ME and IC. To avoid
interleaving of actions belonging to distinct productions, all tokens broadcast in BIN during local produc-
tion firing are buffered in BNB. These tokens are processed as soon as the local firing finishes. When a
local DN'T production is selected, its execution has to wait until the BIN changes ownership, which is an
indication that the firing of a global production has been concluded. The local DNT production is then

fired 1n the same fashion as a local INT.



Broadcasting Interconnection Network

PCYy SDy PC, SD,

1/0P

1Cy 1C,

=/

Figure 1: Parallel Machine Model

A global production modifies shared WMEs;, i.e., WMEs that belong to the antecedents of productions
assigned to other processors. Thus, these changes need to be broadcast to all processors. When a global
production is selected, PC acquires access to the BIN, processes all outstanding changes in the BNB, and,
if the selected production is still fireable, proceeds to broadcast tokens with changes to shared WMEs. The
BIN ownership is not released until all actions that change shared WMEs are broadcast. After releasing
the BIN, PC prevents any incoming token from proceeding to local processing. These tokens are buffered
in BNB and processed locally after the local execution of the selected production is complete. This avoids
write interleaving in the local memories and guarantees an atomic operation for production firing within a

Processor.

The main steps in the machine operation are presented below in an algorithmic form. The steps of the

algorithm are performed by different structures of the processing element.

PRODUCTION-FIRING
execute all outstanding tokens in BNB on first-come first-serve basis
select a fireable instantiation 7 in FIM
if ) is global
then Request BIN ownership

1

2

3

4

5. while BIN ownership is not granted
6 execute tokens broadcast in BIN captured by SD
7 if I}, is still fireable

8 then broadcast actions that change shared WMEs

9

execute actions that change shared WM Es



10. release BIN

11. else end PRODUCTION-FIRING

12.  else if [, is DNT

13. then while BIN ownership does not change

14. execute tokens broadcast in BIN captured by SD
15. if [}, 1s still fireable and [} has local actions

16.  then disable local execution of any incoming token
17. execute local actions
18. enable local execution of incoming tokens

Note that no production is fired while there are outstanding tokens in BNB. The selection of a fireable
instantiation in step 2 of PRODUCTION-FIRING is done according to the “pseudo-recency” criterion:
the most recent instantiation in FIM is selected This 1s not a true recency criterion because ME may still

be processing a previous token, and thus the instantiations that it will produce are not in FIM yet.

The test in step 7 is necessary because between the time the BIN was requested and the time its
ownership is acquired, incoming tokens might have changed the status of the production selected to fire.
If this occurs, the firing of the selected production is aborted. Steps 12-14 are executed for productions
that are dependent on network transactions, as defined in section 3.1. If such productions were to start
firing while a remote processor is in the middle of a production execution, the intermingling of actions
could result in non-serializable behavior. Notice that the BIN is released in step 10, before changes to
local memory take place. To guarantee that no token is processed before the local changes are executed,

buffering of tokens in BNB in step 15 is activated immediately upon releasing the BIN.

The architectural model presented in this section bears some similarity with the systems proposed by
Schmolze and Goel [37] and Ishida et al. [21]. In all three systems, each production is uniquely assigned
to one processor and all WMEs tested by the production are stored locally. Contrary to the architecture
presented in this paper, the systems proposed in [21] and [37] use a taxing synchronization mechanism and
require each processor to keep a list of all dependencies that each production has with other processors. The
bus-based architecture with snoopy mechanism presented in this paper substantially simplifies synchroniza-
tion and avoids the potential for incorrect behaviour or deadlock. Similar synchronization mechanisms are

nowadays employed for cache coherency in several commercial medium-scale multiprocessor systems [18].



3.2.1 Detailed Processor Model

The processor architecture is detailed in Figure 2. The Instantiation Firing Engine (IFE) implements
the outgoing interface with the Broadcasting Interconnection Network (BIN) and synchronizes internal
activities. The IFE selects an instantiation to be fired among the ones stored in the Fireable Instantiation
Memory (FIM). If the production selected to fire is global, the IFE places a request for ownership of the
BIN. Upon receiving BIN ownership, IFE waits until all outstanding tokens stored in BNB are processed.
If the selected instantiation becomes unfireable due to such processing, IFE has to abandon it and select a
new instantiation. Otherwise IFE broadcasts tokens with changes to the shared WMEs, releases the BIN,

and executes the local actions.

Broadcast Interconnection Network

| o Snooping |
i | Production Instantiation l l Directory |
! Memory Firing | | i |
! Engine Broadcasting !
! Network !
| Buffer |
: Rete |
| Network |
| Fireable |
| Insﬁi%?gon Fireable |
| Instantiation |
| Antecedents of Control |
| Fireable Inst. |
! Memory !
! Pending |
[ Matching [
| Memory |

Figure 2: Processing Element Model

The Snooping Directory (SD), along with the Broadcasting Network Buffer (BNB), implements the
incoming network interface. The Snooping Directory is an associative memory that contains all WME
types that belong to the antecedent sets of the productions assigned to the processing element. BNB is
used to store tokens broadcast on BIN and captured by SD during the local firing of a production, or
during the execution of local actions of a global production. The tokens stored in BNB are processed as

soon as the firing of the current production finishes. In the rare situation in which BNB is full, a halt

10



signal is issued to freeze the activity on BIN. When the halt signal is reset, the activity in the bus resumes:

the same processor that had BIN ownership continues to broadcast tokens as if nothing had happened.

Whether a WME change is originated locally or captured from BIN, it needs to be forwarded to the
Rete network and to the Fireable Instantiation Control (FIC). Like the original Rete network, the one
used in this architecture has o and f-memories. To avoid the high cost of waiting for the removal of a
WME, which was pointed out by Miranker [31], negated antecedents are stored in both S-memories and
in the fireable instantiations produced for the conflict set. The presence of the negated conditions in this
representation allows the quick removal of non-fireable instantiation when a new token is processed. There
is a possibility that a WME change previously processed by FIC and not yet processed by Rete disables
an instantiation freshly generated by Rete. To avoid a possibly non-serializable behavior, before adding a
new instantiations to FIM, FIC checks it against the Pending Matching Memory (PMM), which stores all
tokens still to be processed by Rete. The deletion of an instantiation from FIM is also performed by FIC.
The operation of FIM, AFIM, PMM and FIC are explained in greater detail in section 3.2.2.

3.2.2 Conflict Set Management

The Fireable Instantiation Control (FIC) uses the Antecedents of Fireable Instantiation Memory (AFIM)
to maintain a list of all enabled instantiations in the Fireable Instantiation Memory (FIM). AFIM and
FIM are fully associative memories with capability to store don’t cares in some of their cells. The fields in
each line of FIM and AFIM are shown in Figure 3. FIC maintains an internal timer that is used to time
stamp each instantiation added to FIM. Each line of AFIM stores either a WME that is the antecedent of

a fireable instantiation, or an a-test that specifies an instantiation negated antecedent. Its fields are:

Presence - indicates whether the AFIM line is occupied. It is used to manage the space in the memory.
Negated - indicates whether this line stores a WME or a negated antecedent.
Type - stores the WME type.

Bindings - contains the values stored in each attribute-value pair of the WME. Notice that the name
of the attribute does not need to be stored. Symbolic names are translated into integer values at

compile time.

a-test - is used only for negated antecedents: specifies the a-test to be performed to verify a production

antecedent.

Instantiation - indicates which fireable instantiations have this antecedent.

11



The maximum number of attribute-value pairs in a single WME is limited by the size of the field
Bindings in AFIM. A situation in which a WME has more attribute-value pairs than this limit is handled
at compile time by splitting this WME into different WMEs with subsets of attribute-value pairs and

performing the corresponding changes in the entire source code.

Presence Slgn Type Bindings a-Test Instant. #
2
2
(a) AFIM

Presence Fireable PM_Address Time_Tag Instant. #

2

(b) FIM

Figure 3: (a) Antecedents of Fireable Instantiations Memory; (b) Fireable Instantiations Memory.

Notice that because AFIM stores antecedents of fireable instantiations, most of the variables are bound,
therefore the bindings field stores mostly constants. For an easy handling of unbound variables, which match
any value, the bindings field of AFIM is a ternary memory. Besides the values 0 and 1, it can also store a
“don’t care” value X. Such a memory might be implemented using two bits per cell, or using actual ternary
logic in VLSI. One example of the latter is the Trit Memory developed by Wade [43]. One alternative to
implement a non-bound value is to add a tag bit to bindings that indicates whether the value is bound or
not. The advantage of this representation is that there is only one extra bit per word. Each line in FIM

stores one fireable instantiation, with the following fields:

Presence - indicates whether the line is occupied;

12



Fireable - indicates whether the instantiation stored in the line is still fireable?.

PM_Address - contains a pointer to the Production Memory indicating where the production actions

are stored.

Time_Tag - record the time in which the instantiation became fireable. It is used to implement a pseudo-

recency criterton to select an instantiation to be fired.

The third piece of memory managed by FIC is a fully associative memory called Pending Matching
Memory (PMM). When a token is placed in the input nodes of the Rete network, it is also stored in PMM.
The token is removed from PMM when the Rete network produces a signal indicating that all changes to
the conflict set originated by that token have being processed. Upon receiving a new fireable instantiation
from Rete, FIC associatively searches PMM. FIC has to perform an independent search for each antecedent
of the new instantiation. If any line of PMM indicates the deletion (addition) of a WME that matches a
non-negated (negated) condition of the instantiation, the new instantiation is ignored®. If no such line is
found in PMM, FIC records the new instantiation in one line in FIM and stores each one of its antecedents

in a separate line in AFIM. Figure 4 shows the organization of PMM with four fields:

Presence - indicates whether there is a WME stored in the line.
Sign - indicates whether this WME has been added to or deleted from the working memory.
Type - stores the type of WME.

Bindings - records the bindings of the WME.

Presence Sign Type Bindings

Figure 4: Pending Matching Memory

* An instantiation is only removed from FIM after an incremental garbage collector removes the corresponding antecedents

from AFIM.

5This instantiation must be ignored because the entry found in PMM indicates that a token received after the one that

enabled the instantiation, which is not yet fully processed in Rete, will disable it.
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During the execution of a token, FIC performs three actions in parallel: send the token to the Rete
network input; add the token to PMM; and update FIM and AFIM. To update AFIM and FIM, first FIC
executes an associative search in AFIM for entries with the same WME present in the token, but with
opposite sign. For each matching entry in AFIM, FIC marks the corresponding instantiation in FIM as
unfireable. Finally FIC resets the presence bit for these entries in AFIM. This process leaves “garbage” in
FIM and AFIM, consisting of all the non-fireable instantiations still present in FIM plus the antecedents
of these instantiations in AFIM.

FIC has an Incremental Garbage Collector that searches FIM for an instantiation [j that is non-fireable.
FIC performs an associative search in AFIM and remove all antecedents of I, and then eliminates [ from
FIM. To guarantee the consistency of FIM and AFIM, the garbage collection is always performed as an
atomic operation. For efficiency, the position in FIM in which the last garbage collection was executed is
kept internally in FIC, and is used as the starting point of the next search. If FIM and AFIM are not
full, garbage collection is performed at least once between two instantiation additions. Whenever FIM or
AFIM are full, extra garbage collection is executed to free space. This solution trades memory space for

speed: a WME that is tested by antecedents of many instantiations is stored many times in AFIM.

3.2.3 Broadcasting Interconnection Network Arbitration

Access arbitration in a broadcasting network is a well studied problem. In this machine we adopt the
scheme used in the first prototype of the Alpha architecture by DEC [42]. During startup each processor
is assigned an arbitrary priority number from 0 to V. N is the highest priority and 0 is the lowest. When
a processor requests the network, it uses its priority. The requester with highest priority is the winner and
is granted access to the network. The winner has possession of the network as long as it needs to write
all consequents of one production. After releasing the network, the winner sets its own priority to zero.
All processors that had a priority number less than the winner increment their priority number by one,

regardless of whether they made a request.

This scheme works as a round robin arbitration if all processors are requesting the network at the same
time. If fewer processors are requesting the network, this mechanism creates the illusion that only these

active processors are present in the machine.

In section 3.2 we establish that broadcast writes need to be kept in a buffer while a processor is firing
local productions. When this buffer overflows, a halt signal is issued by the processor. This signal stalls
all network broadcasting activities, giving time for the overloaded processor to consume its tokens and

alleviate its buffer load. When the stall signal is removed, the network continues its activity without
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any change in the ownership. To avoid a great impact in the speed of the machine, the buffer must be

sufficiently large to avoid frequent stalling of the network.

3.3 Correctness of the Processing Model

This section investigates whether the machine proposed in section 3 correctly executes a production system.

The correctness criterion used is serializability [36] and the condition of ownership is stated in axiom 1.

Axiom 1 A WME Wy, is stored in the local memory of a processor P; iff Wi > A(R,,) and R, € P;.

Theorem 1 Giving the parallel machine model presented in this document, the definition of local DNT,
local INT, and global productions, Ariom 1 is a necessary and sufficient condition of ownership to guarantee

correct execution of a production system under the serializability criterion of correctness.

Proof:

First we prove that axiom 1 is necessary. For the sake of contradiction, suppose that the
ownership condition stated in axiom 1 is not satisfied. Assume that there is a production
R, € P; and a WME Wy, such that Wy > A(R,,) and Wy is not stored in the local memory of
P;. Because reading operations are not allowed in the broadcasting network, P; cannot perform
the matching of R,. Therefore a production system cannot be executed in such a machine.

Thus, axiom 1 is necessary.

To prove that axiom 1 1s sufficient, we must show that, in every possible circumstance, the
results produced by this model could be obtained by a sequential execution of the productions.
Therefore, we must analyze all situations in which parallel execution might occur and show
that each one of them results in a serializable outcome. Because there is no parallel production
firing within a processor, the following analysis is restricted to concurrent firing of productions
allocated to distinct processors. Inter-processor parallelism occurs in two situations: among
productions firing locally in distinct processors and between a production being broadcast over
the BIN and one (or more) firing locally. All situations described below involve two productions

allocated to distinct processors being fired concurrently.

Situation 1: Productions that have only local WMEs in its antecedents and consequents.

The fact that all antecedents and consequents are local indicates that the productions being fired

in parallel are completely independent of productions allocated to other processors, therefore
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the same results produced by the parallel firing could be obtained by any sequential firing of

the same productions.

Situation 2: A production R,, € P; enables a production R, € P;; R,, and R, might have
non-conflicting shared oulputs; R, does not disable R,; R, fires locally.

Since R, fires locally, all WMEs that are changed by both R, and R,, are pseudo-local for P;
and shared for P;. Because those are non-conflicting outputs and R,, enables R, parallelism
occurs when R,, starts firing after being enabled by an action of R,, and before R,, finishes
broadcasting changes to the network. The firing of R, prevents the changes broadcast by R,
from being processed locally until R,, finishes. As long as the actions broadcast by R, are
queued and processed after R, finishes, the result is the same as if R, would have been fired

after R, finished. Thus, it is serializable.

Situation 3: A production R,, € P; disables a production R, € P;; there s no enabling
dependencies between R, and R,; R, and R, might have non-conflicting shared outpuls; R,
fires locally.

The only possibility for the parallel firing of R,, and R, is for P; to start firing R, before
P; had broadcast any action that disables R,. Even if P; had broadcast some of the shared
non-conflicting outputs when R, starts firing, the effect is the same as firing R, before R,,.

Therefore, the result is serializable.

Situation 4: A production R, € P; changes a pseudo-local WME W), and a production R, € P;
modifies Wy. R, fires locally.

Because R, modifies Wy, R,, is a global production. It is necessary to analyze three different

cases:

Case 1: Wy 1s the only shared output between R, and R,,.
Notice that the (possibly) conflicting WME W}, is exclusively stored in P;. Therefore if P,
disables the BIN before P; broadcast changes to W, the result is the same of firing R,
before R,,. If P; disables BIN after changes to W} are broadcast, the result is equivalent

to firing R,, after R,,. In both cases it is serializable.

Case 2: R, and R, have more than one shared output, but no more than one of them is

conflicting.
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The concern with multiple shared outputs is that the actions of the local and the global
production might be intermingled. This would happen if P; would inhibit actions from the
network after P; broadcast some but not all actions of R,,. Since R,, has only one action
conflicting with R,,, the interruption of the remote firing will either take place before or
after this conflicting action is broadcast. If the interruption occur before the conflicting
action is executed in P;, the result is equivalent to R, firing before R,,. If it occurs after,
the result is equivalent to R, firing after R,,. In either case this situation results in a

serializable behavior.

Case 3: R, and R,, have more than one conflicting action.
In this case, if intermingled execution would be allowed, non-serializable behavior would
result. However, according with condition (ii) of definition 13 R,, is DNT and therefore
cannot start firing until the network changes ownership, indicating that the global pro-
duction either has finished or has not started. This ensures the necessary synchronization

and results in serializable behavior.

Situation 5: A production R, € P; is enabled and disabled by a production R,, € P;; R, fires
locally.

In this situation, there would be a non-serializable behavior if production R, would be allowed
to fire after P; had broadcast the action that enables R, and before the action that disables
R,, is broadcast. This situation does not occur because, according to condition (i) of definition

13, R, is DNT: it only starts firing when the network changes ownership.

Situation 6: A production R, € P; s enabled by a production R,, € P;; R, has one output
conflict with R,,; R, and R,, may or may not have shared non-conflicting outputs; and R,

fires locally.

Parallelism occurs if R,, starts firing in P; after the action that enables R, have been broadcast
by P; and before P; finishes broadcasting [, actions. If at that point the conflicting action has
been already broadcast, the result will be equivalent to firing R, before R,,. If the conflicting
action has not been broadcast, the result is equivalent to R,, firing before R, . Either way, the

result 1s serializable.

Situation 7: A production R, € P; 1s disabled by a production R, € P;; R, has one output

conflict with R,,; R, and R,, may or may not have shared non-conflicting writes; R,, fires

17



locally.

This situation could result in non-serializable behavior if /2, were to start firing after P; broad-
casts the conflicting action of R,,, and before the action that disables R,, is broadcast. However,

this cannot occur because, according to condition (iii) of definition 13, R, is DNT.

Situations 1 through 7 deal with possible dependencies involving two productions R,, and
R, allocated to distinct processors. The local firing of R, in all situations indicates that its
consequents change only local or pseudo-local WMEs. Table 1 helps to verify that every possible
combination of dependencies among two productions in this situation have being analyzed. In
this table a “-” indicates no dependencies, “1” indicates one dependency, “1+” indicates one or
more dependencies, “24” indicates two or more dependencies, and “X” indicates zero or any
number of dependencies. Table 1 has five columns: “Enabling” column indicates the number
of actions in C'(R,,) that enable R,; “Disabling” indicates the number of actions in C(R,,)
that disable R,,; “Non-Conflicting Write” indicate the number of non-conflicting shared actions
between R, and R,; “Non-Conflicting Write” indicate the number of non-conflicting shared
actions between R, and R,,; and “Situation” indicates which of the situations analyzed in this
proof covers each case. Every possible combination of dependencies between two productions

1s covered 1n table 1.

Enabling | Disabling | Non-Conflicting | Conflicting | Situation
Write Write

- - - - 1
1+ - X - 2
- 1+ X - 3
- - 1+ - 4, case 1
- - X 1 4, case 2
X X X 2+ 4, case 3
1+ 1+ X X 5
1+ - X 1 6
X 1+ X 1 7

Table 1: Possible dependencies between R,, and R,,.

There is still the possibility that dependencies involving more than two productions create a
situation in which the parallel model yields a non-serializable behavior. The only situation in

which this might occur are in cycles of disablings, analyzed in situation 8.

18



Situation 8: There is a cycle of disablings among productions allocated to distinct processors.

First we analyze the special case in which the cycle is formed by two productions R, € P; and
R, € P;. According to definition 11, if there is a cycle of disabling between R, and R,,, there
exist two WMEs W), and W, such that Sg(g,,)[Wi] # Sa(r,)[Wi] and So(r,\[Wil # Sa(r,.) [Wil-
Therefore Wy, is a shared WME for P;, W; is a shared WME for P;, and neither R,, or R,
can fire locally. The acquisition of the broadcasting network works as a synchronizing element
preventing R, and R,, from firing in parallel. The same reasoning can be extended to disabling

cycles with any number of productions.

This concludes the proof. Since the results are serializable for any possible conflicting situation,
we conclude that Axiom 1 is a sufficient condition of ownership and that the results produced

by the model proposed are serializable.

4 Production Partitioning Algorithm

The problem of partitioning a Production System into disjoint production sets which are then mapped onto
distinct processors has been studied by a number of researchers. Most partitioning algorithms are designed
with the goal of reducing enabling, disabling and output dependencies among productions allocated to
different processors [37]. Oflazer formulates partitioning as a minimization problem and concludes that the
best suited architecture for Production Systems has a small number of powerful processors [35]. Oflazer
also indicates that a limited amount of improvement in the PS speed can be obtained by an adequate
assignment of productions to processors. Moldovan presents a detailed description of production depen-
dencies and expresses the potential parallelism in a “parallelism matrix” and the cost of communication
among productions in a “communication matrix” [32]. Xu and Hwang use a similar scheme with matrices

of cost to construct a simulated annealing optimization of the production partition problem [44].

Although certain basic principles are maintained in all partitioning schemes, partition algorithms are
tailored to specific architectures. We are concerned with two kinds of relationships among productions:
productions that share antecedents, and productions that have conflicting actions. Assigning productions
with common antecedents to the same processor reduces memory duplication, while assigning productions
with conflicting actions to the same processor prevents traffic in the bus. Previous partition algorithms
were greatly influenced by enabling and disabling dependencies among productions [32, 35, 44]. Our

experience with production systems shows that grouping productions with common antecedents is much
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more effective to reduce the communication cost. Moreover, in the production system programs that
we examined, a production seldom creates a WME that was not tested on its antecedents. Therefore,
productions that have a greater number of common antecedents are also most likely to have a greater
number of enabling and disabling dependencies among them. Thus, our partition algorithm does not

include these dependencies, but only shared antecedents and conflicting outputs.

We analyzed and experimented with several partitioning algorithms and found the following algorithm
to be the most effective [4, 5]. The optimal partitioning of productions into disjoint sets is modeled as a
minimum cut problem, which is NP-Complete [12]. The polynomial time approximate solution presented
in this section has three goals: minimizing the duplication of working memory elements; reducing traffic
in the bus; and balancing the amount of processing in each processor. In the architecture presented in
section 3 these goals translate to: minimizing the number of global productions and reducing the number

of local DNT production. As a consequence, the number of local INT productions is increased.

To represent the relationships among productions we define an undirected, fully connected graph PRG
= (P, F) called Production Relationship Graph. Each vertex in P represents one of the productions in the
system, and each weighted edge in F is a combined measure of the production relationships. PRG has a

weight function w : £ — Z1 defined by equation 1.

n—1m-—1 p—1qg—1
w(b;;) =w(lby) = (1=46;;) Yrigs + (1=6) DD Vi (1)
=0 k=0 1=0 k=0

where n and m are the number of antecedents and p and ¢ are the number of consequents in productions

R; and R;, respectively, d;; is 1 if ¢ = j and 0 otherwise, and

if antecedents A; of R; and Ay of R; are of the same type.

Viikj = .
otherwise
1 if consequent Wj of R; conflicts with W}, of R;
Yiik; =
0 otherwise

Empirical studies with a parallel architecture simulator show that the main factor limiting further
reduction is the time spent in the matching phase in the Rete network. Consequently, the load balancing
must concentrate on the processing performed in the Rete network. Furthermore, most of the time in the
Rete network is spent in G-node activities. Thus, the number of S-tests performed in the antecedents of a
production is used as a measure of the workload associated with this production. To address the constraint
of balancing the amount of processing among processors, we define the function B : Py, ..., Py_y — Z7,

which computes the number of beta tests that are expected to be performed by processor F;.
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N-1
B(P) = Z_: B(R;) @ij, (2)

where G(R;) is the number of beta tests performed for production R;, and ¢;; is 1 if R; is assigned to P;,

and 0 otherwise®. N is the total number of productions in the system.

Let S; denote the set of productions assigned to processor ;. When the algorithm starts, all subsets .S;
are empty and all productions are in the set S. The fitness of placing production R; in set Si is measured

by the value of the function F(R;, Sk).

N-1
F(Ri,Sk) = > w(By)nix(l =), (3)
7=0
2 if R, € S
mrk=95 1 iR, €S8

-1 it R; € 5, # Sk,

The value of the fitness function indicates how the production represented by the vertex R; fits in the
subset Si. F(R;, Sk) computes a weighted sum of the connections between vertex R; and all other vertices
in PRG. A strong connection with a vertex that has been assigned to a set other than Si reduces the
fitness of R; to Sk, while a strong connection with a vertex already in Sy increases the fitness. A strong
connection with a vertex that has not been assigned to any subset has an intermediate value because S

may be able to attract both vertices.

The strategy used in this partitioning algorithm consists of selecting the processor with the least number
of estimated beta tests, and then finding the production best fitted to this processor. The productions
strongly related to other productions in PRG are the first ones to be assigned to processors. The algorithm

ends when there are no more productions in S.

PARTITION(S, E,w, N, B, F)

1 while S # ()

2 do Sp <« SrU{R; /R; €S and
B(Px) = ming B(Pg) and
F(R;, Sk) = max; F(R;, Sk)}

66(R]) is an estimate of the number of beta tests performed because of the presence of production R;. It is measured in

previous runs of the same production system.
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3 S%S—{Ri}

5 Performance Evaluation

Performance evaluation can be accomplished through measurement, simulation, and analytic modeling [23].
Measurement consists of observing actual values for specified parameters in an existing system. Simulation
consists in creating a model for the behavior of a system, writing a computer program that reproduces
this behavior, feeding the simulator with an appropriate sample of the workload of the actual system, and
computing selected parameters of interest. In analytic modeling a mathematical model of the system is
created and its solution provides the performance evaluation [23]. In a related work, we used an analytical
model to investigate the effect of using multiple functional units to update the Rete network within each

processor [7].

In this research we use an event driven simulator to evaluate the speedup of the architecture proposed.
The input of the simulator consists of production system programs written in OPS5 syntax. For syntax

and lexical analysis, the tools yyacc and yylex were used”.

5.1 Benchmarking

A well known weakness of production system machine research 1s the lack of a comprehensive and broadly
used set of benchmarks for evaluation of performance. In the process of searching for benchmarks to
evaluate this novel architecture, we contacted many researchers with the same problem: a new idea to
be evaluated in need of a suitable set of benchmark programs. Most of the benchmarks obtained were
toy programs with a small number of productions in which the researcher can only change the size of the
database. A benchmark in which the number of productions and the database size can be independently
changed would allow researchers to study various aspects of new architectures. Section 5.1.1 presents a
new benchmark that has such characteristics. 1t is a modification of the well known Traveling Salesperson
Problem that we call a Contemporaneous TSP (CTSP) [8]. Another benchmark that we wrote is a solution
to the “Confusion of Patents Problem”. The following sections describe CTSP in detail and briefly present

some other benchmarks used to test the architecture.

"The front-end conversion of the OPS5 syntax into internal data structure was built by Anurag Acharya at Carnegie Mellon

University for PPL [3, 2].
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5.1.1 A Contemporaneous TSP

In this modified version of the TSP, the cities are grouped into “countries”. The tour has to be constructed
such that the salesperson enters each country only once. The location and borders of the countries must

allow the construction of a tour observing this restriction. The problem is formally stated as follows:

An instance of CTSP is represented by (K,C, ¢, pe,0.,0,d). K = {Cy,Cy,...,Cp} is a “con-
tinent” formed by “countries”. Each country C; = {¢; 7(1), €ir(2)s -+ Ci,r(m(s))} contains m(3)
“cities”. The number of cities per country m(i) is normally distributed with average p. and
standard deviation o.. The ordering O =< C7 (1), Cr(2), ---; Cr(n) > specifies the order in which
the countries shall be visited. The function d(Ci,T(k);Cj,T(l)) € 77 specifies the distance be-
tween any two cities in the continent. The problem consists of finding an ordering of cities

< €r(1)s Ciyr(2)s -+ Cipr(m(i)) > Within each country C; that minimizes the cost of the global tour:

K3

=1 ]:1

n—1
ST d(eiriy Cinrn) T D ACinmy)s Citr(1) F AChrmn))s €10(1))- (4)
=1

This formulation of TSP is called “contemporaneous” because it reflects some aspects of modern day
life. In the current global economy, travelpersons are likely to have greater needs than the traditional
salesperson driving from town to town. Consider a music star in a worldwide tour carrying along a huge
crew and sophisticated equipment: the singer will visit many different locations in each continent; the cost
of flying back and forth between continents is much higher than movements within a continent and depends
on the locations of departure and arrival. Other situations involving sophisticated traveling requirements
include the planning of airline routes and national political campaigns in large countries such as USA, Brazil
and India. Applications in which data locality allows the creation of clusters include: insurance database
management, banking industry, a national health care information network, and a national criminal offense

information network®.

5.1.2 A Production System Solution for CTSP

The formulation presented above for the CTSP is generic enough to allow its application in many fields:
there is no restriction in what the words continent, country, city, and distance might represent. To facilitate
the construction of a Production System solution that is useful for testing new PS architectures, we used

a simpler version of CTSP with the following restrictions:

8n the 1994 “Brady Bill”, the USA Congress mandated the construction of such a network for background verification for

the purchase of fire weapons.
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The problem is symmetric, i.e., d(c;, ¢;) = d(c;, ¢;) for any i and j.

A continent is a two-dimensional Euclidian space.

A country is a contiguous, rectangular shape within this space.

e The number of cities in each state follows a normal distribution with average pu. and standard

deviation o..

The city locations are uniformly distributed within each country.

e There is a common boundary between two countries that are consecutive in the ordering O.

Our PS solution for CTSP has a set of productions for each country and a set of productions for each
country boundary. The data set is constructed in such a way that the distances among cities located within
each country are stored in WMEs with different types. Given a country C;, the country that precedes C}
in the order O is denominated P(C}); the country that succeeds C; in the order O is denominated S(C;).
It 1s not necessary to store in the data base the distance between every two cities in the continent. For a
city ¢; in a country (7, the only relevant distances are the distance to the cities within Cj, to the cities
in P(C;), and to the cities in S(C;). The following list illustrates WMEs typically used in our solution to
CTSP:

(GERMANY_city “name GERMANY_O1 “status not_in_trip)

(FRANCE_city “name FRANCE_10 “status in_trip)

(GERMANY_distance “from GERMANY_04 "“to GERMANY_O07 “value 135)
(FRANCE_GERMANY_distance "“from FRANCE_14 “to GERMANY_03 “value 357)
(GERMANY_POLAND_distance “from GERMANY_O1 “to POLAND_O05 “value 55)

Our solution has seventeen local productions per country and twelve productions per country boundary.
This organization allows the researcher to vary the number of productions by creating continents with
different number of countries. The size of the data base is determined by the number of countries and the
average number of cities per country. The variance between the amount of data processed by each cluster

of production is given by o,.

The heuristic used in the PS solution of the problem involves the computation of two extra locations
for each country C;: the geometric center of the borders with P(C;) and with S(C;). Because we impose
the restriction that countries have rectangular shapes in a two-dimensional Euclidian space, the border

between two subsequent countries in the tour is always a segment of a straight line. The border center
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b(C;, C;) between countries C; and ' is the center of the line segment that forms the boundary. The

heuristic used to construct the internal tour in a country C} is described below:

e The first city ¢ in the internal tour of a country Cj is the city with minimum distance d(b(C;, P(C})), k).

e While the internal tour of country C; is not complete, select a city ¢; € C; such that d(cg,c;) —
d(eg, b(Cy, S(C;))) is minimum. ¢ is the last city inserted in the tour.

e Whenever the internal tours of two adjacent countries C; and C; are completed, the last city visited

in ( is connected to the first city visited in C;.

e Whenever there is a segment of tour formed by four cities ¢; — ¢; — ¢x — ¢; such that d(e;, ¢;) +

d(ck, c1) > d(ci, cx) + d(c;, 1), change this segment of tour to ¢; — ¢, — ¢; — ¢

This heuristic rationale is to add to the internal tour the cities that are close to the last city included in
the tour and far from the border in which the internal tour shall end. There is a limited local optimization
of the constructed tour. We developed a C program that allows researchers to specify continent maps and

to experiment with different numbers of countries; u., and o..

This simplified CTSP offers many advantages for production system benchmarking: the number of
productions in the program can be varied by changing the number of countries; the ratio of global to local
data is controlled by the average number of cities in each country; the balance in the size of local data
clusters is specified by o.; and the specification of the continent “map” is very simple making it easy for
a researcher to generate a new instantiations of the benchmark. This benchmarking facility is available
through anonymous ftp to: pine.ece.utexas.edu in /a/pine/home/pine/ftp/pub/parprosys. In the
measurements presented in section 6, instances of the CSTP appear as south, south2, moun and moun2.
In moun and south a single set of productions performs the optimization in all country borders, while in
south2 and moun2 an specialized set of productions is used for the optimization of each country border.
Table 2 shows the relation between the number of countries in each benchmark €', the average number of

cities in each country . and important parameters in the benchmarks generated by the facility.

Measure south, moun south2, moun2
7t of productions 20C+1 30C+1
# WME types 8C' +8 15C+1
# WMEs in initial database | C' (2 4+ 2 p. + 3) | C(2 42 p. + 3)

Table 2: Static measures for the CTSP benchmark according to C' and p,
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5.1.3 Confusion of Patents Problem

We constructed a solution for the formulation of the Confusion of Patents Problem presented in [10, 22]
The problem presents five patents, five inventors, five cities, and ten constraints. Using these constraints we
must decide who invented what and where. In our solution, all 125 possible combinations and 10 constraints
are present in the initial database; 67 productions use the constraints to eliminate combinations that are

not possible; 19 productions select the right combinations and print the solution.

Because this solution has only four different types of WMEs, most of the productions either change or
test the same kinds of WME. As a consequence, productions have strong interdependency, resulting in a
production system poorly suited for clustering. Even in a machine with a moderate number of processors,
most of the actions need to be broadcast on the network. The main source of parallelism is the concurrent
execution of different portions of the Rete network. Performance measures to this solution of the confusion

of patents problem are reported under the name patents.

5.1.4 The Hotel Operation Problem

Originally written by Steve Kuo at the University of Southern California, hotel is a production system
that models the operation of a hotel. Tt is a relatively large and varied production system (80 productions,
65 WME types) with 17 non-exclusive contexts. Because each production in hotel is related with the
activities that actually take place in a hotel, the amount of speedup obtained depends on the balance of
work among each one of these activities. For example, if a hotel is specified with a large number of tables
in the restaurant and very few rooms, the productions that take care of the restaurant tables will have
a much larger load than the productions that cleanup the rooms. This work unbalance is transferred to

parallel architectures that partition the program at the production level.

5.1.5 The Game of Life

This is an implementation for Conway’s game of life, as constructed by Anurag Acharya. After our
modifications, 1life has forty productions. Twenty five of these productions are in the context that
computes the value of each cell for the next generation and potentially can be fired in parallel. The other
fifteen productions are used for sequencing and printing and can be only slightly accelerated by Rete

network parallelism.
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5.1.6 The Line Labeling Problem

Different versions of the line labeling problem (Waltz and Toru-Waltz) have being used for performance
evaluation [27, 28, 34, 37]. Our version was originally written by Toru Ishida (Columbia Univ.), and
successively modified by Dan Neiman (Univ. of Massachusetts), Anurag Acharya (Carnegie-Mellon Univ.)
and José Amaral (Univ. of Texas). The current version has two non-overlapping stages of execution,
each one with four productions. Because the system is partitioned at the production level, the amount
of parallelism is limited to four fold. Such a low limit in speedup occurs because this is a simple “toy”
problem with only ten productions, not adequate for the architecture proposed. The line labeling problem

1s 1dentified as waltz2 in our set of benchmark.

Table 3 shows static measures — number of productions, number of distinct WME types, average num-
ber of antecedents per production, average number of consequents per productions — for the benchmarks
used to estimate performance in the multiple functional unit Rete network. south and south2 are CTSPs
with four countries and ten cities per country; moun and moun2 are C'TSPs with ten countries and 15 cities

per country; life, patents, waltz2, and hotel are the benchmarks discussed in sections 5.1.3 to 5.1.6.

Bench. | # Prod | Ant./prod | Cons./prod | # WME types
life 40 6.1 1.3 )
hotel 80 4.1 2.0 62
patents 86 5.2 1.2 4
south 91 4.7 2.8 40
south2 121 4.7 2.7 61
moun 211 4.7 2.8 88
moun?2 301 4.7 2.7 151
waltz2 10 2.7 8.0 7

Table 3: Static Measures for Benchmarks Used.

6 Performance Measurements

The benchmarks described in section 5.1 were used to evaluate the performance of the proposed archi-
tecture. First we measure the amount of speedup over an architecture with global synchronization and
without overlapping between matching and selecting-acting within a processor. Then we investigate the
effectiveness of the use of associative memories. Finally we obtain estimates for the size of associative

memories needed for each one of the benchmarks and for the level of activity in the bus.
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Notice that this section measures performance improvement obtained from two distinct ideas: section
6.1 measures the improvement solely due to elimination of over-synchronization and section 6.2 measures
the improvement solely due to use of associative memories. However, because there is some interaction

between these improvements, their product is only a rough estimate of the combined benefit of these ideas.

6.1 Parallel Firing Speedup

To measure the advantages of parallel production firing and of the internal parallelism in each processor,
we define a globally synchronized architecture that is very similar to the one proposed in this paper, except
that it performs global conflict set resolution to implement the OPS5 recency strategy. This synchronized
architecture is also very similar to the one suggested by Gupta, Forgy, and Newell [15]. In this architecture,
each processor reports the best local instantiation to be fired to the bus controller. The bus controller
selects the instantiation whose time tag indicates it to be the latest one to become fireable. This added
decision capability in the bus controller implements the recency strategy to solve the conflict set. The
processor selected to fire a production broadcasts all changes in the bus. A processor only selects a new
candidate to fire when the matching in the Rete network is complete. The bus controller waits until all
processors report a new candidate to fire. This mechanism reproduces the global synchronization and
conflict set generation/resolution present in many of the previously proposed architectures. In order to
have a fair comparison, we considered that the synchronized architecture uses an associative memory to

store and solve the local conflict sets, and that the bus controller chooses the “winner” in one time step.

Since the synchronized architecture also uses associative memory to store and search the local conflict
sets, the comparisons of Figures 5 and 6 do not reflect the advantages of using such memories in our

architecture. We delay this analysis until Section 6.2.

Figure 5 shows the speedup curves for the benchmarks 1life, hotel, patents, and waltz2. In this and
the next section, we will observe a significant difference in performance and memory requirements between
this group of benchmarks and the ones based on CTSP (south, south2, moun, and moun2). This is due to
a gap in complexity between the two groups of benchmarks: the CTSP programs have higher data locality,
larger number of productions, and larger data sets. Due to these characteristics, CTSP programs reflect
more closely the characteristics encountered in production system applications in industry. The curve
names starting with “s” indicate measures in the synchronized architecture; the curve names starting with
“a” indicate measures in the architecture proposed in this paper. All speedups are measured against a
single processor synchronized architecture. For the benchmarks presented in Figure 5, there is not much
distinction between the two architectures when they have a single processor. This indicates that the

parallelism between the matching phase and the selecting/execution phase does not result in much speed
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Figure 5: Speed improvement measures comparing “a” curves representing the new architecture that
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S

eliminates oversynchronization with the curves of an idealized synchronous architecture that solves

conflict set 1n one time step. Both systems use associative memories.

improvement for these benchmarks. Yet, even with these “toy problems”, the parallel firing of productions

and the elimination of the global synchronization provides significant speedup.

Figure 6 shows the comparative performance for the CTSP benchmarks. Here, significant speedup is
observed over the synchronized architecture even for the single processor configuration. This measures
the amount of speed that is gained due to the parallelism between matching and selecting/firing. The
apparent superlinear speedup in the curves of Figure 6 reflects the fact that these curves are showing the
combined speedup due to two different factors: intra and interprocessor parallelism. To obtain the speedup
due exclusively to parallel production firing, the reader should divide the values in the “a” curves by the
values in the same curve for a single processor machine. These results confirm our initial conjecture that
the elimination of the global synchronization in a production system allows the construction of machines

with significant speedup.
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eliminates oversynchronization with the curves of an idealized synchronous architecture that solves

conflict set 1n one time step. Both systems use associative memories.

Another way to compare the two architectures is to measure how much speedup the proposed archi-
tecture has over the synchronized one with the same number of processors. Measurements were made for
machines with one through twenty processors. Table 4 shows the mean and the variance for the speedups
obtained with each configuration. It also shows the maximum and minimum speedup obtained with any
number of processors. Because our architecture implements “eager” production firing without generating
a global conflict set, in rare cases, some extra production execution might cause it to be slower than the
synchronized architecture (see the minimum speedup for patents). The gap in performance between the
CTSP and the other benchmarks in Table 4 indicates that the proposed architecture is very effective on

extracting parallelism of PS programs that possess data locality.
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Benchmark Speedup

mean | o, max | min
life 1.14 | 0.35 | 1.28 | 1.02
hotel 1.89 | 1.56 | 2.50 | 1.14
patents 1.02 | 0.12 | 1.26 | 0.87
south 5.84 | 9.03 | 10.18 | 2.16
south?2 3.53 | 395 | 5.79 | 1.77
moun?2 4.90 | 5.10 | 8.07 | 2.87
waltz2 1.40 | 0.62| 1.56 | 1.14

Table 4: Speedup over synchronized architecture using the same number of processors.

6.2 Effectiveness of Associative Memories

An associative memory or content addressable memory (CAM) is an storage device that retrieves data upon
receiving a partial specification of its contents. We adopt Wade’s terminology and call a traditional memory
accessed by addresses a reference addressable memory (RAM) [43]. CAMs are most beneficial for systems in
which storage devices are often searched for a cell with a given pattern. The most well known applications
of the CAM mechanism are the tag matching in a cache memory and the data checking in a snooping cache
or directory. When a CAM receives a request for a piece of data, it searches all positions of the memory
and reports the contents of the records that match the specified pattern. Obvious advantages of a CAM
over a RAM are the possibility of parallel matching when enough hardware is available to implement it,

the liberation of the processor during memory searches, and reduced traffic between processor and memory

[41].

In section 3 we stated that the design of the architecture is based on the premise that the use of CAMs
significantly improves the processing speed. In this section we address questions that come to the mind of
an inquisitive computer architect when analyzing the architecture. First, assume a machine configuration
in which all memory components are CAM: what would be the impact of replacing one of these CAMs for
a RAM?Y Second, consider a machine in which all memories are RAM: how much speedup would be gained

if one of these memory components were to be replaced for a CAM?

To evaluate the speedup obtained by the use of CAMs, we implemented options in the simulator that
allow us to specify whether each one of the individual memory components — AFIM, FIM, and PMM —
is a CAM or a RAM. If a component is specified as a RAM, the simulator counts the number of accesses

performed until the searched data item is found. This number is multiplied by the RAM access time to
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find the time for that particular access. If a component is specified as a CAM, every access takes the same

amount of time.

The effectiveness of a CAM in the architecture depends on the amount of data stored in the memory,
the frequency of access, and whether its accesses are in the critical path of execution. Thus, the amount
of speedup obtained by a given combination of CAM/RAM memories depends on the production system
program that the machine is executing. For a production system program that maintains a large number
of productions in the conflict set, the use of CAM for AFIM and FIM might result in a considerable speed
improvement. If the conflict set is small, the use of CAM for these memories only improves the speed

slightly.

To set up experiments to measure these speedups, we defined two quantities: Speedup(M, B) and
Slowdown(M, B). Speedup(M, B) is the amount of speedup that results when the memory component M
is replaced for a CAM in a machine that was originally formed only by RAMs. M designates one of the
memory components — PMM, AFIM, or FIM — and B is a benchmark program. While Speedup(M, B)
in this section measures the amount of speed gained because of the use of CAMs, the speedup measured
on section 6.1 was relating the asynchronous firing of production with a machine that fires productions
synchronously but also uses CAMs. Because the base machine to compute the speedup in this section and
in section 6.1 are different, these two set of measurements are not to be compared. Equation 5 shows how

the speedup of PMM is measured.

Speedup(PM M, B) = Time(PMM,, FIM,, AFIM,, B) (5)
peeaup ) _Time(PMMc;F]MT’JAF]MT’B)’

where M, indicates that the memory component M is RAM and M. indicates that the memory component
M is CAM. Time(PMM,,FIM,, AFIM,, B) is the amount of time taken to execute the benchmark B

with the architecture configuration specified.

Considering a machine that uses only CAMs, Slowdown(M, B) measures the reduction in speed that
would occur if the memory component M were to be replaced for a RAM. Equation 6 shows the measure-

ment of the slowdown that results from the transformation of PMM from a CAM to a RAM.

Time(PMM,, FIM,, AFIM,, B) ©)
Time(PMM,, FIM., AFIM,, B)’

Slowdown(PMM, B) =

For a given benchmark program the amount of speedup obtained by using CAM memories varies with
the number of processors used in the architecture. Table 5 presents the average speedup for machines with

one up to twenty processors. In practical designs, CAMs might be slower than RAMs: either because they
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are constructed with older technology, or because they need to use more silicon area for the comparator
circuits. To account for these factors we introduce a technology factor T' that indicate how much slower a
basic operation such as the reading or writing of a single data element was considered in this comparison.
Table 5 shows measures for a machine with CAMs with the same speed as the RAMs (7" = 1) and for
a machine with CAMs that are four times slower (7" = 4) than the RAMs. Observe that there is no
significant difference in speedup between the two measures, indicating the advantage of the use of CAMs;

even if they are slower than RAMs.

Benchmark | T PMM FIM AFIM All
Speedup | Slowdown | Speedup | Slowdown | Speedup | Slowdown | Speedup
hotel 1 3.03 29.25 0.99 1.56 1.56 13.48 45.51
hotel 4 3.01 30.11 0.99 1.57 1.48 13.56 45.32
life 1 2.82 2.12 1.29 1.02 1.59 1.16 3.35
life 4 2.80 2.14 1.29 1.02 1.56 1.16 3.35
moun?2 1 3.25 4.85 1.00 1.02 1.79 2.50 8.50
moun?2 4 3.29 4.94 1.00 1.02 1.73 2.54 8.49
patents 1 1.87 1.56 1.03 1.01 1.41 1.17 2.28
patents 4 1.87 1.55 1.03 1.01 1.40 1.16 2.26
south?2 1 3.37 10.04 1.01 1.08 1.43 4.32 14.80
south?2 4 3.34 10.17 1.01 1.11 1.48 4.41 14.93
waltz2 1 1.81 1.41 1.03 1.01 1.94 1.58 2.96
waltz2 4 1.81 1.45 1.03 1.01 1.87 1.59 2.95

Table 5: Speedup due to use of CAMs?.

Table 5 shows the speedup and the slowdown due to each piece of associative memory for each one of
the benchmarks presented in section 5.1. The last column shows the speedup that compares a configuration
with all three memories associative against one in which all three memories are RAM. Table 5 shows that
replacement of just one memory for a CAM results in quite low speedup. This limited speedup is result
of the slow operation of the RAMs in the machine. Only when all three memories are made CAMs, the
processing speed shows considerable improvement. The numbers in the slowdown columns show that the
use of RAM in PMM or AFIM alone might cause significant reduction in speed. Both experiments show
that the use of CAM for FIM is not very important. Overall, these results confirm our initial conjecture

that the use of CAMs can provide considerable speedup in production system architectures.

°Fach number is an average of 20 values, obtained for systems with 1 through 20 processors.
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Benchmark PMM FIM AFIM FIM(synchronized)

Max Ave | Max | Ave | Max | Ave Max Ave

hotel 3200 | 1436 | 395 | 216 | 1030 | 699 3580 1178
life 2877 | 2643 | 690 | 584 | 3313 | 1472 || 23030 8787

moun?2 27899 | 23303 | 2580 | 727 | 15634 | 3042 || 313400 46747
patents 776 739 605 | 179 | 1549 | 449 1410 426
south2 4788 | 2822 | 350 | 95 | 1159 | 611 47205 8414
waltz?2 3573 | 1109 | 1250 | 870 | 2797 | 1688 5785 3299

Table 6: Maximum and average “crest” for memory size (bytes).

6.3 Associative Memory Size

The next question that the inquisitive computer architect must ask is: how large do these associative

t710 of each memory component

memories need to be? The simulator has an option to report the “cres
in any given run. Table 6 shows the maximum and the average crest over machines with up to twenty
processors. The average crest is the average of the largest memory needed for each machine configuration.
The maximum crest indicates the minimum memory size needed to run that specific benchmark. Observe
that for some memory/benchmark the average crest is several times smaller than the maximum crest (see
AFIM in moun2 and PMM in waltz2). If memory size becomes a concern in the construction of the
machine, a RAM can be used to contain overflow. The absence of a direct correlation between the size of
the memory crest and the speedup and slowdown shown in table 5 reflects the fact that the processing speed

1s not solely dependent on the amount of data stored in each memory: it also depends on the frequency

and time of access of these memories.

The speed comparison with the synchronized architecture presented in section 6.1 considered that both
architectures used associative memory to store and search the conflict set. The average and the maximum
crests of the associative memories for the synchronized architecture are presented in the rightmost columns
of Table 6. Observe that for most of the significant benchmarks, the synchronized architecture needs a much
larger memory. For the CSTPs benchmarks (moun2 and south2) the maximum crest in the synchronized
architecture was ten times larger than in the architecture proposed in this paper. This evidences that the

“eager firing” mechanism also reduces the demand for memory.

0The crest of a memory component is the maximum amount of data stored in that memory component in any processor of

the machine for a given benchmark and a specified number of processors.
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Benchmark Bus Utilization(%)

4 proc. | 8 proc. | 16 proc.

hotel 10.9 20.9 23.7
life 0.83 1.38 2.02
moun2 2.25 3.83 4.71

patents 0.68 0.89 1.08
south?2 4.97 8.31 9.72
waltz2 1.36 1.79 1.76

Table 7: Percentage of time that the bus is busy.

6.4 Use of Bus

A legitimate concern about any bus-based parallel architecture is the limitation of a bus as a broadcasting
network. In sections 2 and 3 we conjectured that bus bandwidth is not a limitation in the architecture
proposed. Table 7 presents the measurements for the percentage of time that the bus is busy for machines
with 4, 8 and 16 processors, assuming that bus bandwidth is the same as that of local memory. These mea-
sures include the arbitration time and the token broadcasting time. Observe that technological limitations
would have to render the bus much slower than the memories before the bus speed becomes a concern in

this architecture.

7 Concluding Remarks

We proposed a new architecture for production systems that eliminates global synchronization and the
generation of a global conflict set. The increased importance of associative search for maintaining fireable
instantiation tables in this setting is underscored by the big performance gains obtained by using modest
amounts of associative memory. Note that a single physical CAM can be logically partitioned into PMM,
FIM and AFIM, and the “crests” in each partition are not expected to occur in the same processor and at
the same time. Thus, only a few kilobytes of associative memory is sufficient for most of the benchmarks

considered.

A number of issues remain for future research in this area. With the improved speed in production
selection and firing due to the CAMs, the matching in the Rete network is again a bottleneck. We have
developed an analytical model to investigate the utilization of multiple functional units in the Rete network

of each processor. The predictions indicate that a small number of functional units provide significant
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improvement in the Rete network speed [7]. One can now study the system-level effect of a faster Rete

network for the architecture proposed in this paper.

Acharya and Tambe have showed the usefulness of handling collections of WM Es instead of single WM Es
during the match phase [1]. The manipulation of collections in the architecture presented in this paper
would further reduce the amount of traffic in the bus. However, more theoretical studies are necessary before
collection oriented production systems are built. For example, the handling of self-disabling productions

in collection oriented systems needs to be studied with care.

This research assumed the use of serializability as a correctness criterion. Our experience with PS
benchmarks indicates that programmers often rely on knowledge about conflict set resolution strategies
when writing PS programs. This is mostly evidenced by the omission of important antecedents in produc-
tions that are enabled but never selected to fire by an specific strategy. For problems like CTSP, writing
a serializable correct PS was fairly straightforward. Now that our study has indicated that serializable
systems offer great speed improvements, it is desirable to develop programming aid tools to help in the

specification and verification of a wider range of serializable PS programs.
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